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Extension of the Blahut–Arimoto Algorithm for
Maximizing Directed Information

Iddo Naiss and Haim H. Permuter, Member, IEEE

Abstract—In this paper, we extend the Blahut–Arimoto al-
gorithm for maximizing Massey’s directed information. The
algorithm can be used for estimating the capacity of channels with
delayed feedback, where the feedback is a deterministic function
of the output. In order to maximize the directed information, we
apply the ideas from the regular Blahut–Arimoto algorithm, i.e.,
the alternating maximization procedure, to our new problem. We
provide both upper and lower bound sequences that converge to
the optimum global value. Our main insight in this paper is that
in order to find the maximum of the directed information over
a causal conditioning probability mass function, one can use a
backward index time maximization combined with the alternating
maximization procedure. We give a detailed description of the
algorithm, showing its complexity and the memory needed, and
present several numerical examples.

Index Terms—Alternating maximization procedure, backward
index time maximization, Blahut–Arimoto algorithm, causal
conditioning, channels with feedback, directed information, fi-
nite-state channels (FSCs), Ising channel, trapdoor channel.

I. INTRODUCTION

I N his seminal work, Shannon [1] showed that the capacity
of a memoryless channel is given by the optimization

problem

(1)

where

(2)

and is induced by the joint distribution . Since
the set of all is not of finite cardinality, an optimization
method is required to find the capacity . In order to obtain
an efficient way to calculate the global maximum in (1), the
well-known Blahut–Arimoto algorithm (referred to as BAA)
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was introduced by Blahut [2] and Arimoto [3] in 1972. Themain
idea is that we can find the optimum value of (1) by calculating
the right-hand side (RHS) of the equality

(3)

On the left-hand side (LHS) of (3), the maximization of
as defined in (2) is only over , where is

fixed and is induced by . On the RHS of
(3), the maximization of as defined in (2) is over

and , where is fixed, namely, is a
parameter rather then being induced by the joint probability

. The maximization is then achieved using the
alternating maximization procedure. The convergence of the
alternating maximization procedure to the global maximum
was proven in detail by Csiszár and Tusnady in [4]. Yeung [5,
Ch. 9.1] provided a different proof, which we use later on.
In this paper, we find an efficient algorithm for optimizing the

directed information which is used to estimate or bound the ca-
pacity of channels with feedback. A general channel with feed-
back is shown in Fig. 1.We note that a channel is defined by a se-
quence of causal conditioning probabilities
and no restriction is imposed. Equivalently, the channels is de-
fined by causally conditioned probability mass function (PMF)
(definitions in Section II) given by

(4)

It was shown by Massey [6], Kramer [7], Tatikonda and
Mitter [8], Permuter et al. [9] and Kim [10] that the expression

has an important role in characterizing the feedback capacity,
where

is the directed information. In some special cases, the limit of
the sequence is, in fact, the capacity of the channel, where,
for the general case, is used in an expression that bounds the
capacity.
Since in the maximization we deal with causally conditioned

PMFs, trying to follow the regular BAA will result in difficul-
ties. This is due to the fact that a causally conditioned PMF is
the result of multiplications of conditioned PMFs as seen in (4).
In the regular BAA, we maximize over , and thus, the
constraints are simply and . How-
ever, in our problem, we have no efficient way of optimizing the

0018-9448/$31.00 © 2012 IEEE



NAISS AND PERMUTER: EXTENSION OF THE BLAHUT–ARIMOTO ALGORITHM FOR MAXIMIZING DIRECTED INFORMATION 205

Fig. 1. Feedback-channel model.

directed information over under all the necessary
constraints, since we need affine constraints—one for each
factor of , i.e., for all

Another difficulty is that although the equality

given by Kim [10, eq. 10], holds, we cannot translate the given
problem into

since influences all terms
A solution could be to

maximize backward from to over
and it can be shown that in each maximization, the noncausal
probability is determined only by the previous

for . In our solution, we maximize
the entire expression as a function of

. Each
time, we maximize over a specific starting
from and moving backward to , where all but

are fixed.
Before we present the extension of the BAA to the directed

information, let us present some existing extensions of this
algorithm. In 2004, Matz and Duhamel [11] proposed two
Blahut–Arimoto-type algorithms that often converge signif-
icantly faster than the standard BAA. These algorithms rely
on a special gradient form called the “natural gradient” rather
than maximizing per variable. During that year, Rezaeian and
Grant [12] generalized the regular BAA for multiple access
channels and Yu et al. extended the BAA for channels with
side information [13]. They used the fact that the input is a
deterministic function of the auxiliary variable and the side
information, and then extended the input alphabet. Another
solution to the side information problem was given by Heegard
and El Gamal [14], where they did not expand the alphabet,
but included an additional step to optimize over .
Also, the BAA was used by Markavian et al. [15] to decode
Reed–Solomon codes. In 2005, Dauwels [16] showed how
the BAA can be used to calculate the capacity of continuous

