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Abstract—In this paper we study the usage of Convolutional
Neural Network (CNN) estimators for the task of Multiple-Input-
Multiple-Output Orthogonal Frequency Division Multiplexing
(MIMO-OFDM) Channel Estimation (CE). Specifically, the CNN
estimators interpolate the channel values of reference signals for
estimating the channel of the full OFDM resource element (RE)
matrix. We have designed a 2D CNN architecture based on U-
net, and a 3D CNN architecture for handling spatial correlation.
We investigate the performance of various CNN architectures for
a diverse data set generated according to 5G NR standard, and
in particular we investigate the influence of spatial correlation,
Doppler and reference signal resource allocation. The CE CNN
estimators are then integrated with MIMO detection algorithms
for testing their influence on the system level Bit Error Rate
(BER) performance.

Index Terms—2D CNN, 3D CNN, Channel estimation, Deep
learning, MIMO detection, Reference signal.

I. INTRODUCTION

MIMO-OFDM is a fundamental technology in 4G and 5G

standards for wireless communications, which achieves high

spectral efficiency and enables the ever-growing demand for

data throughput and capacity. Efficient data detection at the

receiver is highly dependent on accurate representation of the

fading channel coefficients. Channel estimation is the process

of calculating these coefficients, and it usually involves the

transmission and detection of predefined reference signals (RS,

a.k.a pilots). Each RS can be used for calculating the channel

response at its allocated Resource Element (RE) by applying

the Least Squares algorithm. However, the overhead of allo-

cating REs for reference signals reduces the number of REs

available for data transmission. As the MIMO order increases

towards massive MIMO, the problem of performing accurate

channel estimation with a minimal amount of allocated RS

becomes harder.

Traditionally, wireless communication networks have been

designed according to explicit mathematical models, and

researchers have developed model-driven algorithms which

aim to represent and handle practical field conditions. In

recent years, as machine-learning (ML) techniques improved,

much research has been dedicated to data-driven algorithms,

which do not assume a predefined model, but rather learn

from provided data samples. The authors in [1] elaborate

on the integration of model-based and AI-based approaches

for wireless networks, and a comprehensive survey of recent

advances and future challenges for ML application to wireless

networks is provided in [2].

A. Model Driven Channel Estimation Algorithms

Consider an OFDM subframe with Nsc frequency sub-

carriers and Nsymb time symbols, and a MIMO setup of

NT transmitters and NR receiver antennas. For each RE the

received signal can be modeled in the frequency domain as:

Yf,s = Hf,s ·Xf,s +Wf,s, (1)

where f ∈ {1, .., Nsc} is the frequency subcarrier index

and s ∈ {1, .., Nsymb} is the time symbol, Yf,s ∈ C
NR×1

is the received signal, Hf,s ∈ C
NR×NT is the channel

response matrix, Xf,s ∈ C
NT×1 is the transmitted signal, and

Wf,s ∈ C
NR×1 is additive white complex Gaussian noise. The

purpose of channel estimation is to calculate Hf,s for correctly

detecting the transmitted signal Xf,s given the received signal

Yf,s.

Least Squares (LS): Given a RS at subcarrier fp and symbol

sp, the LS estimation of the channel matrix ĤLS
fp,sp

is defined

as:

ĤLS
fp,sp

= Yfp,sp · (X−1

fp,sp
)T . (2)

Next, an estimation is required for REs with no RS. The

following model-driven algorithms, based on [3], interpolate

the LS results, and will be used for comparison:

1) Linear Interpolation (LI): averaging the LS results over

all time symbols, then applying a linear interpolation

between each pair of pilot REs in the frequency axis,

and replicating the result vector for every time symbol.

2) DFT-based Interpolation (DFTI): averaging the LS re-

sults over all time symbols, then decreasing the noise

by applying DFT and eliminating all impulse response

beyond the maximum channel delay. Then replicating

the result vector for every time symbol.

3) DFT-Linear Interpolation (DFTLI): perform DFTI for

each OFDM symbol in which pilots are transmitted,

and then perform linear interpolation in the time axis

for OFDM symbols with no pilots. This algorithm is

designed to follow fast-fading channels.

