Semi-Deterministic Broadcast Channels with Cooperation

Ziv Goldfeld, Haim H. Permuter and Gerhard Kramer

Ben Gurion University and Technische Universität München

IEEE 28-th Convention of Electrical and Electronics Engineers in Israel

December, 2014
Outline

- Motivation and past work
- AK problem with one-sided encoder cooperation
- SD-BC with one-sided decoder cooperation
- Duality
- Summary
Motivation and Past Work

- The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].
Motivation and Past Work

- The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].

\[
(X_1^n, X_2^n, Y^n) \in \mathcal{T}_\epsilon^{(n)}(P_{X_1} P_{X_2}^* P_{Y|X_1,X_2})
\]
Motivation and Past Work

- The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].

\[
\begin{align*}
X_1^n &\xrightarrow{} \text{Encoder 1} \xrightarrow{T_1(X_1^n)} \text{Decoder} \xrightarrow{Y^n} \\
X_2^n &\xrightarrow{} \text{Encoder 2} \xrightarrow{T_2(X_2^n)} \text{Decoder}
\end{align*}
\]

\[(X_1^n, X_2^n, Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{X_1, X_2, Y^n|X_1, X_2})\]

Motivation and Past Work

- The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].

\[
\begin{align*}
X_1^n &\quad \text{Encoder 1} \\
X_2^n &\quad \text{Encoder 2} \\
T_1(X_1^n) &\quad T_2(X_2^n) \\
\text{Decoder} &\quad Y^n
\end{align*}
\]

\[
(X_1^n, X_2^n, Y^n) \in \mathcal{T}^{(n)}_\epsilon (P_{X_1} P_{X_2}^* P_{Y|X_1,X_2})
\]

- Add cooperation ability:
Motivation and Past Work

- The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].

\[X_1^n, X_2^n, Y^n \in \mathcal{T}^{(n)}_\epsilon(P_{X_1,X_2}P^*_Y|X_1,X_2) \]

- Add cooperation ability:
 - Can boost performance.
Motivation and Past Work

- The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].

\[
\begin{align*}
X_1^n & \xrightarrow{} \ \text{Encoder 1} \xrightarrow{T_1(X_1^n)} \ \text{Decoder} \\
X_2^n & \xrightarrow{} \ \text{Encoder 2} \xrightarrow{T_2(X_2^n)} \ \text{Decoder} \\
Y^n & \xleftarrow{} \\
\end{align*}
\]

\[(X_1^n, X_2^n, Y^n) \in \mathcal{T}_{\epsilon}(n)(P_{X_1,X_2}P^*_Y|X_1,X_2)\]

- Add cooperation ability:
 - Can boost performance.
 - Milestone towards multiuser channel-source duality.
AK Problem with Cooperation - Definition

Without cooperation [Ahlswede-Körner, 1975]
AK Problem with Cooperation - Definition

Without cooperation [Ahlswede-Körner, 1975]

\[X^n_1, X^n_2 \] are pairwise i.i.d. \(\sim P_{X_1, X_2} \).

Sources: \((X^n_1, X^n_2)\) are pairwise i.i.d. \(\sim P_{X_1, X_2} \).
AK Problem with Cooperation - Definition

Without cooperation [Ahlswede-Körner, 1975]

Sources: \((X_1^n, X_2^n)\) are pairwise i.i.d. \(\sim P_{X_1, X_2}\).

Encoder Cooperation: \(T_{12} \in [1 : 2^{nR_{12}}]\).
AK Problem with Cooperation - Definition

Without cooperation [Ahlswede-Körner, 1975]

- **Sources:** \((X^n_1, X^n_2)\) are pairwise i.i.d. \(\sim P_{X_1, X_2}\).
- **Encoder Cooperation:** \(T_{12} \in [1 : 2^{nR_{12}}]\).
- **Encoder-Decoder Communication:** \(T_j \in [1 : 2^{nR_j}], j = 1, 2\).
AK Problem with Cooperation - Definition

Without cooperation [Ahlswede-Körner, 1975]

Sources: \((X_1^n, X_2^n)\) are pairwise i.i.d. \(\sim P_{X_1,X_2}\).

Encoder Cooperation: \(T_{12} \in [1 : 2^{nR_{12}}]\).

Encoder-Decoder Communication: \(T_j \in [1 : 2^{nR_j}], \ j = 1, 2\).

Decoder Output: \((X_1^n, X_2^n, Y^n) \in \mathcal{T}_\epsilon^{(n)}(P_{X_2} P_{Y|X_2} 1_{\{X_1 = f(Y)\}})\).
AK Problem with Cooperation - Solution

Theorem (Coordination-Capacity Region)

For a desired coordination distribution \(P_{X_2} P_{Y|X_2} 1\{X_1=f(Y)\} \):

\[
C_{AK} = \bigcup \left\{ \begin{array}{l}
R_{12} \geq I(V; X_1) - I(V; X_2) \\
R_1 \geq H(X_1|V, U) \\
R_2 \geq I(U; X_2|V) - I(U; X_1|V) \\
R_1 + R_2 \geq H(X_1|V, U) + I(V, U; X_1, X_2)
\end{array} \right\}
\]

where the union is over all \(P_{X_1, X_2} P_{V|X_1} P_{U|X_2, V} P_{Y|X_1, U, V} \) with \(P_{X_2} P_{Y|X_2} 1\{X_1=f(Y)\} \) as marginal.
Theorem (Coordination-Capacity Region)

For a desired coordination distribution \(P_{X_2} P_{Y|X_2} 1\{X_1 = f(Y)\} \):

\[
C_{AK} = \bigcup \left\{ \begin{array}{l}
R_{12} \geq I(V; X_1) - I(V; X_2) \\
R_1 \geq H(X_1|V, U) \\
R_2 \geq I(U; X_2|V) - I(U; X_1|V) \\
R_1 + R_2 \geq H(X_1|V, U) + I(V, U; X_1, X_2)
\end{array} \right\}
\]

where the union is over all \(P_{X_1, X_2} P_{V|X_1} P_{U|X_2, V} P_{Y|X_1, U, V} \) with \(P_{X_2} P_{Y|X_2} 1\{X_1 = f(Y)\} \) as marginal.