channels. Dauwels’s main idea is based on the use of sequen-
tial Monte-Carlo integration methods known as the “particle
filters.” In 2008, Arnold et al. [17] extended the regular BAA
to estimate the capacity of finite-state channels (FSCs) where
the input is Markovian. Sumszyk and Steinberg [18] gave a
single letter characterization of the capacity of an information
embedding channel and provided a BA-type algorithm for the
case where the channel is independent of the host, when the
input is given. In 2009, Niesen et al. [19] provided an extension
to the alternating optimization procedure where the parameters
of the underlying problem change over time, thus requiring an
adaptive algorithm.
Recently, a few papers related to the maximization of the di-

rected information using control theory and dynamic program-
ming have been published. In [20], Kavcic et al. maximized
the directed information to estimate the feedback capacity of
finite-state machine channels where the state is a deterministic
function of the previous state and input. Chen and Berger [21]
maximized the directed information for the case where the state
of the channel is known to the encoder and decoder in addi-
tion to the feedback link. Later, Permuter et al. [22] maximized
the directed information and found the capacity of the trap-
door channel with feedback. In [23], Gorantla and Coleman es-
timated the maximum of directed information where they con-
sidered a dynamical system, whose state is an input to a mem-
oryless channel. The state of the dynamical system is affected
by its past, an exogenous input and causal feedback from the
channel’s output.
The remainder of this paper is organized as follows. In

Section II, we present the notations we use throughout the
paper and outline the alternating maximization procedure
as given by Yeung [5, Ch. 9.1]. In Section III, we give a
description of the algorithm for solving the optimization
problem— , calculate the com-
plexity of the algorithm and memory needed, and compare
it with those of the regular BAA. In Section IV, we derive
the algorithm using the alternating maximization procedure
and show the convergence of our algorithm to the optimum
value. Numerical examples for channel capacity with feedback
are presented in Section V. In Appendix A, we give a wider
perspective on the feedback channel problem, where the feed-
back of the channel is a deterministic function of the output
with some delay , namely, we derive the algorithm for the
optimization problem where

and . In Appendix B, we prove an upper
bound for which converges to
the directed information from above and helps to determine the
stopping point of the algorithm.
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II. PRELIMINARIES

A. Directed Information and Causal Conditioning

In this section, we present the definitions of directed informa-
tion and causally conditioned PMF, which were originally intro-
duced by Massey [6] (who was inspired by Marko’s work [24]
on bidirectional communication) and by Kramer [7]. These defi-
nitions are necessary in order to address channels with memory.
We denote by the source vector , where
the source alphabet of each is a finite set denoted as . The
channel output alphabet is denoted as . Usually, we use the no-
tation for short. Furthermore, when writing a PMF,
we simply write . Let us denote as
the PMF of causally conditioned on , given by

(5)

Here, we have to point out that when , the notation
indicates the empty set, denoted as . Two straightforward prop-
erties of the causal conditioning PMF that we use throughout the
paper are

(6)

and

(7)

Another elementary property is the chain rule for causal condi-
tioning PMF, given in [9, Lemma 1]

(8)

The aforementioned definitions lead to the causally conditioned
entropy , which is defined by

Moreover, the directed information from to is defined
as

Note that this equality does not require maximization on either
side of the equation and the expressions on both sides depend
on a specific input distribution .
It is easy to show that the directed information can be written

as a function of . This follows from the
chain rule of causal conditioning, i.e.,

, and hence

(9)

We refer to this form in Lemma 3 while using the alternating
maximization procedure since

are the variables we optimize over where
is fixed. For convenience, we use from now on the notation of

(10)

when required. With these definitions, we follow the alternating
maximization procedure given by Yeung [5, Ch. 9.1] in order to
maximize the directed information.

B. Alternating Maximization Procedure

Here, we present the alternating maximization procedure on
which our algorithm is based. Let be a real function,
and let us consider the optimization problem given by

where and are the sets we optimize over. We denote
by the point that achieves , and by

the one that achieves . The algorithm
is performed by iterations, where in each iteration we maximize
over one of the variables. Let be an arbitrary point in

. For let

and let be the value in the current iteration. The
following lemma describes the conditions the problem needs to
meet in order for to converge to as goes to infinity.

Lemma 1 Convergence of the Alternating Maximization
Procedure [5, Lemmas 9.4 and 9.5]: Let be a real,
concave, bounded-from-above function that is continuous and
has continuous partial derivatives, and let the sets and
which we maximize over, be convex. Further, assume that

and for all
and that are unique. Under these conditions,

, where is the global maximum.
In Section III, we give a detailed description of the algorithm

that computes based on the al-
ternating maximization procedure. In Section IV, we show that
the conditions in Lemma 1 hold, and therefore, the algorithm we
suggest, which is based on the alternating maximization proce-
dure, converges to the global optimum.