Additional model-driven CE algorithms such as Minimum

Mean Square Error (MMSE) are described in [3], [4]. The

MMSE estimator relies on having the second order channel



statistics, i.e., the auto-correlation matrix. In this paper we

assume that the channel estimation is done from a given

resource block of pilot symbols without any prior knowledge,

hence MMSE is not suitable. In future work, as described in

Section VI we will analyse also estimation algorithms based

on long-time sequential of data and there MMSE will be

considered.

B. Data Driven Channel Estimation Algorithms

In [5] the authors present a CNN-based low complexity

estimator, which is motivated by the structure of MMSE for

channels which satisfy the Toeplitz assumption. This CNN

estimator is used in [6] for investigating its performance with

various antenna array configurations. In [7] a Deep Neural

Network (DNN) is suggested for frequency and time selective

(doubly selective) fading channels, using the results of the

LS algorithm and the estimated channel of the previous block

as inputs to the DNN. In [8] a DNN that does not require

training is used for de-noising the received signal, followed

by conventional LS estimation. The authors in [9] propose

a neural network (NN) for realistic channel modeling, which

can be used for mitigating pilot contamination and for channel

compressing and fingerprinting. In [10] they use sequence-to-

sequence learning models for performing channel prediction.

Another channel prediction example is demonstrated in [11],

where CNN Auto-Regressive (CNN-AR) and CNN Recurrent

Neural Network (CNN-RNN) architectures are used for Chan-

nel State Information (CSI) forecasting by taking into account

channel aging features. An end-to-end approach is taken in

[12] for jointly designing the pilot signals and the channel

estimator using DNNs.

C. Main Contributions

In this paper we explore the channel estimation performance

of several CNN-based architectures under various channel

fading models, Doppler shift values, antenna correlation levels

and signal-to-noise ratios (SNR). We propose a unique 2D U-

net estimator as well as a 3D feed-forward estimator, which

exploits the extra dimension for handling spatial correlation.

The proposed CNN estimators outperform the above reference

model-based estimators without any prior knowledge of the

aforementioned channel parameters. We further investigate the

estimators’ performance for different RS allocation schemes.

Finally, we integrate the CE CNN estimators with MIMO

detection algorithms and present the system-level performance

in terms of bit-error-rate.

II. PROBLEM DEFINITION

As discussed above, the purpose of channel estimation is

to calculate the channel response for every RE and for every

pair of Tx-Rx antennas, so H ∈ C
Nsc×Nsymb×NR×NT is 4-

dimensional. LS is used for calculating the channel response

for pilot REs. Then, a CE algorithm should further apply a

mechanism for filling in the sparse 4D H matrix.

Reference signals can be allocated over the OFDM time-

frequency grid in many ways. Fig. 1 depicts two possible
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Fig. 1. RS allocation types of 8 transmitting antennas.

allocations for a 24-subcarriers over 14-symbols 8x8 MIMO

subframe: sparse and dense. The dense RS allocation has

16 RS for each transmitting antenna, resulting in a signaling

overhead of 34% of the REs. Sparse allocation has 6 RS for

the same configuration, which reduces the signaling overhead

to 14% of the REs.

We measure CE performance according to two criteria: Nor-

malized Mean Square Error (NMSE) of the channel estimator

output in decibels, and the resulting Bit Error Rate (BER) of

the MIMO detection algorithm. For a channel grid H and its

estimation Ĥ the NMSE criterion in decibels is defined as:

NMSE
(

H, Ĥ
)

= 10 · log
10

(

||H − Ĥ||2F
||H||2F

)

, (3)

where || · ||2F is the square of the Frobenius norm. Frobenius

norm is defined as the square root of the sum over squared

absolute value of all input elements.

We test our suggested solution under various channel

conditions, including several spatial correlation and Doppler

shift values. Spatial correlation is defined as the correlation

measured between each pair of antennas. For a correlated

channel matrix Hf,s and correlation matrices RR, RT of Rx

and Tx respectively, the spatial correlation can be formulated

as in [13]:

Hf,s = R
1

2

R ·Hiid
f,s ·R

1

2

T , (4)

where Hiid
f,s is a matrix of a non correlated channel and its

elements are independent and identically distributed. Doppler

shift is a frequency shift due to the mobility of either the

transmitter, the receiver or both.
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Fig. 2. 2D FF CNN scheme for CE



III. PROPOSED CNN ESTIMATORS

CNN models are widely used for image processing and

image in-painting tasks (cf. [14]) in which pattern recognition

is required. The sparse 4D channel matrix which contains the

RS channel values bears resemblance to images, as both are

characterized by correlation of adjacent elements. Therefore,

our proposed CNN estimators were inspired by image pro-

cessing algorithms such as super resolution and in-painting

networks.