Achievability via Wyner-Ziv coding, superposition coding and Slepian-Wolf binning.
Theorem (Coordination-Capacity Region)

For a desired coordination distribution \(P_{X_2 \mid X_1 = f(Y)} \):

\[
C_{\text{AK}} = \bigcup \left\{ \begin{array}{l}
R_{12} \geq I(V; X_1) - I(V; X_2) \\
R_1 \geq H(X_1 \mid V, U) \\
R_2 \geq I(U; X_2 \mid V) - I(U; X_1 \mid V) \\
R_1 + R_2 \geq H(X_1 \mid V, U) + I(V, U; X_1, X_2)
\end{array} \right\}
\]

where the union is over all \(P_{X_1, X_2 \mid V} P_{U \mid X_2, V} P_{Y \mid X_1, U, V} \) with \(P_{X_2 \mid X_1 = f(Y)} \) as marginal.

Achievability via Wyner-Ziv coding, superposition coding and Slepian-Wolf binning.
Theorem (Coordination-Capacity Region)

For a desired coordination distribution $P_{X_2 Y | X_2 \mathbb{1}\{X_1 = f(Y)\}}$:

$$C_{AK} = \bigcup \left\{ \begin{array}{l}
R_{12} \geq I(V; X_1) - I(V; X_2) \\
R_1 \geq H(X_1 | V, U) \\
R_2 \geq I(U; X_2 | V) - I(U; X_1 | V) \\
R_1 + R_2 \geq H(X_1 | V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

where the union is over all $P_{X_1, X_2 V | X_1} P_{U | X_2, V} P_{Y | X_1, U, V}$ with $P_{X_2 Y | X_2 \mathbb{1}\{X_1 = f(Y)\}}$ as marginal.

Achievability via Wyner-Ziv coding, superposition coding and Slepian-Wolf binning.
Theorem (Coordination-Capacity Region)

For a desired coordination distribution $P_{X_2} P_{Y|X_2} 1\{X_1 = f(Y)\}$:

$$C_{AK} = \bigcup \left\{ \begin{array}{ll}
R_{12} & \geq I(V; X_1) - I(V; X_2) \\
R_1 & \geq H(X_1|V, U) \\
R_2 & \geq I(U; X_2|V) - I(U; X_1|V) \\
R_1 + R_2 & \geq H(X_1|V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

where the union is over all $P_{X_1, X_2} P_{V|X_1} P_{U|X_2, V} P_{Y|X_1, U, V}$ with $P_{X_2} P_{Y|X_2} 1\{X_1 = f(Y)\}$ as marginal.

Achievability via Wyner-Ziv coding, superposition coding and Slepian-Wolf binning.
Semi-Deterministic BC with Cooperation - Definition

Without cooperation [Gelfand and Pinsker, 1980]
Semi-Deterministic BC with Cooperation - Definition

Without cooperation [Gelfand and Pinsker, 1980]

\((M_1, M_2) \xrightarrow{Encoder} X^n \xrightarrow{\text{Channel}} Y_1^n, Y_2^n \xrightarrow{\text{Decoder 1}} \hat{M}_1 \)
\(\quad \times P_{Y_2|X} \)
\(\quad \times \{Y_1 = f(X)\} \)

\((M_1, M_2) \xrightarrow{\text{Decoder 2}} \hat{M}_2 \)

Messages: \((M_1, M_2) \sim \text{Unif}[1 : 2^{nR_1}] \times [1 : 2^{nR_2}] \).
Without cooperation [Gelfand and Pinsker, 1980]

- **Messages:** \((M_1, M_2) \sim \text{Unif}[1 : 2^{nR_1}] \times [1 : 2^{nR_2}]\).

- **Channel - Decoder Input:** \(Y_{1,i} = f(X_i)\) and \(Y_{2,i} \sim P_{Y_2|X}\).
Semi-Deterministic BC with Cooperation - Definition

Without cooperation [Gelfand and Pinsker, 1980]

- **Messages:** \((M_1, M_2) \sim \text{Unif}[1 : 2^{nR_1}] \times [1 : 2^{nR_2}].\)
- **Channel - Decoder Input:** \(Y_{1,i} = f(X_i)\) and \(Y_{2,i} \sim P_{Y_2|X}.\)
- **Decoder Cooperation:** \(M_{12}(Y_1^n) \in [1 : 2^{nR_{12}}].\)
Semi-Deterministic BC with Cooperation - Definition

Without cooperation [Gelfand and Pinsker, 1980]

Messages: \((M_1, M_2) \sim \text{Unif}[1 : 2^{nR_1}] \times [1 : 2^{nR_2}]\).

Channel - Decoder Input: \(Y_{1,i} = f(X_i)\) and \(Y_{2,i} \sim P_{Y_2|X}\).

Decoder Cooperation: \(M_{12}(Y_1^n) \in [1 : 2^{nR_{12}}]\).

Decoders’ Output: \(\hat{M}_1(Y_1^n)\) and \(\hat{M}_2(M_{12}, Y_2^n)\).
Semi-Deterministic BC with Cooperation - Solution

Theorem (Capacity Region)

The capacity region is:

\[
C_{BC} = \bigcup \left\{ \begin{array}{l}
R_{12} \geq I(V; Y_1) - I(V; Y_2) \\
R_1 \leq H(Y_1) \\
R_2 \leq I(V, U; Y_2) + R_{12} \\
R_1 + R_2 \leq H(Y_1 | V, U) + I(U; Y_2 | V) + I(V; Y_1)
\end{array} \right\}
\]

where the union is over all \(P_{V, U, Y_1, X} P_{Y_2|X} \mathbb{1}_{\{Y_1 = f(X)\}} \).
Theorem (Capacity Region)

The capacity region is:

\[
C_{BC} = \bigcup \left\{ \begin{array}{l}
R_{12} \geq I(V; Y_1) - I(V; Y_2) \\
R_1 \leq H(Y_1) \\
R_2 \leq I(V, U; Y_2) + R_{12} \\
R_1 + R_2 \leq H(Y_1 | V, U) + I(U; Y_2 | V) + I(V; Y_1)
\end{array} \right\}
\]

where the union is over all \(P_{V, U, Y_1, X} P_{Y_2 | X} \mathbf{1}_{Y_1 = f(X)} \).