III. DESCRIPTION OF THE ALGORITHM

In this section, we describe an algorithm for maximizing the
directed information. In addition, we compute the complexity
of the algorithm per iteration, and compare it to the complexity
of the regular BAA. The complexity calculation is in terms of
additions and multiplications. The amount of memory needed
by the algorithm is also given.

A. Algorithm for Channel With Feedback

In Algorithm 1, we present the steps required to maximize the
directed information where the channel is fixed and
the delay is . Note that this algorithm is similar in many
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ways to the regular BAA given in [2] and [3] and we present the
main steps of the regular BAA at the end of this section.

Algorithm 1 Iterative algorithm for calculating
. The inputs to the

algorithm are the channel probability and . The
outputs are lower bound , and upper bound of that
satisfies and the probability that
achieves .

a) Start from a random point . Usually, we start
from a uniform distribution, i.e., for
every . Also, set .

b) Calculate using the formula

(11)

where (12) shown at the bottom of the page holds and
do so backwards until .

c) Once you find , compute
.

d) Compute using the formula

(13)

e) Calculate , where the equation shown at the
bottom of the page holds.

f) If , set and go to (b).
g) .

Note that Algorithm 1 has a structure similar to that of the
regular BAA, where step (b) is an additional backward loop. Its
purpose is to maximize over the input causal probability, which
is not necessary in the regular BAA.
Now, let us present a special case and a few extensions for

Algorithm 1.
1) Regular BAA, i.e., : For , the algorithm sug-
gested here agrees with the original BAA, where instead of
steps (b) and (c) we have

(14)

and step (d) is replaced by

(15)

The bounds agree with the regular BAA as well,
and are of the form

2) Feedback with general delay : We can generalize the
algorithm in order to compute

, which is used to estimate the capacity of a channel
with feedback where the output is known to the encoder
with delay . We would like to emphasis that for the de-
layed feedback case, the channel remains the
same, i.e., and is not in-
fluenced by the delayed feedback. In that case, in step (b),
we have (16) shown at the bottom of the page, and step (d)
will be replaced by

(17)

The bounds and are of the form

3) Feedback as a function of the output with general delay. In
Appendix A, we generalize the algorithm in order to com-
pute , where the feedback,

(12)

(16)
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, is a deterministic function of the de-
layed output, where is given in advanced. The result of
the maximization above characterizes the capacity of chan-
nels with time-invariant feedback [9]. In that case, in step
(b), we have (18) shown at the bottom of the page, where

we define the set as the
set of pre-images of under , and step (d) will be re-
placed by

(19)

The bounds and are of the form

Note, that for , the vector . Hence, for
every , , where

is in (20), shown at the bottom of the page. Furthermore,
the following equality holds for the causal conditioning PMF

:

Also note that when const., ,
, and . In

each of the aforementioned cases ( or const ),
in step (d), we have

and we obtain another version of the regular BAA for channel
capacity, where the maximization is done over each
via backward maximization instead of over immediately.
Furthermore, if , then case 3) agrees with all the equa-
tions of case 2).

B. Complexity and Memory Needed

Here, we give an expression for the computation complexity
of one iteration in the algorithm and then compare it to reg-
ular BAA complexity. Further, we find the amount of memory
needed by both algorithms. The complexity calculation is done
in two parts, one for each step in the iteration.
1) Complexity of computing as given in (13): For
each , we need multiplications for a specific
and use the denominator computed for every other , thus
obtaining operations. Doing so for all achieves

.
2) Complexity of computing : First, we com-
pute the complexity of each as given
in (12), assuming that an exponent is a constant number
of computations, i.e., . Simple computations will
lead to the conclusion that the entire numerator takes
about computations. The denom-
inator is a summation over variables and, as with

, we can use the denominator for every other
. Hence, we obtain computations

for every . Summing over will achieve
computations.

Multiplying all is a constant number
of computations for every . Finally, in order to
compute , we need
computations.

To conclude, each iteration requires about
computations.
Comparing to regular BAA complexity: Since BAA com-

putes the capacity of memoryless channels, we only need to
compute and . In much the same way, we can find
its complexity and obtain computations. However,
if we want to compare it to BAA for channels with memory, we
replace , . However, and so we
obtain computations.
Thememory needed by the algorithm is very much dependent

on the manner in which one implements the algorithm. How-
ever, the obligatory memory needed is for , and
and its factors; thus, we need at least cells of type
double. Computation complexity and memory needed are pre-
sented in Table I.