A CNN consists of convolution layers and activation func-

tions. The input of a 2D-CNN architecture is a two dimen-

sional matrix, as depicted in Fig. 2, whereas the input of a 3D-

CNN is a three-dimensional matrix. In a simple feed-forward

(FF) CNN architecture the layers are serially connected, so

that each layer’s output serves as the input of its successor.

Other CNN architectures apply more complex inter-layer

connectivity for improving the gradient flow, increasing

the model’s generalization capacity, and bypassing saturated

weights and layers. As depicted in Fig. 3, a ResNet [15]

architecture adds the current layer’s output to the output of

the previous layer for every other layer. In the U-net [16]

architecture layers are symmetrically inter-connected, so that

the output of the first layer feeds both the second layer and

the last layer, and so on. A DenseNet [17] architecture takes

this a step further, and connects the output of each layer to all

of its succeeding layers.
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Fig. 3. Inter-layer connectivity schemes investigated in this paper

Having tested various configurations of 2D and 3D CNNs

with FF, U-net and DenseNet connectivity, we found that

the 2D U-net (2DU) and the 3D feed-forward (3DFF) ar-

chitectures had superior CE performance over the other con-

figurations. We will thus discuss the details of these two

architectures.
A. Common Features

Both estimators have non-linear activation functions for all

layers but the last. We tested sigmoid, ReLU and GELU [18]

activation functions, and found that GELU activation provides

the best results. A GELU activation function is defined as

GELU(x) = x · Φ(x), (5)

where x is the input and Φ(x) is a standard normal distribution

CDF. We set the loss function to be Minimum Square Error

(MSE) loss and added L2 regularization to prevent over-fitting.

Denoting x as an input sample, Ĥ(x) as the estimator’s output,

H as the target output and Θ as the model’s weights, we define

the loss function as:

Loss
(

H, Ĥ(x)
)

= ||H − Ĥ(x)||2F + λ||Θ||2F , (6)

where λ is a hyper-parameter for tuning the balance between

L2 regularization and the MSE. We use AdamW optimizer

[19], which is designed to improve gradients when using

L2. Batch normalization and dropout did not improve the

performance, so we have not used them in our final estimators.

B. 2DU Estimator

The 2DU estimator uses the LS estimation of the RS in the

frequency and time dimensions for interpolating the channel of

each Tx-Rx antenna pair separately. This means that NT ×NR

instances of the 2DU estimator should be used for every CE

subframe. A single model is trained for all Tx-Rx pairs. Using

U-net inter-layer connectivity has improved the 2D FF CE

performance without changing the layers’ dimensions. The

structure of the 2DU estimator is described in Table I.

C. 3DFF Estimator

The 3DFF estimator uses 3D convolution kernels which

are applied to the input’s frequency, time and Rx antennas

dimensions. This property allows the 3DFF estimator to handle

Rx spatial correlation. Its input is the LS results of all NR Rx

antennas for a given Tx antenna, so NT instances of a single-

trained 3DFF estimator model should be used for each CE

subframe. The estimator’s structure is described in Table I.

TABLE I
2DU AND 3DFF ESTIMATOR STRUCTURE

2DU 3DFF
Layer Kernel In chan. Kernel In chan. Out chan.

1 7× 5 2 7× 5× 5 2 10

2 7× 5 10 7× 5× 5 10 10

3 7× 5 10 7× 5× 5 10 10

4 7× 5 10 7× 5× 5 10 10

5 5× 5 20 5× 5× 5 10 20

6 5× 5 30 5× 5× 5 20 5

7 3× 3 15 3× 3× 3 5 2

An important consideration when designing a neural net-

work for wireless communications is its complexity, which

should allow the network’s inference to meet strict real-time

requirements. Comparing the complexity of the proposed es-

timators for 8x8 MIMO, 2DU has 25.2K parameters, whereas

3DFF has 93.7K parameters. The total amount of floating point

operations (FLOPS) per subframe is 467M and 2304M FLOPS

for 2DU and 3DFF respectively, so 3DFF requires 5 times

more FLOPS than 2DU. This complexity is much higher than

that of LI, DFTI and DFTLI, which require 4K, 1M and 3.5M

FLOPS, respectively. However, using the MMSE estimation

in [4] with LI requires 14.3G FLOPS, which is 6 times

more complex than 3DFF. By using inference accelerators

or processors which support Single Instruction Multiple Data

(SIMD) parallelization, real-time computation of 2DU and

3DFF may be maintained.