Achievability via rate splitting, Marton coding and Wyner-Ziv-like coding for cooperation protocol.
Semi-Deterministic BC with Cooperation - Converse

Outline

Difficulty: Unique structure
Semi-Deterministic BC with Cooperation - Converse

Outline

Difficulty: Unique structure \[\implies R_{12} \geq I(V; Y_1) - I(V; Y_2). \]
Semi-Deterministic BC with Cooperation - Converse Outline

Difficulty: Unique structure \(\implies R_{12} \geq I(V; Y_1) - I(V; Y_2) \).

Converse Via Novel Approach: Probabilistic construction of auxiliaries:
Semi-Deterministic BC with Cooperation - Converse Outline

Difficulty: Unique structure \[\implies R_{12} \geq I(V; Y_1) - I(V; Y_2). \]

Converse Via Novel Approach: Probabilistic construction of auxiliaries:

1. Outer bound the achievable region using 3 auxiliaries \((A, B, C)\).
Difficult**: Unique structure $\implies R_{12} \geq I(V; Y_1) - I(V; Y_2)$.

Converse Via Novel Approach: Probabilistic construction of auxiliaries:

1. Outer bound the achievable region using 3 auxiliaries (A, B, C).

2. Choose auxiliaries probabilistically as a function of the codebook:

\[
V = \begin{cases} (A, C) , & \text{w.p. } \lambda \\ \emptyset , & \text{w.p. } 1 - \lambda \end{cases} ; \quad U = (A, B, C)
\]
Semi-Deterministic BC with Cooperation - Converse Outline

Difficulty: Unique structure \[\implies R_{12} \geq I(V; Y_1) - I(V; Y_2). \]

Converse Via Novel Approach: Probabilistic construction of auxiliaries:

1. Outer bound the achievable region using 3 auxiliaries \((A, B, C)\).

2. Choose auxiliaries probabilistically as a function of the codebook:

\[
V = \begin{cases}
(A, C) , & \text{w.p. } \lambda \\
\emptyset , & \text{w.p. } 1 - \lambda
\end{cases} ; \quad U = (A, B, C)
\]

3. Optimize over \(\lambda\) to tighten the outer bound.
Semi-Deterministic BC with Cooperation - Converse Outline

Difficulty: Unique structure \(\implies R_{12} \geq I(V; Y_1) - I(V; Y_2). \)

Converse Via Novel Approach: Probabilistic construction of auxiliaries:

1. Outer bound the achievable region using 3 auxiliaries \((A, B, C)\).

2. Choose auxiliaries probabilistically as a function of the codebook:

 \[
 V = \begin{cases}
 (A, C), & \text{w.p. } \lambda \\
 \emptyset, & \text{w.p. } 1 - \lambda
 \end{cases};
 U = (A, B, C)
 \]

3. Optimize over \(\lambda\) to tighten the outer bound.
 - Optimal \(\lambda\) depends on the joint PMF induced from the codebook.
Difficulty: Unique structure $\implies R_{12} \geq I(V; Y_1) - I(V; Y_2)$.

Converse Via Novel Approach: Probabilistic construction of auxiliaries:

1. Outer bound the achievable region using 3 auxiliaries (A, B, C).

2. Choose auxiliaries probabilistically as a function of the codebook:

$$V = \begin{cases} (A, C) , & \text{w.p. } \lambda \\ \emptyset , & \text{w.p. } 1 - \lambda \end{cases} ; \quad U = (A, B, C)$$

3. Optimize over λ to tighten the outer bound.
 - Optimal λ depends on the joint PMF induced from the codebook.

Generalization of [Lapidoth and Wang, 2013].
“There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel...”
(C. E. Shannon, 1959)
“There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel...”
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan et al., 2003], [Gupta and Verdú, 2011].
“There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel...”
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan et al., 2003], [Gupta and Verdú, 2011].

- The solutions of the problems are dual.
"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan et al., 2003], [Gupta and Verdú, 2011].

- The solutions of the problems are dual.
 - Information measures admit dual forms.
Duality - Preface

“There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel...”
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan et al., 2003], [Gupta and Verdú, 2011].

- The solutions of the problems are dual.
 - Information measures admit dual forms.
 - Optimization domain may vary.
Duality - Preface

“There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel...”
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan et al., 2003], [Gupta and Verdú, 2011].

- The solutions of the problems are dual.
 - Information measures admit dual forms.
 - Optimization domain may vary.

- A formal proof of duality is still absent.
“There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel...”
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan et al., 2003], [Gupta and Verdú, 2011].

- The solutions of the problems are dual.
 - Information measures admit dual forms.
 - Optimization domain may vary.
- A formal proof of duality is still absent.
- Solving one problem \(\implies\) Valuable insight into solving dual.
Duality - Preface

Point-to-Point Case:
Duality - Preface

Point-to-Point Case:

\[X^n \rightarrow \text{Encoder} \rightarrow T(X^n) \rightarrow \text{Decoder} \rightarrow Y^n \]

\[M \rightarrow \text{Encoder} \rightarrow X^n \rightarrow P_{Y|X} \rightarrow Y^n \rightarrow \text{Decoder} \rightarrow \hat{M} \]
Point-to-Point Case:

\[X^n \xrightarrow{\text{Encoder}} T(X^n) \xrightarrow{\text{Decoder}} Y^n \]

\[M \xrightarrow{\text{Encoder}} X^n \xrightarrow{P_{Y|X}} Y^n \xrightarrow{\text{Decoder}} \hat{M} \]
Duality - Preface

Point-to-Point Case:

\[X^n \rightarrow \text{Encoder} \rightarrow T(X^n) \rightarrow \text{Decoder} \rightarrow Y^n \]

\[M \rightarrow \text{Encoder} \rightarrow X^n \rightarrow P_{Y|X} \rightarrow Y^n \rightarrow \text{Decoder} \rightarrow \hat{M} \]
Duality - Preface

Point-to-Point Case:

\[R^* = \min_{P_{Y|X}} I(X;Y) \]

\[C = \max_{P_X} I(X;Y) \]
Duality - Multi-User Case

AK Problem vs. Semi-Deterministic BC:

Encoder 1

X_1^n → $T_1(X_1^n)$ → Decoder

$T_{12}(X_1^n)$

Encoder 2

X_2^n → $T_2(T_{12}, X_2^n)$ → Decoder

(Y_1^n, Y_2^n) → Decoder 1 → \hat{M}_1

Channel

$1_{\{Y_1 = f(X)\}} \times P_{Y_2|X}$

Encoder

(M_1, M_2) → X^n → Y_1^n → \hat{M}_1

Decoder 2

Y_2^n → \hat{M}_2
AK Problem vs. Semi-Deterministic BC:

- **Encoder 1:** $X_1^n \rightarrow T_1(X_1^n) \rightarrow T_{12}(X_1^n) \rightarrow \text{Decoder} \rightarrow Y^n$
- **Encoder 2:** $X_2^n \rightarrow T_2(T_{12}, X_2^n)$

Decoder:
- Decoder 1: $Y_1^n \rightarrow \hat{M}_1$
- Decoder 2: $Y_2^n \rightarrow \hat{M}_2$
Duality - Multi-User Case

AK Problem vs. Semi-Deterministic BC:

Encoder 1

\[X_1^n \]

Encoder 2

\[X_2^n \]

Decoder

\[Y^n \]

Encoder

\[(M_1, M_2) \]

Channel

\[\left\{ Y_1 = f(X) \right\} \times P_{Y_2|X} \]

Decoder 1

\[\hat{M}_1 \]

Decoder 2

\[\hat{M}_2 \]
Duality - Multi-User Case

AK Problem vs. Semi-Deterministic BC:

Probabilistic relations are preserved:
Duality - Multi-User Case

AK Problem vs. Semi-Deterministic BC:

Probabilistic relations are preserved:

\[
(X^n, Y^n_1, Y^n_2) \in \mathcal{T}_\epsilon^{(n)} \left(P_X^* \mathbb{1}_{Y_1 = f(X)} P_{Y_2 | X} \right) \iff (Y^n, X^n_1, X^n_2) \in \mathcal{T}_\epsilon^{(n)} \left(P_Y \mathbb{1}_{X_1 = f(Y)} P^*_{X_2 | Y} \right)
\]
Duality - Corner Point Correspondence

For fixed joint distributions and R_{12}:

\[
\begin{align*}
I(U; Y_2 | V) + I(V; Y_1) \\
I(U; Y_2 | V) - I(U; Y_1 | V)
\end{align*}
\]

\[
\begin{align*}
H(Y_1 | V, U) \quad & H(Y_1) \\
H(X_1 | V, U) \quad & H(X_1)
\end{align*}
\]
Duality - Corner Point Correspondence

For fixed joint distributions and R_{12}:

\[
\begin{align*}
R_2 & \quad R_1 \\
I(U; Y_2|V) + I(V; Y_1) & \quad H(Y_1|V, U) \quad H(Y_1) \\
I(U; Y_2|V) - I(U; Y_1|V) & \quad H(Y_1|V, U) \\
0 & \quad R_1 \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Semi-Deterministic BC with Cooperation</th>
<th>Ahlswede-Körner Problem with Cooperation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{12} = I(V; Y_1) - I(V; Y_2)$</td>
<td>$R_{12} = I(V; X_1) - I(V; X_2)$</td>
</tr>
<tr>
<td>(R_1, R_2) at Lower Corner Point:</td>
<td>(R_1, R_2) at Lower Corner Point:</td>
</tr>
<tr>
<td>$\left(H(Y_1) \right)$, $I(U; Y_2</td>
<td>V) - I(U; Y_1</td>
</tr>
<tr>
<td>(R_1, R_2) at Upper Corner Point:</td>
<td>(R_1, R_2) at Upper Corner Point:</td>
</tr>
<tr>
<td>$\left(H(Y_1</td>
<td>V, U), I(U; Y_2</td>
</tr>
</tbody>
</table>
For fixed joint distributions and R_{12}:

\[
\begin{align*}
I(U; Y_2|V) &+ I(V; Y_1) \\
I(U; Y_2|V) &- I(U; Y_1|V) \\
H(Y_1|V, U) & \\
H(Y_1) & \\
R_2
\end{align*}
\begin{align*}
I(U; X_2|V) &+ I(V; X_1) \\
I(U; X_2|V) &- I(U; X_1|V) \\
H(X_1|V, U) & \\
H(X_1) & \\
R_1
\end{align*}

Semi-Deterministic BC with Cooperation

- $R_{12} = I(V; Y_1) - I(V; Y_2)$
- (R_1, R_2) at Lower Corner Point: $\left(H(Y_1), I(U; Y_2|V) - I(U; Y_1|V) \right)$
- (R_1, R_2) at Upper Corner Point: $\left(H(Y_1|V, U), I(U; Y_2|V) + I(V; Y_1) \right)$

Ahlswede-Körner Problem with Cooperation

- $R_{12} = I(V; X_1) - I(V; X_2)$
- (R_1, R_2) at Lower Corner Point: $\left(H(X_1), I(U; X_2|V) - I(U; X_1|V) \right)$
- (R_1, R_2) at Upper Corner Point: $\left(H(X_1|V, U), I(U; X_2|V) + I(V; X_1) \right)$
Duality - Corner Point Correspondence

For fixed joint distributions and R_{12}:

\[
R_{12} = I(V; Y_1) - I(V; Y_2)
\]

\[
(R_1, R_2) \text{ at Lower Corner Point: } \left(H(Y_1), I(U; Y_2|V) - I(U; Y_1|V) \right)
\]

\[
(R_1, R_2) \text{ at Upper Corner Point: } \left(H(Y_1|V, U), I(U; Y_2|V) + I(V; Y_1) \right)
\]

\[
R_{12} = I(V; X_1) - I(V; X_2)
\]

\[
(R_1, R_2) \text{ at Lower Corner Point: } \left(H(X_1), I(U; X_2|V) - I(U; X_1|V) \right)
\]

\[
(R_1, R_2) \text{ at Upper Corner Point: } \left(H(X_1|V, U), I(U; X_2|V) + I(V; X_1) \right)
\]
Semi-Deterministic BC with Cooperation

Ahlswede-Körner Problem with Cooperation

<table>
<thead>
<tr>
<th>Semi-Deterministic BC with Cooperation</th>
<th>Ahlswede-Körner Problem with Cooperation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{12} = I(V; Y_1) - I(V; Y_2))</td>
<td>(R_{12} = I(V; X_1) - I(V; X_2))</td>
</tr>
<tr>
<td>((R_1, R_2)) at Lower Corner Point: (\left(H(Y_1), I(U; Y_2</td>
<td>V) - I(U; Y_1</td>
</tr>
<tr>
<td>((R_1, R_2)) at Upper Corner Point: (\left(H(Y_1</td>
<td>V, U), I(U; Y_2</td>
</tr>
</tbody>
</table>
Summary