(18)

(20)
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TABLE I
MEMORY AND OPERATIONS NEEDED FOR REGULAR AND EXTENDED BAA FOR CHANNEL CODING WITH FEEDBACK

IV. DERIVATION OF ALGORITHM 1

In this section, we derive Algorithm 1 using the alternating
maximization procedure and derive its convergence to the
global optimum using Lemma 1. Throughout the paper, note
that the channel is fixed in all maximization cal-
culations. For this purpose, we present several lemmas that
will assist in proving our main goal, which is to develop an
algorithm for calculating . In Lemma 2, we
show that the directed information function has the properties
required for Lemma 1. In Lemma 3, we show that we are al-
lowed to maximize the directed information over
and together, rather than just over , thus
creating an opportunity to use the alternating maximization
procedure for achieving the optimum value. Lemma 4 is a
supplementary claim that helps us prove Lemma 3, in which we
find an expression for that maximizes the directed in-
formation where is fixed. In Lemma 5, we find an
explicit expression for that maximizes the directed
information where is fixed. Theorem 1 combines all
lemmas to show that the alternating maximization procedure as
described by in Algorithm 1 exists and converges. We end
with Theorem 2 that proves the existence of the upper bound
.

Lemma 2: For a fixed channel, , the directed infor-
mation given by

(21)
as a function of is concave,
continuous, and with continuous partial derivatives.

Proof: First, we remind that we have shown in (9) that we
can write the directed information in the aforementioned form.
Now, we can recall the log-sum inequality [25, Th. 2.7.1] given
by

(22)

We define the sets

(23)

as the sets over which we maximize.

Now, we follow the proof in [5, Ch. 9.3.2] for
in and , and use the

aforementioned log-sum inequality given to derive that

Taking the reciprocal of the logarithms yields

Multiplying by and summing over all , and
letting be the directed information as in (10), we obtain

Further, since the function is continuous with continuous
partial derivatives, and the directed information is a summation
of functions of type , has the same properties as
well.

We note that it is simple to verify that the sets and are
both convex, and we can conclude that all conditions in Lemma
1 hold for the directed information. Hence, the alternating maxi-
mization procedure described here converges to the global max-
imum, as stated in Lemma 1.
Recall that in the alternating maximization procedure, we

maximize over instead of over
alone, and thus need the following lemma.

Lemma 3: For any discrete random variables , the
following holds:

(24)

The proof will be given after the following supplementary
claim, in which we calculate the specific that maxi-
mizes the directed information where is fixed.

Lemma 4: For fixed , there exists a unique
that achieves ,

and is given by



210 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 1, JANUARY 2013

Proof for Lemma 4: Let . For any
, and fixed

where (a) follows from the nonnegativity of the divergence. Fi-
nally, divergence of two PMFs is zero if and only if the PMFs are
identical. Therefore, we can conclude that inequality (a) holds
only if

(25)

which implies that , namely, we obtained the uniqueness
of .

Proof of Lemma 3: After finding the PMF that maximizes
where is fixed, we can see that is the one

that corresponds to the joint distribution
in the sense that

and thus, the lemma is proven.

In the following lemma, we find an explicit expression for
that achieves , where is fixed.

Lemma 5: For fixed , there exists a unique
that achieves and

is given by the products

where

(26)

and (27) shown at the bottom of the page.
Proof: In order to find the requested , we find all of its

components, namely , bymaximizing the
directed information over all of them. With regard to this, we
present the following claim.
Maximizing the directed information over is equivalent to

maximizing it over the set of factors de-
noted as , i.e.,

This follows from [9, Lemma 3], which states that there is a
one-to-one correspondence between the causally conditioned
PMF and the set of its factors .
Since in Lemma 2 we showed that is

concave in , it is concave in all separately. More-
over, the constraints of the optimization problem are affine,
and we can use the Lagrange multipliers method with the
Karush–Kuhn–Tucker (KKT) conditions [26, Ch. 5.3.3] in
order to find the optimal . Furthermore, we can arrange the
maximization order from to . In short, we use the
equality

(28)

and find the optimal by solving the RHS of the aforementioned
equation. It appears that bymaximizing the directed information
in the order stated in (28), we would need to maximize over only
one factor, , at a time.
For convenience, let us further use for short

. Now, for every , we define the fol-
lowing concave optimization problem:

(29)

such that for every

Therefore, we define the Lagrangian as follows:

(30)

(27)
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Hence, for every any fixed and , we must
find s.t. , i.e.,

(31)

where (a) is a result of derivative over a particular
; hence, the summation over and

is not required. Note that since is a function of ,
we can divide the whole equation by , and get a new
relation

(32)

Moreover, we can see that three of the terms in the sum, i.e.,
, do not depend on , thus

leaving their coefficient in (31) to be

(33)

Therefore, we obtain from (31) that

(34)

Using algebraic manipulations, we can obtain that

(35)

where

(36)

Thus, we can see that

(37)

and due to the condition , we can find
and have our objective

(38)

where is as in (27) above.
From equation (Rprime1), we can see that for every , de-

pends on and the set (and hence is a
function of alone). Therefore, after finding that
maximizes , we can place it in the equation we
have for , thus also obtaining depend on
alone. Now we do the same for and so on until . We
name this method backward maximization. Hence, we obtained

which maximizes the directed infor-
mation where is fixed (i.e., ).
Finally, we need to show that that maximize

the directed information for a fixed is unique. Since
there is a one-to-one correspondence [9, Lemma 3] between
the causally conditioned PMF and the set of its factors

, it suffices to show that the set that achieves
is unique. The were ob-

tained from the KKT condition through the set of equalities
(31)–(37) and therefore given by (37) is the unique solution
to the KKT condition. Furthermore, since KKT condition are
necessary condition, there exist no other that maximize (29),
and therefore, we conclude that is unique.