IV. DATA GENERATION

We have used MATLAB® 5G Toolbox™ which is 5G New

Radio standard compliant for creating our data sets. We used

an OFDM 1ms subframe grid of 1320 subcarriers over 14

symbols, and applied either a dense or a sparse RS allocation

pattern onto it. In addition, we used a broad range of channel

conditions for having a diverse data set, aiming to achieve a

single generalized estimator that copes with any combination

of these parameters.

Specifically, our test set includes 3 spatial correlation levels

of the Rx antennas: low, medium and high, as defined in [13]

and 5 fading models as defined in [20]. We used Doppler

shift values in the range of 0Hz to 120Hz and SNR levels in

the range of -10dB to 30dB. A single training set consists of

160k samples and a test set has 80K samples, where the shape

of each sample is [1320-subcarriers, 14-symbols, 2-complex-

parts].

V. RESULTS AND INSIGHTS

All results presented in Figures 4 to 7 relate to a single

training-set for 8x8 MIMO with dense RS allocation, so

we use one trained model for all fading models, spatial

correlations, Doppler shifts and SNR values.

A. 2D and 3D CNN Estimators
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Fig. 4. 2D CNN: CE performance for 8x8 MIMO, dense RS. 2DU performs
better than the other 2D CNN (2D FF, 2D DenseNet, 2D ResNet) and better
than model-driven estimators (DFTI, DFTLI, LI).

In Fig. 4 we compare 2D CNN performance for all 4 inter-

layer connectivity schemes, presenting the NMSE averaged

over all spatial correlation, fading model and Doppler shift

values. It can be clearly seen that all 2D CNN (2D FF,

2D DenseNet, 2D U-net, 2D ResNet) estimators perform

better than all model-driven estimators (DFTI, DFTLI, LI).

The 2D FF estimator benefits from increasing the inter-layer

connectivity, and the optimal complexity balance is achieved

by the 2DU architecture. Increasing the connectivity to a

Dense-Net does not improve the results.

Next, in Fig. 5 we compare the performance of 3D CNN

architectures for the same data set. Here, the 3DFF estimator

performs better than all other estimators, as it is complex
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Fig. 5. 3D CNN: CE performance for 8x8 MIMO, dense RS. 3DFF is clearly
better than all other estimators.

enough to achieve good generalization without further inter-

layer connectivity, which actually deteriorates the performance

due to more complex training convergence.

B. Spatial Correlation and Doppler Effect

We select the 2DU and the 3DFF estimators which achieved

the best results, and in Fig. 6 we compare their performance

under low and high spatial correlation of the Rx antennas. As
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Fig. 6. Rx Spatial Correlation: CE performance for low and high correlation.
The 3DFF estimator performs much better for high correlation, whereas
2DU is preferable for low correlation due to its lower complexity. Both
CNN estimators perform better than model-driven estimators regardless of
the correlation level.

expected, both estimators have similar results for low spatial

correlation, while the 3D estimator is much better for high

correlation, as it exploits its extra dimension of Rx antennas.

For high SNR, however, this advantage is redundant, and the

lower complexity of the 2DU estimator is favorable. In Fig.

7 we examine the effect of Doppler shift on the 2DU and

3DFF estimators, averaged over all spatial correlations, fading

models and SNR values. Both CNN estimators significantly

outperform the model-driven estimators. Furthermore, since

we train our models using all Doppler values, they perform



well with all of them. On the other-hand, LI and DFTI, which

assume a slow fading model, perform better than DFTLI at

low Doppler shift values. As expected, the performance of

the DFTLI estimator is similar for all Doppler values, as it

assumes a fast fading channel.
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Fig. 7. Doppler shift: CE performance as a function of Doppler shift. Note
that the performance of both CNN estimators for high Doppler shift is even
better than the model-driven estimators at low Doppler shift.