- AK problem with cooperation.
Summary

- AK problem with cooperation.
- SD-BC with cooperation.
Summary

- AK problem with cooperation.
- SD-BC with cooperation.
- Duality:
Summary

- AK problem with cooperation.
- SD-BC with cooperation.
- Duality:
 - Transformation principles.
Summary

- AK problem with cooperation.
- SD-BC with cooperation.
- Duality:
 - Transformation principles.
 - Corner point correspondence.
Summary

- AK problem with cooperation.
- SD-BC with cooperation.
- Duality:
 - Transformation principles.
 - Corner point correspondence.
- Probabilistic converse.
AK problem with cooperation.
SD-BC with cooperation.
Duality:
 ▶ Transformation principles.
 ▶ Corner point correspondence.
Probabilistic converse.
AK problem with cooperation.
SD-BC with cooperation.

Duality:
- Transformation principles.
- Corner point correspondence.

Probabilistic converse.

Thank you!
AK Problem with Cooperation - Achievability Outline

Encoder 1

Encoder 2

Decoder

X_1^n to Y^n

X_2^n

$T_1(X_1^n)$

$T_2(T_{12}, X_2^n)$

$T_{12}(X_1^n)$
AK Problem with Cooperation - Achievability Outline

Encoder 1

Encoder 2

Decoder

X_1^n → $T_1(X_1^n)$

X_2^n → $T_2(T_{12}, X_2^n)$

$T_{12}(X_1^n)$

Y^n

<table>
<thead>
<tr>
<th>Rate</th>
<th>Corner Point 1</th>
<th>Corner Point 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{12}</td>
<td>$I(V; X_1) - I(V; X_2)$</td>
<td>$I(V; X_1) - I(V; X_2)$</td>
</tr>
<tr>
<td>R_1</td>
<td>$H(X_1)$</td>
<td>$H(X_1</td>
</tr>
<tr>
<td>R_2</td>
<td>$I(U; X_2</td>
<td>V) - I(U; X_1</td>
</tr>
</tbody>
</table>
AK Problem with Cooperation - Achievability Outline

- **Encoder 1**
 - X_1^n to $T_1(X_1^n)$
 - $T_{12}(X_1^n)$

- **Encoder 2**
 - X_2^n to $T_2(T_{12}, X_2^n)$

- **Decoder**
 - Y^n

<table>
<thead>
<tr>
<th>Rate</th>
<th>Corner Point 1</th>
<th>Corner Point 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{12}</td>
<td>$I(V; X_1) - I(V; X_2)$</td>
<td>$I(V; X_1) - I(V; X_2)$</td>
</tr>
<tr>
<td>R_1</td>
<td>$H(X_1)$</td>
<td>$H(X_1</td>
</tr>
<tr>
<td>R_2</td>
<td>$I(U; X_2</td>
<td>V) - I(U; X_1</td>
</tr>
</tbody>
</table>

- **Cooperation:** Wyner-Ziv scheme to convey V^n via cooperation link.
AK Problem with Cooperation - Achievability Outline

Rate	Corner Point 1	Corner Point 2
R_{12} | $I(V; X_1) - I(V; X_2)$ | $I(V; X_1) - I(V; X_2)$
R_1 | $H(X_1)$ | $H(X_1|V, U)$
R_2 | $I(U; X_2|V) - I(U; X_1|V)$ | $I(U; X_2|V) + I(V; X_1)$

Cooperation: Wyner-Ziv scheme to convey V^n via cooperation link.
Corner Point 1: V^n is transmitted to dec. by Enc. 1 within X_1^n.
AK Problem with Cooperation - Achievability Outline

![Diagram of cooperative transmission system]

<table>
<thead>
<tr>
<th>Rate</th>
<th>Corner Point 1</th>
<th>Corner Point 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{12}</td>
<td>$I(V; X_1) - I(V; X_2)$</td>
<td>$I(V; X_1) - I(V; X_2)$</td>
</tr>
<tr>
<td>R_1</td>
<td>$H(X_1)$</td>
<td>$H(X_1</td>
</tr>
<tr>
<td>R_2</td>
<td>$I(U; X_2</td>
<td>V) - I(U; X_1</td>
</tr>
</tbody>
</table>

- **Cooperation**: Wyner-Ziv scheme to convey V^n via cooperation link.
- **Corner Point 1**: V^n is transmitted to dec. by Enc. 1 within X_1^n.
- **Corner Point 2**: V^n is explicitly transmitted to dec. by Enc. 2.
Semi-Deterministic BC with Cooperation - Achievability

Outline
Rate Splitting: $M_j = (M_{j0}, M_{jj})$, $j = 1, 2$:

![Diagram of the rate splitting process with two decoders and a channel between encoder and decoders]
Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
- (M_{10}, M_{20}) - Public message;
Semi-Deterministic BC with Cooperation - Achievability

Outline

- Rate Splitting: $M_j = (M_{j0}, M_{jj})$, $j = 1, 2$:
 - (M_{10}, M_{20}) - Public message;
 - (M_{11}, M_{22}) - Private messages.
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** $M_j = (M_{j0}, M_{jj})$, $j = 1, 2$:
 - (M_{10}, M_{20}) - Public message;
 - (M_{11}, M_{22}) - Private messages.

- **Codebook Structure:** Marton (with common message).
Semi-Deterministic BC with Cooperation - Achievability

Rate Splitting: \(M_j = (M_{j0}, M_{jj}) \), \(j = 1, 2 \):
- \((M_{10}, M_{20}) \) - Public message;
- \((M_{11}, M_{22}) \) - Private messages.

Codebook Structure: Marton (with common message).
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) - Public message;
 - (M_{11}, M_{22}) - Private messages.

- **Codebook Structure:** Marton (with common message).

- **Cooperation:**
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** \(M_j = (M_{j0}, M_{jj}) \), \(j = 1, 2 \):
 - \((M_{10}, M_{20}) \) - Public message;
 - \((M_{11}, M_{22}) \) - Private messages.

- **Codebook Structure:** Marton (with common message).