Having Lemmas 2–5, we can now state and prove our main
theorem.

Theorem 1: For a fixed channel, , there exists an
alternating maximization procedure, such as in Algorithm 1
to compute

Proof: To prove Theorem 1, we first have to show the ex-
istence of a double maximization problem, i.e., an equivalent
problem where we maximize over two variables instead of one,
and this was shown in Lemma 3. Now, in order for the alter-
nating maximization procedure to work on this optimization
problem, we need to show that the conditions given in Lemma
1 hold here, and this was shown in Lemmas 2, 4, and 5. Thus,
we have an algorithm for calculating
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that is equal to , where is the value of
in the th iteration as in Algorithm 1. Hence, the theorem is
proven.

Our last step in proving the convergence of Algorithm 1 is to
show why is a tight upper bound. For that reason, we state
the following theorem.

Theorem 2: For the value of

the inequality

(39)

where

holds. Furthermore, if achieves the maximum in
the expression, then we have an equality in (39).
The proof is given in Appendix B for the general case of delay
. However, we omit the proof of the upper bound for the case
where the feedback is a deterministic function of the delayed
output, as described in Appendix A, since it is similar to the one
in Appendix B.

V. NUMERICAL EXAMPLES FOR CALCULATING FEEDBACK
CHANNELS CAPACITIES

In this section, we present some examples of Algorithm 1 per-
formance over various channels. We start with a memoryless
channel to see whether feedback improves the capacity of such
channels, and continue with specific FSCs such as the Trapdoor
channel and the Ising channel. Since Algorithm 1 is applicable
on FSCs, we now describe the class of such channels and their
properties. Gallager [27] defined the FSC as one in which the in-
fluence of the previous input and output sequence, up to a given
point, may be summarized using a state with finite cardinality.
The FSC is stationary and characterized by the conditional PMF

that satisfies

and the initial state . Since both channels are symmetrical
with regard to the initial state, it suffices to choose one instead
of minimizing over it.
The causal conditioning probability of the output given the

input is defined by

and

Note that a memoryless channel, i.e., a channel where the output
at any given time is dependent on the input at that time alone is
an FSC with one state.
It was shown in [9] that the capacity of an FSC with feed-

back is bounded between

(40)

where

(41)

(42)

If we require that the probability of error tends to zero for every
initial state , then

Since these bounds are obtained via maximization of the di-
rected information, we can calculate them using Algorithm 1
as presented in Section III, thus estimating the capacity.
Our first example shows the convergence of Algorithm 1 to

the analytical capacity of a memoryless channel.

A. Binary Symmetric Channel (BSC)

Consider a memoryless BSC with a transition probability of
as in Fig. 2. The capacity of this BSC (without feed-

back) is known to be bits/channel-
use. In Fig. 3, we present the directed information upper and
lower bounds as a function of the iteration (as given in Al-
gorithm 1) and compare it to the capacity that is known ana-
lytically. Shannon showed [28] that for memoryless channels,
feedback does not increase the capacity. Thus, we can expect
the numerical solution given in Algorithm 1 to achieve the same
value as in the no-feedback case.We can see that as the iterations
number increases, the algorithm approaches the true value and
converges. Furthermore, the causally conditioned probability,

, that Algorithm 1 produces is not uniform, but each
marginal PMF is uniform. We remind that since this is a
memoryless channel, we can achieve the capacity using a uni-
form distribution of . This does not imply that we achieved
only a local optimum distribution point, because the directed
information is not strictly concave in . The optimum found
by Algorithm 1 depends on the initial point. Indeed, if we set the
initial to be uniform, the algorithm does not require more than
the first iteration and the optimum distribution remains uniform.

B. Trapdoor Channel

1) Trapdoor Channel With 2 States: The trapdoor channel
was introduced by Blackwell in 1961 [29] and later on by Ash
[30]. One can look at this channel as follows: consider a binary
channel modulated by a box that contains a single bit referred to
as the state. In every step, an input bit is fed to the channel, which
then transmits either that bit or the one already contained in the
box, each with probability . The bit that was not transmitted
remains in the box for future steps as the state of the channel.
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Fig. 2. BSC.