C. RS Resource Overhead Reduction

A key advantage of using a data-driven estimator is the

possible reduction of RS resource allocation overhead. We

have trained the 3DFF estimator with a sparse RS pattern

data set, and compared the results to those of the dense

RS allocation data set for 8x8 MIMO. Recall that the dense

allocation has 2.7 more pilots for every transmitter.
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Fig. 8. RS resource reduction: 3DFF perform better than DFTI, despite
the fact that 3DFF used sparse RS allocation (14% overhead) while DFTI
processed dense RS allocation (34% overhead).

In Fig. 8 we see that the 3DFF estimator for sparse RS

allocation performs better than DFTI for dense RS allocation,

even though sparse allocation has 62.5% less reference signals.

This is even more important for higher MIMO setups,

where dense allocation is not feasible due to its high resource

overhead. Therefore we have used a sparse RS allocation for

training 16x16 MIMO. Fig. 9 shows that both CNN estimators

perform better than the model-driven estimators, and the 3DFF

estimator achieves significantly better results. Moreover, it is

evident that as the MIMO scale increases, the performance gap

between the CNN and the model-driven estimators increases

in favor of the CNN estimators.
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Fig. 9. 16x16 MIMO: CE performance of 16x16 MIMO with sparse RS
allocation. The 3DFF estimator achieves much better results, especially for
medium SNR levels.

D. Combining Channel Estimation with MIMO Detection

In this section we show the effect of the proposed CNN

estimators on MIMO detection BER performance. We com-

pare the LI estimator and our proposed CNN estimators by

transmitting QPSK modulated data in a 8x8 MIMO, dense RS

setting. Transmissions are done with low correlation and no
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Fig. 10. Maximum Likelihood (ML) MIMO detection: The BER perfor-
mance of our CNN estimators is considerably better than the LI estimator.

Doppler shift, so the LI estimator should perform relatively

well, and the 3DFF estimator should have no advantage over

the 2DU estimator. In Fig. 10 we test the channel estimators

with the optimal Maximum Likelihood (ML) MIMO detection



algorithm. The BER achieved with both CNN estimators is

much closer to the BER achieved when the exact channel is

used for MIMO detection than that of the LI estimator.

Although the ML is an optimal detector, it is impractical

for higher MIMO scales due to its exponential computational

complexity. We therefore tested our estimators using 3 ad-

ditional MIMO detection methods: Zero Forcing (ZF), V-

BLAST and a NN MIMO detector which applies an itera-

tive unfolding algorithm as described in [21]. In Fig. 11
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Fig. 11. Practical MIMO detection comparison: Our 2DU estimator
performance is almost as good as using the exact channel in all 3 practical
MIMO detection methods.

we show that the NN detector trained with the output of

our CNN estimators outperforms the other classic methods.

Furthermore, the NN detector was shown in [21] to achieve

good performance with analog impairments and coded data.

The fact that both of these algorithms are NN-based, and each

algorithm by itself presents attractive advantages, motivates us

to further research a joint NN architecture that includes both

CE and MIMO detection.

VI. CONCLUSIONS AND FUTURE WORK

In this study we have presented a novel application of 2D

U-net and 3D CNN architectures to the problem of MIMO-

OFDM channel estimation. We have shown empirically that

our 2DU and 3DFF CNN estimators outperform the model-

driven estimators LI, DFTI, and DFTLI. Furthermore, the

estimators’ generalization capacity is evident by the usage

of a highly diverse test set with various channel parameters.

We also showed that using the 3DFF estimator can decrease

the pilot resource allocation overhead by 62.5%. Finally, We

showed that the estimations provided by the CNN estimators

result in good MIMO detection BER performance.

Future work will involve expanding the proposed CNN es-

timators using RNN (Recurrent Neural Network), and specif-

ically LSTM (Long Short-Term Memory) in order to exploit

longer time evolution patterns of the wireless channels. This

extension should further reduce the overhead of RS allocations

without decreasing the CE performance. In addition, we aim

to integrate the CE and the MIMO detection neural networks,

expecting to yield even better performance for future wireless

communication networks.
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