- **Cooperation:**
 1. Partition common message c.b into \(2^{nR_{12}} \) bins.
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** $M_j = (M_{j0}, M_{jj}), \ j = 1, 2$:
 - (M_{10}, M_{20}) - Public message;
 - (M_{11}, M_{22}) - Private messages.

- **Codebook Structure:** Marton (with common message).

- **Cooperation:**
 1. Partition common message c.b into $2^{nR_{12}}$ bins.
 2. Convey bin number via link.
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) - Public message;
 - (M_{11}, M_{22}) - Private messages.

- **Codebook Structure:** Marton (with common message).

- **Cooperation:**
 1. Partition common message c.b into $2^{nR_{12}}$ bins.
 2. Convey bin number via link.

- **Gain at Dec. 2:**
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** \(M_j = (M_{j0}, M_{jj}) \), \(j = 1, 2 \):
 - \((M_{10}, M_{20})\) - Public message;
 - \((M_{11}, M_{22})\) - Private messages.

- **Codebook Structure:** Marton (with common message).

- **Cooperation:**
 1. Partition common message c.b into \(2^{nR_{12}} \) bins.
 2. Convey bin number via link.

- **Gain at Dec. 2:** Reduced search space of common message c.w by \(R_{12} \).
Semi-Deterministic BC with Cooperation - Converse

Outline

Via telescoping identities:
Outline

Via telescoping identities:

1. Auxiliaries: $V_i = (M_{12}, Y_{1}^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
Via telescoping identities:

1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.

2. Telescoping identities [Kramer, 2011], e.g.,
Via telescoping identities:

1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_2^{n_{i+1}})$ and $U_i = M_2$.

2. Telescoping identities [Kramer, 2011], e.g.,

$$H(M_2) - n \epsilon_n$$
Via telescoping identities:

1. Auxiliaries: \(V_i = (M_{12}, Y_{1}^{i-1}, Y_{2,i+1}^{n}) \) and \(U_i = M_2 \).

2. Telescoping identities [Kramer, 2011], e.g.,

\[
H(M_2) - n\epsilon_n \leq I(M_2; Y_2^n | M_{12}) + I(M_2; M_{12})
\]
Semi-Deterministic BC with Cooperation - Converse

Outline

Via telescoping identities:

1. Auxiliaries: \(V_i = (M_{12}, Y_{1}^{i-1}, Y_{2,i}^{n}) \) and \(U_i = M_2 \).

2. Telescoping identities [Kramer, 2011], e.g.,

\[
H(M_2) - n\epsilon_n \leq I(M_2; Y_2^n | M_{12}) + I(M_2; M_{12})
\]
Via telescoping identities:

1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.

2. Telescoping identities [Kramer, 2011], e.g.,

$$H(M_2) - n\epsilon_n \leq I(M_2; Y_{2,n}^n | M_{12}) + I(M_2; M_{12})$$

$$= \sum_{i=1}^{n} \left[I(M_2; Y_{2,i}^n | M_{12}, Y_1^{i-1}) - I(M_2; Y_{2,i+1}^n | M_{12}, Y_1^i) \right] + I(M_2; M_{12})$$
Semi-Deterministic BC with Cooperation - Converse Outline

Via telescoping identities:

1. Auxiliaries: \(V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n) \) and \(U_i = M_2 \).

2. Telescoping identities [Kramer, 2011], e.g.,

\[
H(M_2) - n \epsilon_n \leq I(M_2; Y_2^n | M_{12}) + I(M_2; M_{12}) \\
= \sum_{i=1}^{n} \left[I(M_2; Y_2^n_i | M_{12}, Y_1^{i-1}) - I(M_2; Y_2^n_{i+1} | M_{12}, Y_1^i) \right] + I(M_2; M_{12}) \\
= \sum_{i=1}^{n} \left[I(M_2; Y_2,i | M_{12}, Y_1^{i-1}, Y_{2,i+1}^n) - I(M_2; Y_1,i | M_{12}, Y_1^{i-1}, Y_{2,i+1}^n) \right] + I(M_2; M_{12})
\]
Semi-Deterministic BC with Cooperation - Converse Outline

Via telescoping identities:

1. Auxiliaries: $V_i = (M_{12}, Y_{1}^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.

2. Telescoping identities [Kramer, 2011], e.g.,

$$H(M_2) - n\epsilon_n \leq I(M_2; Y_{2,i}^n|M_{12}) + I(M_2; M_{12})$$

$$= \sum_{i=1}^{n} I(M_2; Y_{2,i}^n|M_{12}, Y_{1}^{i-1}) - I(M_2; Y_{2,i+1}^n|M_{12}, Y_{1}^i) + I(M_2; M_{12})$$

$$= \sum_{i=1}^{n} I(M_2; Y_{2,i}^n|M_{12}, Y_{1}^{i-1}, Y_{2,i+1}^n) - I(M_2; Y_{1,i}^n|M_{12}, Y_{1}^{i-1}, Y_{2,i+1}^n) + I(M_2; M_{12})$$

Replaces 4 uses of Csiszár Sum Identity!
Multi-User Duality - Additional Examples

State-Dependant Semi-Deterministic BC vs. Dual:
Multi-User Duality - Additional Examples

State-Dependant Semi-Deterministic BC vs. Dual:

\[Y_1^n = f(X^n, S^n) \times P_{Y_2 | X^n, S^n} \]

\[(M_1, M_2) \]

\[X^n \]

\[S^n \]
Multi-User Duality - Additional Examples

State-Dependant Semi-Deterministic BC vs. Dual:

\[(M_1, M_2) \xrightarrow{Enc} X^n \xrightarrow{\text{Channel}} \begin{cases} Y_1^n \xrightarrow{\text{Dec 1}} \hat{M}_1 \\ Y_2^n \xrightarrow{\text{Dec 2}} \hat{M}_2 \end{cases} \xrightarrow{\text{Dec}} Y^n\]

\[I(U;Y_2) - I(U;S)\]

\[I(U;Y_2) - I(U;S)\]

\[0 \quad H(Y_1|S,U) \quad H(Y_1|S) \quad R_1\]

\[0 \quad H(X_1|Z,U) \quad H(X_1|Z) \quad R_1\]

\[I(U;X_2) - I(U;Z)\]

\[I(U;X_2) - I(U;Z)\]

\[0 \quad H(X_1|Z,U) \quad H(X_1|Z) \quad R_1\]
Multi-User Duality - Additional Examples