Fig. 3. Performance of Algorithm 1 over BSC(0.3). The lower and upper lines
are the bounds in each iteration in Algorithm 1, whereas the horizontal line is
the analytical calculation of the capacity.

The state, thus, is the bit in the box, and since it can be “0” or
“1,” we conclude that or .
In order to use Algorithm 1, we first have to calcu-

late the channel probability, . For that pur-
pose, we find analytically. Note that

. Thus, first we find the
deterministic function for given the past input, output,
and initial state, i.e., , and then the function
for . An examination of the
truth table in Table II yields the following formula for ,
where is for addition modulo 2:

Note that in Table II, and are not possible
since the output is neither the input bit nor the bit in the box;
thus, we may assign to whatever value we choose, in order
to simplify the formula. As for the conditional probability,

, we assume that , and because of
the channel’s symmetry, the outcome for is easily
calculated. Looking at Table III, we can see that the formula
for is given by

where we know that is a function of . The
overline denotes a logical NOT, and denotes logical AND.
Now that we have , we use Algorithm 1 for

estimating the capacity of the channel as we run the algorithm

TABLE II
AS A FUNCTION OF , AND

TABLE III

Fig. 4. Trapdoor channel [30].

to find the upper and lower bounds for every ,
where

(43)

(44)

Note that (43) is calculated via Algorithm 1 and due
to the channel’s symmetry. However, calculating (44) is more
difficult, since we have to maximize over all the probabilities

, and at the same time minimize over the initial
state. Hence, we use another lower bound denoted by , for
which is fixed and is the one that achieves the max-
imum at (43), and we only minimize over . Clearly, .
Fig. 5 presents the capacity estimation, and the upper and lower
bound, as a function of the block length . In [22], the capacity
of the Trapdoor channel is calculated analytically, and given by

(45)

We see from the simulation that the upper and lower bounds
of the capacity approach the limit in (45), and the estimated
capacity at block length is .
2) Directed Information Rate as a Different Estimator for

the Capacity: We now consider an estimator to the feedback
capacity of an FSC by calculating , named
the “directed information rate estimator.” The justification for
this estimator is based on the following lemma.
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Fig. 5. Plot of , and the true capacity of the Trapdoor channel
with two states and feedback with delay 1.

Fig. 6. Upper line is calculated using Algorithm 1 and
the horizontal line is the analytical calculation, for the Trapdoor channel with
two states and feedback with delay 1.

Lemma 6: Let

If the sequence converges, then

Proof: The proof is based on the Cesaro mean (also called
Cesaro averages) property of a sequence

where (a) follows from the Cesaro mean property.

Fig. 6 presents the directed information rate estimator using
the aforementioned lemma, and its comparison to the true ca-
pacity. One can see that the convergence of
is faster than of and the upper and lower bounds as seen in

Fig. 7. Trapdoor channel with m states.

Fig. 5, and achieves the value 0.6942285 when we calculate the
directed information rate estimator for .
3) m-State Trapdoor Channel: We generalize the Trapdoor

channel to an m-state one. In the previous example, we had
cells in the box, one for the state bit, and one for the

input bit. One can consider the state to be the number of “1”s in
the channel before a new input is inserted. We can expand this
notation by letting the “box” contain more than two cells, as pre-
sented in Fig. 7. Here, the state at any given time will express
the number of that are in the box at that time and each cell
has equal probability to be chosen for the output. In this case,
cells in the box are equivalent to states of the channel. By

that definition, we can see that the state as a function of
past input, output, and the initial state is given by

Moreover, for calculating the channel probability,
, we add to and divide the sum by the

number of cells, i.e.,

Now that we have , we use Algorithm 1 for cal-
culating for every . Fig. 8 presents the
directed information rate estimator for
the Trapdoor channel with cells. Note that in Fig. 8
we achieve the value 0.5423984 in the th difference: thus, we
can assume that the capacity of a three-state trapdoor channel is
approximately 0.542.
4) Influence of the Number of Cells on the Capacity: To sum-

marize the Trapdoor channel example, we examine the way the
number of cells affects the capacity. The estimations we use
are the directed information rate estimator and the upper bound,

, with . In Fig. 9, we can see that as the
number of cells increases, the capacity decreases.

C. Ising Channel

The Ising model is a mathematical model of ferromagnetism
in statistical mechanics. It was originally proposed by the physi-
cist Wilhelm Lenz who gave it as a problem to his student Ernst
Ising, after whom it is named. The model consists of discrete
variables called spins that can be in one of two states. The spins
are arranged in a lattice or graph, and each spin interacts only
with its nearest neighbors.
The Ising channel is based on its physical model, and sim-

ulates intersymbol interference where the state of the channel
at time is the current input and the output is determined by
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Fig. 8. Plot of for the Trapdoor channel with three cells
and feedback with delay 1.

Fig. 9. Change of the upper bound, , and the estimator,
, over the number of cells in the Trapdoor channel with feedback

and delay 1.

Fig. 10. Ising channel. [31].

the input at time . The channel (without feedback) was in-
troduced by Berger and Bonomi [31] and depicted in Fig. 10. In
their paper, they proved the existence of bounds for the no-feed-
back case. In addition, they showed that the zero-error capacity
without feedback is 0.5.
1) Ising Channel With Delay : We estimate the ca-

pacity of the Ising channel with feedback. Since the output at
time is determined by the input at times , we define
the channel PMF as . Therefore, the feedback at
time must be the output at time , since we cannot have

before is sent. Thus, looking at the Ising channel with
delay is not a practical example and we did not examine
it. We ran our algorithm on the Ising channel, with delayed feed-
back of ; the results are presented in Fig. 11 at the top of
the column. In Fig. 11(a), we obtain , and in (b)
we achieve in the th difference.
2) Effects the Delay has on the Capacity: Here, we in-

vestigate how the delay influences the capacity. We do so by
computing the directed information rate estimator of the Ising
channel with blocks of length 12, over the feedback delay

Fig. 11. Performance of Algorithm 1 on the Ising channel with feedback delay
of . (a) , and (b) .

Fig. 12. Change of over the delay of the feedback on the Ising
channel.

. The formulas for estimating the capacity
when the delay is bigger than 1 is given in Section III, (16),
and (17). In Fig. 12, we can see that, as expected, the capacity
decreases as the delay increases. This is due to the fact that we
have less knowledge of the output to use.

VI. CONCLUSION

In this paper, we generalized the classical BAA for maxi-
mizing the directed information over causal conditioning, i.e.,
we calculate
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Fig. 13. Channel with delayed feedback as a function of the output.

The optimizing of the directed information is necessary for esti-
mating the capacity of an FSC with feedback. As we attempted
to solve this problem, we found that difficulties arose regarding
the causal conditioning probability that we were trying to op-
timize over. We overcame this barrier by using an additional
backward loop to find all components of the causally condi-
tioned probability separately.
Another application of optimizing the directed information is

to estimate the rate distortion function for source coding with
feedforward as presented in [32]–[34]. In our future work [35],
we address the source codingwith feedforward problem, and de-
rive bounds for stationary and ergodic sources. We also present
and prove a BA-type algorithm for obtaining a numerical solu-
tion that computes these bounds.

APPENDIX A
GENERAL CASE FOR CHANNEL WITH FEEDBACK THAT IS A

FUNCTION OF THE DELAYED OUTPUT

Here, we extend Algorithm 1, given in Section IV, for
channels where the encoder has specific information about the
delayed output. In this case, the input probability is given by

, where is the feedback, and is de-
terministic. In other words, we solve the optimization problem
given by

The optimization problem is described in Fig. 13, shown in the
following page.
The proof for this case is similar to that of Theorem 1, ex-

cept for the steps that follow from Lemmas 4 and 5. Lemma 4
proves the existence of an argument that maximizes
the directed information where is fixed. The modi-
fication of this lemma is presented here, where we find the argu-
ment that maximizes the directed information where

is fixed; the proof is omitted. Therefore, the maxi-
mization over where is fixed is given by

Lemma 5 proves the existence of an argument
that maximizes the directed information where is
fixed. We replace this lemma by Lemma 7.

Lemma 7: For fixed , there exists that
achieves and is given by

where

(46)

and is given in (47), shown at the bottom of the
page.

Proof: We find the products of that achieve
the maximum of the directed information where is fixed. For

convenience, let us use for short: , and

. As in Lemma 2, we can omit the proof that
is concave in . Furthermore, the constraints

of the optimization problem are affine, and we can use the
Lagrange multipliers method with the KKT conditions for
optimizing over each of the . We note that this proof is very
similar to the one of Lemma 5, and hence presented here in less
detail.
For every to , let us define the optimization problem

as

such that for every

Hence, we define the Lagrangian as follows:

(47)
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Now, for every we find s.t.

where the set stands for
all output sequences s.t. the function in the delay maps
them to the same sequence, , which is the feedback. It is
easy to verify that the solution for automatically satis-
fies the condition . Note that since does not
depend on , we can take this term out of the sum. Further-
more, since is a function of , we can divide the
whole equation by the aforementioned product, and get a new

. Moreover, we can see that three of the expres-

sions in the sum, i.e., , do not depend
on , thus leaving their coefficient in the equation
to be

Hence, we obtain

where

Therefore, we are left with the expression

where as is in (47).

As in Section IV, we can see that for all , is dependent
on and , and is a function
of alone. Thus, we use the backward maximization
method. After calculating for all , we obtain

that maximizes the directed informa-
tion where is fixed, i.e., .

As mentioned, by replacing Lemmas 4 and 5 by those given
here, we can follow the outline of Theorem 1 and conclude the
existence of an alternating maximization procedure, i.e., we can
compute

that is equal to , where is the value of
in the th iteration in the extended algorithm. One more step is
required in order to prove the extension of Algorithm 1 to the
case presented here; the existence of . This part is presented
in Appendix B.

APPENDIX A
PROOF OF THEOREM 2

Here, we prove the existence of an upper bound that con-
verges to from above simultaneously with the convergence
of to it from below, as in Algorithm 1. To this purpose, we
present and prove a few lemmas that assist in obtaining our main
goal. We start with Lemma 8 that gives an inequality for the di-
rected information. This inequality is used in Lemma 9 to prove
the existence of our upper bound, which Lemma 10 proves to
be tight. Theorem 2 combines Lemmas 9 and 10. Before we
start, we present a new notation. Since the directed informa-
tion is a function of alone (note that is
a function of the joint ), we denote it by

.

Lemma 8: Let correspond to
; then, for every

Proof: For any , , consider the
chain of inequalities in (48) shown at the bottom of the next
page, where in (a), and are the PMFs of that
corresponds to and , and (b) fol-
lows from the nonnegativity of the divergence. Thus, the lemma
is proven.

Our next lemma uses the inequality in Lemma 8 to show the
existence of the upper bound, which is the first step in proving
Theorem 2.
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Lemma 9: For every

where

Proof: To prove this lemma, we first use lemma 8. For
every , consider the chain of
inequalities in (49) shown at the bottom of the next page,
where (a) follows Lemma 8, (b) follows from maximizing
an expression over , and (c) follows from the fact that the
expression in the under-brace is a function of ,
and we can take it out of the summation over and use

. The rest of the steps are the same
as (b) and (c), where we refer to a different .
Since the aforementioned inequality is true for every

, we replace it by that achieves ;
hence, the LHS of the inequality is , and thus for
every

(50)

Equation (50) is also true for every and hence
for the minimum over all , we obtain

In Lemma 9, we showed only half of the proof of the theorem,
i.e., the existence of an upper bound. The next part of Theorem
2 is to show that the bound is tight.

Lemma 10: The upper bound in Lemma 9 is tight, and is
obtained by that achieves the capacity.

Proof: To prove this lemma, we need to show that this in-
equality is tight. For that purpose, we use the Lagrange mul-
tipliers method with the KKT conditions with respect to each

separately. Thus, we can use the same argu-
ments in Lemma 5 to apply the KKT conditions.
Hence, our optimization problem for every is

such that

Therefore, we define the Lagrangian as

We note that the parameter is introduced to take care of the
inequalities in the optimization problem. Now, we differentiate
over and obtain (without proof) (51) shown at

(48)
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the bottom of the page, where and
are the modification of and after de-
velopment of the equation, i.e.,

We refer to as from now on. Setting ,

we are left with two cases. For , the KKT
conditions requires us to set and (51) turns into

(52)

whereas for , we set and the
equality in (52) becomes an inequality.

...

(49)

(51)



220 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 1, JANUARY 2013

We now analyze our results for the case where
. First, we note that for , we have

from (52)

(53)

Since does not depend on , the LHS does not depend on
as well, and thus is constant for every . As a result, for

, we have

(54)

where (a) follows from the fact that does not depend on
as seen in (53), and the sum of over is 1.
Again, for , does not depend on
, and hence, the RHS of (54) is constant for . Thus,

we can continue backward and obtain for , the chain of
inequalities in (55) shown at the bottom of the page, where (a)
follows from (54) and (b) follows from the fact that does

not depend on , (c) follows from the fact that does not
depend on , and (d) from the fact that does not depend on
. Using the aforementioned analysis, we find an expression

for using that achieves it. Note that in the fol-
lowing equations, we can assume that since
otherwise, for the specific , the expression for will
contribute 0 to the summation

...

(55)
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where (a) is due to the aforementioned analysis for . We
showed that the upper bound is tight, and thus the lemma is
proven.

Now, we combine both lemmas to conclude our main the-
orem.

Proof of Theorem 2: As showed in Lemma 9, there exists
an upper bound for . Lemma 10 showed that this upper bound
is tight, when using the PMF that achieves .
Thus, the theorem is proven.

Generalization of Theorem 2: We generalize Theorem 2
for the case where the feedback is a delayed function of the
output (as presented in Appendix A). We recall that the opti-
mization problem for this model is

While solving this optimization problem, we defined the fol-
lowing set: , namely, all
output sequences s.t. the function in the delay sends them
to the same sequence . We use this notation for the upper
bound. In that case, the upper bound is of the form

The proof for this upper bound is omitted due to its similarity
to the case where for all , i.e., Theorem 2. Moreover,
one can see that this is a generalization, since if indeed ,
then has only one sequence, , and the equation for
coincides with the one in Theorem 2.
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