State-Dependant Output-Degraded BC vs. Dual:
Multi-User Duality - Additional Examples

State-Dependant Output-Degraded BC vs. Dual:

\[S^n \]

\[M_1, M_2 \]

\[X^n \]

\[Y_1^n, Y_2^n | X, S \]

\[\text{Channel} \]

\[\text{Dec 1} \]

\[\hat{M}_1 \]

\[\text{Dec 2} \]

\[\hat{M}_2 \]

\[Z^n \]

\[X_1^n \]

\[T_1 \]

\[Y^n \]

\[X_2^n \]

\[T_2 \]
Multi-User Duality - Additional Examples

State-Dependant Output-Degraded BC vs. Dual:

\[(M_1, M_2) \]

\[P_{Y_1, Y_2 | X, S} \]

\[Y_1^n \rightarrow \hat{M}_1 \]

\[Y_2^n \rightarrow \hat{M}_2 \]

\[I(U; X_2) - I(U; Z) \]

\[I(U; Y_2) - I(U; S) \]

\[I(X; Y_1, Y_2 | U, S) \]

\[I(Y; X_1, X_2 | U, Z) \]

Goldfeld/Permuter/Kramer Semi-Deterministic Broadcast Channels with Cooperation 14 / 15
Multi-User Duality - Additional Examples

Action-Dependant Output-Degraded BC vs. Dual:
Multi-User Duality - Additional Examples

Action-Dependant Output-Degraded BC vs. Dual:

\[
(M_1, M_2) \xrightarrow{Enc} X^n \xrightarrow{Y_1^n} \text{Dec 1} \xrightarrow{\hat{M}_1} \\
A^n(M_1, M_2) \xrightarrow{S^i} P_{S|A} \xrightarrow{S^i} \\
\]

\[
\text{Channel} \xrightarrow{P_{Y_1,Y_2|X,S}} \text{Dec 2} \xrightarrow{\hat{M}_2} \\
X^n \xrightarrow{Y_2^n} \\
\]

\[
\text{Enc 1} \xrightarrow{T_1} \text{Enc 2} \xrightarrow{T_2} \text{Dec} \xrightarrow{Z^i} \\
X^n_1 \xrightarrow{X^n_2} \\
\]

\[
P_{Z|X_1,X_2,A} \xrightarrow{Z^i} \\
\]

Goldfeld/Permuter/Kramer
Multi-User Duality - Additional Examples

Action-Dependant Output-Degraded BC vs. Dual:

\[
(M_1, M_2) \xrightarrow{X^n} \text{Enc} \xrightarrow{P_{Y_1,Y_2|X,S}} \text{Channel} \xrightarrow{Y_1^n,Y_2^n} \text{Dec 1, Dec 2} \xrightarrow{\hat{M}_1, \hat{M}_2} \text{Output}
\]

\[
A^n(M_1, M_2) \xrightarrow{S^i} \text{Enc} \xrightarrow{P_{S|A}} \xrightarrow{S^i} \text{Dec 1, Dec 2} \xrightarrow{\hat{M}_1, \hat{M}_2} \text{Output}
\]

\[
\text{Enc 1} \xrightarrow{T_1} \text{Dec} \xrightarrow{Y^n} \text{Output}
\]

\[
\text{Enc 2} \xrightarrow{T_2} \text{Dec} \xrightarrow{Z^i} \text{Output}
\]

\[
\begin{align*}
R_2 & \quad \begin{align*}
I(U; Y_2) & \quad \begin{align*}
0 & \quad I(V, A; Y_1, Y_2|U) \quad \begin{align*}
R_1
\end{align*}
\end{align*}
\end{align*}
\end{align*}
\begin{align*}
I(U; X_2) & \quad \begin{align*}
0 & \quad I(V, A; X_1, X_2|U) \quad \begin{align*}
R_1
\end{align*}
\end{align*}
\end{align*}
\end{align*}
\]
Achieving Corner Point 1:

\[\left(I(V; X_1|X_2), H(X_1), I(U; X_2|X_1, V) \right).\]
Achieving Corner Point 1:

\[
\left(I(V; X_1|X_2) , \ H(X_1) , \ I(U; X_2|X_1, V) \right).
\]

- **Cooperation:** Wyner-Ziv coding to convey \(V^n \) from Encoder 1 to Encoder 2.
Achieving Corner Point 1:

\[
(I(V; X_1|X_2), H(X_1), I(U; X_2|X_1, V)).
\]

- **Cooperation**: Wyner-Ziv coding to convey \(V^n\) from Encoder 1 to Encoder 2.
- **Encoder 1 to Decoder**: Conveys \(X_1^n\) to the decoder in a lossless manner.
Achieving Corner Point 1:

\[
 (I(V; X_1|X_2) , H(X_1) , I(U; X_2|X_1, V)).
\]

- **Cooperation**: Wyner-Ziv coding to convey V^n from Encoder 1 to Encoder 2.
- **Encoder 1 to Decoder**: Conveys X_1^n to the decoder in a lossless manner.
- **Encoder 2 to Decoder**: The decoder knows X_1^n and therefore V^n. Wyner-Ziv coding to convey U^n.

Achieving Corner Point 2:

\[\left(I(V; X_1|X_2) , H(X_1|V,U) , I(U; X_2|V) + I(V; X_1) \right). \]
Achieving Corner Point 2:

\[
(I(V; X_1|X_2) , \ H(X_1|V,U) , \ I(U; X_2|V) + I(V; X_1)) .
\]

Cooperation: Same.
Achieving Corner Point 2:

\[
(I(V; X_1|X_2), H(X_1|V,U), I(U; X_2|V) + I(V; X_1)).
\]

- **Cooperation:** Same.
- **Encoder 2 to Decoder:** Knows V^n. Conveys the index of V^n and uses superposition coding to convey U^n.
Achieving Corner Point 2:

\[
(I(V; X_1|X_2), H(X_1|V, U), I(U; X_2|V) + I(V; X_1)).
\]

- **Cooperation:** Same.
- **Encoder 2 to Decoder:** Knows \(V^n \). Conveys the index of \(V^n \) and uses superposition coding to convey \(U^n \).
- **Encoder 1 to Decoder:** The decoder knows \((V^n, U^n)\). Binning scheme to convey \(X_1^n \) in a lossless manner.
Converse:
Converse:

- Standard techniques while defining

\[V_i = (T_{12}, X_{1}^{n\backslash i}, X_{2,i+1}^{n}), \]
\[U_i = T_2, \]

for every \(1 \leq i \leq n \).
Converse:

- Standard techniques while defining

\[V_i = (T_{12}, X_{1}^{n \setminus i}, X_{2,i+1}^{n}), \]
\[U_i = T_2, \]

for every \(1 \leq i \leq n. \)

- Time mixing properties.
Semi-Deterministic BC with Cooperation - Achievability Outline

- **Rate Splitting:** $M_j = (M_{j0}, M_{jj})$, $j = 1, 2$:

![Rate Splitting Diagram]

$$X^n \xrightarrow{Enc} Y^n_1 \xrightarrow{Dec 1}$$

$$Y^n_2 \xrightarrow{Dec 2}$$
Semi-Deterministic BC with Cooperation - Achievability Outline

- **Rate Splitting**: $M_j = (M_{j0}, M_{jj})$, $j = 1, 2$:
 - (M_{10}, M_{20}) - Public message;
Semi-Deterministic BC with Cooperation - Achievability Outline

Rate Splitting: \(M_j = (M_{j0}, M_{jj}), j = 1, 2: \)
- \((M_{10}, M_{20})\) - Public message;
- \((M_{11}, M_{22})\) - Private messages.
Semi-Deterministic BC with Cooperation - Achievability Outline

- **Rate Splitting:** \(M_j = (M_{j0}, M_{jj}) \), \(j = 1, 2 \):
 - \((M_{10}, M_{20}) \) - Public message;
 - \((M_{11}, M_{22}) \) - Private messages.

- **Codebook Structure:** Marton:
Semi-Deterministic BC with Cooperation - Achievability Outline

- **Rate Splitting:** $M_j = (M_{j0}, M_{jj}), \ j = 1, 2$:
 - (M_{10}, M_{20}) - Public message;
 - (M_{11}, M_{22}) - Private messages.

- **Codebook Structure:** Marton:
 - Public Message: $(M_{10}, M_{20}) \rightarrow V^n$.

![Diagram of channel with encoders and decoders]
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** $M_j = (M_{j0}, M_{jj})$, $j = 1, 2$:
 - (M_{10}, M_{20}) - Public message;
 - (M_{11}, M_{22}) - Private messages.

- **Codebook Structure:** Marton:
 - Public Message: $(M_{10}, M_{20}) \rightarrow V^n$.
 - Private Messages - Superposed on V^n:
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting**: \(M_j = (M_{j0}, M_{jj}), \ j = 1, 2 \):
 - \((M_{10}, M_{20})\) - Public message;
 - \((M_{11}, M_{22})\) - Private messages.

- **Codebook Structure**: Marton:
 - Public Message: \((M_{10}, M_{20}) \rightarrow V^n\).
 - Private Messages - Superposed on \(V^n \):
 1. \(M_{11} \rightarrow Y_1^n \).

![Diagram of encoder and channels](image)
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** $M_j = (M_{j0}, M_{jj})$, $j = 1, 2$:
 - (M_{10}, M_{20}) - Public message;
 - (M_{11}, M_{22}) - Private messages.

- **Codebook Structure:** Marton:
 - Public Message: $(M_{10}, M_{20}) \rightarrow V^n$.
 - Private Messages - Superposed on V^n:
 1. $M_{11} \rightarrow Y_1^n$;
 2. $M_{22} \rightarrow U^n$.

\[X^n \xrightarrow{Enc} Channel \rightarrow Y_1^n, Y_2^n \xrightarrow{Dec 1, 2} \]
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** $M_j = (M_{j0}, M_{jj})$, $j = 1, 2$:
 - (M_{10}, M_{20}) - Public message;
 - (M_{11}, M_{22}) - Private messages.

- **Codebook Structure:** Marton:
 - Public Message: $(M_{10}, M_{20}) \rightarrow V^n$.
 - Private Messages - Superposed on V^n:
 1. $M_{11} \rightarrow Y_1^n$;
 2. $M_{22} \rightarrow U^n$.

![Diagram of the semi-deterministic broadcast channel with cooperation.](attachment:channel_diagram.png)
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** \(M_j = (M_{j0}, M_{jj}), \ j = 1, 2: \)
 - \((M_{10}, M_{20})\) - Public message;
 - \((M_{11}, M_{22})\) - Private messages.

- **Codebook Structure:** Marton:
 - Public Message: \((M_{10}, M_{20}) \rightarrow V^n.\)
 - Private Messages - Superposed on \(V^n:\)
 1. \(M_{11} \rightarrow Y_1^n;\)
 2. \(M_{22} \rightarrow U^n.\)

- **Decoding:** Joint typicality decoding.
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** \(M_j = (M_{j0}, M_{jj}) \), \(j = 1, 2 \):
 - \((M_{10}, M_{20}) \) - Public message;
 - \((M_{11}, M_{22}) \) - Private messages.

- **Codebook Structure:** Marton:
 - Public Message: \((M_{10}, M_{20}) \to V^n \).
 - Private Messages - Superposed on \(V^n \):
 1. \(M_{11} \to Y_1^n \);
 2. \(M_{22} \to U^n \).

- **Decoding:** Joint typicality decoding.

- **Cooperation:** Bin number of \(V^n \) - \(2^{nR_{12}} \) bins.
Semi-Deterministic BC with Cooperation - Achievability

Outline

- **Rate Splitting:** $M_j = (M_{j0}, M_{jj})$, $j = 1, 2$:
 - (M_{10}, M_{20}) - Public message;
 - (M_{11}, M_{22}) - Private messages.

- **Codebook Structure:** Marton:
 - Public Message: $(M_{10}, M_{20}) \rightarrow V^n$.
 - Private Messages - Superposed on V^n:
 1. $M_{11} \rightarrow Y_1^n$;
 2. $M_{22} \rightarrow U^n$.

- **Decoding:** Joint typicality decoding.

- **Cooperation:** Bin number of V^n - 2^nR_{12} bins.

- **Gain:** Dec. 2 reduces search space of V^n by R_{12}.
Achievability: Split $M_i = (M_{i0}, M_{ii})$, $i = 1, 2$. Code construction:
Achievability: Split $M_i = (M_{i0}, M_{ii})$, $i = 1, 2$. Code construction: