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Abstract—We consider capacity of discrete-time channels with
feedback for the general case where the feedback is a time-in-
variant deterministic function of the output samples. Under the
assumption that the channel states take values in a finite alphabet,
we find a sequence of achievable rates and a sequence of upper
bounds on the capacity. The achievable rates and the upper
bounds are computable for any � , and the limits of the sequences
exist. We show that when the probability of the initial state is
positive for all the channel states, then the capacity is the limit
of the achievable-rate sequence. We further show that when the
channel is stationary, indecomposable, and has no intersymbol
interference (ISI), its capacity is given by the limit of the maximum
of the (normalized) directed information between the input ��

and the output � � , i.e.,
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where the maximization is taken over the causal conditioning prob-
ability ���������	 defined in this paper. The main idea for ob-
taining the results is to add causality into Gallager’s results on fi-
nite state channels. The capacity results are used to show that the
source–channel separation theorem holds for time-invariant deter-
minist feedback, and if the state of the channel is known both at the
encoder and the decoder, then feedback does not increase capacity.

Index Terms—Causal conditioning, code-tree, directed infor-
mation, feedback capacity, maximum likelihood, random coding,
source–channel coding separation.

I. INTRODUCTION

S HANNON showed in [2] that feedback does not increase
the capacity of a memoryless channel, and therefore the ca-

pacity of a memoryless channel with feedback is given by max-
imizing the mutual information between the input , and the
output , i.e., . In the case where there
is no feedback, and the channel is an indecomposable finite-state
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channel (FSC), the capacity was shown by Gallager [1] and by
Blackwell, Breiman and Thomasian [3] to be

(1)

A simple example can show that mutual information is not the
right measure for characterizing feedback capacity of FSCs.
Consider the binary symmetric channel (BSC) with probability
of error and an input to the channel that is the output with one
epoch-delay, i.e., . It is easy to see that the mutual
information between the input and the output to the channel,

tends to one as , despite the fact that the
capacity of this memoryless channel is obviously zero.

In 1989, the directed information appeared in an implicit way
in a paper by Cover and Pombra [4]. In an intermediate step [4,
eq. 52], they showed that the directed information can be used
to characterize the capacity of additive Gaussian noise chan-
nels with feedback. However, the term directed information was
coined only a year later by Massey in a key paper [5].

In [5], Massey introduced directed information, denoted by
, which he attributes to Marko [6]. Directed in-

formation, , is defined as

(2)

Massey showed that directed information is the same as mutual
information in the absence of feedback and that it
gives a better upper bound on the information that the channel
output gives about the source sequence in the presence of
feedback.

In his Ph.D. dissertation [7] and in [8], Tatikonda generalized
the capacity formula of Verdú and Han [9] that deals with arbi-
trary single-user channels without feedback to the case of arbi-
trary single-user channels with feedback by using the directed
information formula. Tatikonda also introduced the dynamic
programming framework for computing the directed informa-
tion for Markov channels, and derived the directed data pro-
cessing inequality. Recently, the directed information formula
was used by Yang, Kavčić, and Tatikonda [10] and by Chen and
Berger [11] to compute the feedback capacity for some special
FSCs (In [10], it was assumed that the state channel is a deter-
ministic function of the previous state and input, and in [11] it
was assumed that state is a deterministic function of the output).

Directed information also appeared recently in a rate
distortion problem. Following the competitive prediction of
Weissman and Merhav [12], Pradhan and Venkataramanan [13],
[14] formulated a problem of source coding with feed-forward
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and showed that directed information can be used to charac-
terize the rate distortion function for the case of feed-forward.
Another source coding context in which directed information
has arisen is the recent work by Zamir et al. [15], which gives a
linear prediction representation for the rate distortion function
of a stationary Gaussian source.

The main contribution of this work is extending the achiev-
ability proof and the converse proof, given by Gallager in [1]
for the case of an FSC without feedback, to the case of na FSC
with time-invariant feedback. The extension is done by using the
causal conditioning distribution that was introduced by Massey
[5] and Kramer [16], rather than the regular conditioning. We
first establish properties of causal conditioning that are useful
throughout the proofs. We also show that causal conditioning
can be used to generate a random code for the feedback setting to
represent the channel and to be a metric for the maximum-like-
lihood (ML) decoder. We then show how Gallager’s capacity
proofs can be extended to feedback channels by replacing reg-
ular conditioning and mutual information with causal condi-
tioning and directed information, respectively. This replacement
requires careful justification. Moreover, the extension requires
significant work in some cases because of difficulties that arise.
For instance, not every property that holds for regular condi-
tioning also holds for causal conditioning, as will be shown in
Section IV. Furthermore, feedback introduces dependencies be-
tween the input, output, and the state of the channel that do not
exist in the absence of feedback, and it cancels the one-to-one
mapping between the messages and the input that exists
in the absence of feedback. In most of the theorems and lemmas,
the difficulties above are solved by appropriate modifications of
Gallager’s proofs, except for [1, Theorem 4.6.4], where a mod-
ification of the theorem itself is needed.

Time-invariant feedback includes the cases of quantized
feedback, delayed feedback, and even noisy feedback where
the noise is known to the decoder. In addition, it allows a
unified treatment of capacity analysis for two ubiquitous cases:
channels without feedback and channels with perfect feedback.
These two settings are special cases of time-invariant feedback:
in the first case, the time-invariant function of the feedback
is the null function and in the second case the time-invariant
function of the feedback is the identity function. The capacity
of some channels with channel state information at the receiver
and transmitter was derived by Viswanthan [17] and by Caire
and Shamai in [18]. Note that if the channel state information
can be considered part of the channel output and fed beck to
the transmitter, then this case is a special case of a channel with
time-invariant feedback.

The paper is organized as follows. Section II defines the
channel setting and the notation throughout the paper. Sec-
tion III provides a concise summary of the main results of the
paper. Section IV introduces several properties of causal condi-
tioning and directed information that are later used throughout
the proofs. Section V provides the proof of achievability of
capacity of FSCs with time-invariant feedback. Section VI
gives an upper bound on the capacity. Section VII gives the
capacity of a stationary indecomposable FSC without inter-
symbol interference (ISI). Section VIII considers the case of
FSCs with feedback and side information and shows that if the
state is known both at the encoder and decoder, then feedback

does not increase the capacity of the channel. Section IX shows
that under some conditions on the source and the channel, the
optimality of source–channel separation holds in the presence
of time-invariant feedback. We conclude in Section X with a
summary of this work and some related future directions.

II. CHANNEL MODELS AND PRELIMINARIES

We use subscripts and superscripts to denote vectors in the
following way: and for .
For , defines the null string as does when .
Moreover, we use lower case to denote sample values (e.g., )
and upper case to denote random variables (e.g., ) and calli-
graphic letter to denote alphabets (e.g., ). The cardinality of
an alphabet is denoted as . Probability mass functions are
denoted by or when the arguments specify the distribu-
tion, e.g., . We usually use the
letter for describing channel-input distributions and for
all the other distributions. Throughout this paper, we consider
only random variables from finite alphabets, and when we write

, we mean that the equality necessarily holds
for that satisfies .

Here, we consider only FSCs. The FSCs are a class of
channels rich enough to include channels with memory, e.g.,
channels with ISI. The input of the channel is denoted by

, and the output of the channel is denoted by
, both taking values in a finite alphabet . In

addition, the channel states take values in a finite set of possible
states . The channel is stationary and is characterized by
a conditional probability assignment that
satisfies

(3)

and by the initial state distribution . An FSC is said to be
without ISI if the input sequence does not affect the evolution
of the state sequence, i.e., .

We assume a communication setting that includes feedback
as shown in Fig. 1. The transmitter (encoder) knows at time
the message and the feedback samples . The output of
the encoder at time is denoted by , and it is a function of
the message and the feedback. The channel is an FSC, and the
output of the channel enters the decoder (receiver). The feed-
back is a known time-invariant deterministic function of the
current output of the channel . For example, could equal

or a quantized version of it. The encoder receives the feed-
back sample with one unit delay. We are using the definition of
achievable rate and capacity as given in the book by Cover and
Thomas [19].

Definition 1: A rate is said to be achievable if there exists
a sequence of block codes such that the maximal
probability of error

message was sent

tends to zero as [19]. The capacity of an FSC is denoted
as and is the supremium of all achievable rates.
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Fig. 1. Channel with feedback that is a time-invariant deterministic function of the output.

Throughout this paper we use the Causal Conditioning nota-
tion , which was introduced and employed by Kramer [16],
[20] and by Massey [21]:

(4)

In addition, we introduce the following notation:

(5)

The definition given in (5) can be considered to be a particular
case of the definition given in (4), where is set to a dummy
zero. Since, we define the causal conditioning as a
product of , then whenever we use ,
we implicitly assume that there exists a set of conditional
distribution that satisfies the equality
in (4). We can call and a causal
conditioning distribution since they are nonnegative for all

and since they sum to one, i.e.,
and . The directed information

is defined in (2), and it can be expressed in
terms of causal conditioning distribution as

(6)
where denotes expectation. The directed information between

and , conditioned on , is denoted as
and is defined as

(7)

III. MAIN RESULTS

Here we present the main results of the paper. Let and
denote

(8)

(9)

• Achievable rate: For any FSC with the feedback as in
Fig. 1, any rate less then is achievable, where
the limit of exists and equals . This
implies the following lower bound on the capacity:

(10)

• Converse: For any FSC with the feedback as in Fig. 1,
any achievable rate must be less then , where
the limit of exists and equals . This
implies the following upper bound on the capacity:

(11)

• Capacity: For two cases, the following capacity results
hold.
(a) For an FSC where the probability of the initial state is

positive for all , the capacity is shown to be

(12)

(b) For a stationary indecomposable FSC without ISI, the
capacity, is shown to be

(13)

Finally, using the achievable rate and the converse, we show
that feedback does not increase the capacity of a connected
FSC (every state can be reached from every other state with
positive probability under some input distribution) when the
state of the channel is known both at the encoder and the de-
coder. And using the directed data processing inequality [7,
Lemma 4.8.1], we show in a straightforward manner that the
source–channel coding separation is optimal for any stationary
and ergodic source and for any channel with time-invariant de-
terministic feedback, where the capacity is given by (13).

IV. PROPERTIES OF CAUSAL CONDITIONING AND DIRECTED
INFORMATION

In this section, we present some properties of the causal con-
ditioning distribution and the directed information which are de-
fined in Section II in (4)–(6). The properties hold for any discrete
random variables (not necessarily those induced by a FSC) and
are used throughout the paper. Some of the properties assumes
that . This equality is justified
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in Section V-B, (38), for the setting of deterministic feedback
, but it, actually, holds for any kind of feedback that has a

delay of at least one time epoch. The lemmas proven here also
help us gain some intuition about the role of causal conditioning
and directed information in the proofs.

The first property was given by Massey [5, eq. (3)] and shows
that a joint distribution can be decomposed into a multiplication
of two causal conditioning distribution.

Lemma 1: (Chain rule for causal conditioning.) For any
random variables

(14)

and, consequently, if is a random vector that satisfies
then

(15)

Proof:

(16)

Let us define

(17)

Lemma 2: For any random variables
that satisfy

(18)

The proof of Lemma 2 is similar to that of Lemma 1 and
therefore is omitted.

The fact that the sequence determines
uniquely the term follows immediately from the
definition of the later. The next lemma, shows that the oppo-
site is also true, namely, that determines uniquely

. This implies that maximizing the di-
rected information over is equivalent to maxi-
mizing it over the set of sequences . This
is analogous to the fact that maximization of mutual information
over the set is equivalent to the maximization over the
set of sequences

Lemma 3: The causal conditioning distribution
uniquely determines the value of
for all and all the arguments

, for which .
Proof: First we note that if , then ac-

cording to Lemma 1, it also implies that . In
addition, we always have the equality

(19)

hence, is uniquely determined from
. Furthermore, by induction it can be shown

that the sequence is uniquely derived from
. Since , we can use the

equality

(20)

to derive unique value of .

The next lemma has an important role in the proofs for the
capacity of FSCs because it bounds the difference of directed
information before and after conditioning on a state by a con-
stant. The proof of the lemma is given in Appendix I.

Lemma 4: (Analogue to )
Let be arbitrary random vectors and a random vari-
able taking values in an alphabet of size . Then

(21)

In the following lemma, we use the notation of mutual infor-
mation as where the latter
is functional of and , i.e.,

(22)

At the end of the achievability proof we will see that the
achievable rate is the same functional, , as in the
case without feedback but with the probability mass function

replaced by and replaced
by . Lemma 5 shows that the replacement of reg-
ular conditioning with causal conditioning in the functional

, yields the directed information.

Lemma 5: If then

(23)

and, similarly, if then

(24)

Proof:

(25)

where equality is due to the definition of the functional
which is given in (22), and equality is due to

Lemma 1.

Throughout the proof of the coding theorem of FSC we
use the causal conditioning distribution . The next
lemma shows how can be calculated from the
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FSC definition. Recall, that an FSC is defined by the ini-
tial state distribution and the conditional distribution

.

Lemma 6: (Causal conditioning for an FSC.) For an FSC with
time-invariant feedback, as shown in Fig. 1, the causal condi-
tioning distribution can be calculated as follows:

(26)

(27)

where denotes the vector .

The lemma is proved in Appendix II. For the case that
the channel is memoryless, i.e., , we have that

, and it coincides with Massey’s
definition of a memoryless channel [5]. Two additional prop-
erties that hold for FSCs with feedback, and are used in this
paper, are given in Appendices VI and VII.

The following lemma is an extension of the conservation law
of information given by Massey in [21].

Lemma 7: (Extended conservation law.) For any random
variables that satisfy

(28)

where is a concatenation of dummy zero to the be-
ginning of the sequence .

Proof:

(29)

Equality is due to the definition of mutual information.
Equality is due to Lemma 1, and equality is due to the
definition of directed information.

The lemma was proven by induction in [21] for the case where
, and here it is shown to hold also for a broader case,

in which the feedback is a function of the output. This lemma
is not used for the proof of achievability; however, it gives a
nice intuition for the relation of directed information and mu-
tual information in the setting of deterministic feedback. In par-
ticular, the lemma implies that the mutual information between
the input and the output of the channel is equal to the sum of
directed information in the forward link and the directed infor-
mation in the backward link. In addition, it is straightforward
to see that in the case of no feedback, i.e., when is null, then

.
A property that does not holds for causal conditioning [8]:

One can see that every property that holds for
also holds for , since we can

consider the case and then replace by .

However, there are properties that hold for regular conditioning
but do not hold for causal conditioning. Such a property was
shown by Tatikonda in [8, p. 3213]; for any random variables

, we have the identity

(30)
But, in general, the identity

(31)
does not hold.

V. PROOF OF ACHIEVABILITY

The proof of the achievable rate of a channel with feedback
given here is based on extending the upper bound on the error
of ML decoding derived by Gallager in [1, Ch. 4,5] for FSCs
without feedback to the case of FSCs with feedback.

Before presenting the achievability proof, let us first present
a short outline.

• Encoding scheme. We randomly generate an encoding
scheme for blocks of length by using the causal condi-
tioning distribution .

• Decoding. We assume a ML decoder, and we denote the
error probability when message is sent and the initial
state of the channel is as .

• Bounding the error probability. We show that for each
there exists a code for which we can bound the error

probability for all messages and all initial
states by the following exponential:

(32)

In addition, we show that if , when is defined as

(33)

then is strictly positive and, hence, by choosing
, the probability of error diminishes exponentially

for .

A. Existence of

The following theorem states that the limit of the sequence
exists.

Theorem 8: (Analogue to [1, Theorem 4.6.1].) For a finite-
state channel with states the limit in (33) exists and

(34)

The basic idea of the proof, similar to the proof of [1, The-
orem 4.6.1], is to show that the sequence is
super-additive. A sequence is super-additive, if for any pos-
itive integers , where , we have .
For such a sequence exists, and the limit equals
to . The proof differs from the proof of [1, Theorem
4.6.1] since, for an input distribution of the form

we have that is independent of [1,
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Fig. 2. Illustration of a coding scheme for a setting without feedback and for a setting with feedback. In the case of no feedback, each message is mapped to a
codeword, and in the case of feedback each message is mapped to a code tree.

eq. (4A.17)]. In contrast, for an input distribution of the form
there could be

a dependency of and .
Proof: Let be two integers such that . Let

and be the probability assignments
that achieve and , respectively. Let us consider the prob-
ability assignment

(35)

Since is not necessary the input distribution that
achieves , we have

(36)

Equality is due to the definition of the directed information
and the fact that .
Inequality holds because is the first term and for
the second term we have that for
any random variables . Inequality is due to
Lemma 4. Inequality is due to the fact that given the
input distribution from (35), we have the Markov chain

for any (see
Appendix VII for the proof). Equality is due to the fact that

the channel conditional distribution is fixed
over time. Rearranging the inequality we obtain

(37)
Finally, by using the convergence of a super additive sequence,
the theorem is proved.

B. Random Generation of Coding Scheme

In the case of no feedback, a coding block of length is a
mapping of each message to a codeword of length and is
denoted by . In the case of feedback, a coding block is a
vector function whose th component is a function of and the
first components of the received feedback. The mapping of
the message and the feedback to the input of the channel

is called a code tree[22, Ch. 9], strategy[23] or code
functions[7, Ch. 4.3]. Fig. 2 shows an example of a codeword of
length for the case of no feedback and a code tree of
depth for the case of binary feedback.

Randomly chosen coding scheme: We choose the th channel
input symbol of the codeword by using a prob-
ability mass function (PMF) based on previous symbols of the
code and previous feedback symbols . The
first channel input symbol of codeword is chosen by the prob-
ability function . The second symbol of codeword is
chosen for all possible feedback observations by the proba-
bility function . The th bit is chosen for all pos-
sible by the probability function . This
scheme of communication assumes that the probability assign-
ment of given and cannot depend on , because
it is unavailable. Therefore

(38)
In this achievability proof, we choose , or equiv-
alently, the sequence , that attains the
maximum of

Encoding scheme: Each message has a code tree. There-
fore, for any feedback and message there is a unique
input that was chosen randomly as described in
the previous paragraph. After choosing the coding scheme, the
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decoder is made aware of the code trees for all possible mes-
sages. In our coding scheme the input is always
a function of the message and the feedback, but in order to
make the equations shorter we also use the abbreviated notation

for .
Decoding scheme: The decoder is the ML decoder. Since

the codewords depend on the feedback, two different messages
can have the same codeword for two different outputs, there-
fore the regular ML cannot be used
for decoding the message. Instead, the ML decoder should
be where is the block length. The
following equation shows that finding the most likely mes-
sage can be done by maximizing the causal conditioning

:

(39)

The equality in (39) is shown as follows:

(40)

Equality holds because is uniquely determined by the
message and the feedback , and the feedback is
a deterministic function of . Equality holds because
according to the channel structure, does not depend on
given . Equality follows from the definition of causal con-
ditioning given in (4).

C. ML Decoding Error Bound

The next theorem bounds the expected ML decoding error
probability with respect to the random coding. The theorem was
proved in [7, Propsition 4.4.1], for the case of perfect feedback,
by introducing the idea of converting the channel with feedback
into a new channel without feedback1 and then applying [1, The-
orem 4.6.1]. We present an additional proof in Appendix III,
that follows Gallager’s proof [1, Theorem 4.6.1], but the coding
scheme includes time-invariant feedback and the ML decoder is
the one presented in (40).

Let denote the probability of error using the ML decoder
when message is sent. When the source produces message ,
there is a set of outputs denoted by that cause an error in
decoding the message , i.e.,

(41)

Theorem 9: (Analogue to [1, Theorem 5.6.1]) Suppose that
an arbitrary message , enters the encoder with
feedback and that ML decoding is employed. Then the average

1The idea of converting the channel with feedback into a new channel without
feedback as introduced by Tatikonda [7] can be easily extended also for the case
of time-invariant feedback. The new channel without feedback is not necessarily
an FSC and therefore the method works for theorems when their proofs do not
need the assumption of having an FSC. As pointed by one of the reviewers, this
method can be used for proving Lemma 4, Theorem 9, and Theorem 10.

probability of decoding error over this ensemble of codes is
bounded, for any choice of , by

(42)

where the expectation is with respect to the randomness in the
ensemble.

Let us define to be the probability of error given
that the initial state of the channel is and message was
sent. The following theorem, which is proved in Appendix IV,
establishes the existence of a code such that is small
for all .

Theorem 10: (Analogue to [1, Theorem 5.9.1]) For an arbi-
trary finite-state channel with states, for any positive integer

, and any positive , there exists an code for which
for all messages , , all initial states ,
and all , , its probability of error is bounded as

(43)

where

(44)

(45)

The following theorem presents a few properties of the func-
tion which is defined in (45), such
as positivity of the function and its derivative, and convexity of
the function with respect to .

Theorem 11: (Analogue to [1, Theorem 5.6.3]) The term
has the following properties for

:

(46)

(47)

(48)

Furthermore, equality holds in (46) when , and equality
holds on the left side of (47) when .

The proof of the theorem is omitted because it is the
same as the proof of Theorem 5.6.3 in [1]. The theorem
in [1] states these same properties with and

replaced by and , respec-
tively. The proof of those properties only requires that

, which follows from (19), and
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(59)

which fol-
lows Lemma 2. By using Lemma 5 we can substitute

in (47) by the directed
mutual information .

In this paper, we use Theorem 11 to claim (in the
proof of Theorem 14) that if

, then there is a range of for which

(49)

An alternative to the use of Theorem 11 is to use [24, Lemma 2],
given by Lapidoth and Telatar. It is possible to extend [24,
Lemma 2], in a straightforward manner, and to obtain that

(50)

Obviously, (50) also implies that (49) holds for some range of
.

Lemma 12: (Super additivity of , analogue to [1,
Lemma 5.9.1].) For any given finite-state channel, , as
given by (44), satisfies

(51)

for all positive integers and with .

The proof of the following lemma is given in Appendix V.

Lemma 13: (Convergence of , analogue to [1, Lemma
5.9.2].) Let

(52)

then

(53)

for . Furthermore, the convergence is uniform in
and is uniformly continuous for .

The proof of the lemma is identical to the proof of [1, Lemma
5.9.2] and therefore omitted. In the proof, Gallager uses the
fact that to bound the
derivative of by in the case of no feedback. The
same bound applies in the case of feedback, i.e.,

(54)

The following theorem states that any rate that satisfies
is achievable.

Theorem 14: (Analogue to [1, Theorem 5.9.2].) For any given
finite-state channel, let

(55)

Then, for any , there exists such that for
there exists an code such that for all

, and all initial states

(56)

Furthermore, for , is strictly positive, and
therefore the error can be arbitrarily small for large enough.

The proof is identical to the proof of [1, Theorem 5.9.2] and
therefore omitted. It uses Theorems 5.9.1, 5.6.1 and Lemma
5.9.2 that correspond to Theorem 10, 8, and Lemma 13 in
this paper, to prove that for any there exists a such that

for all .

D. Feedback That Is a Deterministic Function of a Finite
Tuple of the Output

The proof of Theorem 14 holds for the case that the feed-
back is a deterministic function of the output at time , i.e.,

. We now extend the theorem to the case where
the feedback is a deterministic function of a finite tuple of the
output, i.e., .

Consider the case . Let us construct a new finite state
channel, with input , and output that is the tuple .
The state of the new channel is the tuple .

Let us verify that the definition of an FSC holds for the new
channel:

(57)

Both channels are equivalent, and because the feedback is a
deterministic function of the output of the new channel , we
can apply Theorem 14 and obtain that any that satisfies

(58)

is achievable for any initial state . This result can be
extended by induction to the general case where the feedback
depends on a tuple of outputs. It leads to the result that
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any rate smaller than , given in (59) at the top of
the page, is achievable for any initial state .

VI. UPPER BOUND ON THE FEEDBACK CAPACITY

Recall the definitions

(60)

and

(61)

a limit that will be shown to exist in Theorem 16.

Theorem 15: The capacity of an FSC with a time-invariant
deterministic feedback, as presented in Fig. 1, is upper-bounded
by

(62)

in addition, for any positive integer , we have the following
computable upper bound:

(63)

The first upper bound, given in (62), follows from Fano’s in-
equality in a manner similar to the derivation of Massey’s upper
bound in [5]. The second upper bound, given in (62), is a direct
consequence of the following lemma.

Theorem 16: (Analogue to [1, Theorem 4.6.1]). For a finite-
state channel with states, the limit in (61) exists, and

(64)

Similar to Gallager’s proof, we show that the sequence
is subadditive, i.e., for any , such that

(65)
and this implies that

(66)

The proof differs from [1, Theorem 4.6.1]), since Gallager used
the fact that [1, eq. (4A.24)], which ob-
viously does not hold if feedback is used.

Proof of Theorem 16: Let and be the
input distribution and the initial state that achieves . The
distribution of the variables in the following se-
quence of equations is determined by the input distribution

and the channel:

(67)

Inequality is due to Lemma 4 where we treat the
vector to be the first element in the sequence, i.e.,

. Inequality results because
conditioning reduces entropy and because

(68)

for , and any FSC with and without feedback (see Ap-
pendix VI for the proof of (68)). Inequality follows the fol-
lowing argument. Let

and let denote the causally conditioned distribution
induced by the input

and the channel. Such a distribution exists, since, by Lemma
2, any joint distribution can be decomposed into casually
conditioned distributions as

(69)

Since and are fixed, is a legitimate input distri-
bution, and since the dependency of the joint distribution

on is only through the input distribu-
tion distribution , we have

(70)
Rearranging the last inequality of (67), we deduce that (65)

holds, and since

the lemma holds.

Proof of Theorem 15: Let be the message, chosen ac-
cording to a uniform distribution . The
input to the channel is a function of the message and the
arbitrary deterministic feedback output . For a code

with average probability , we have
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(71)

Inequality follows from Fano’s inequality. Equality
follows from the fact that is a deterministic function given
the message and the feedback . Equality follows
from the fact that the random variables form
the Markov chain , and inequality
follows Lemma 4. By dividing both sides of the equation by

, maximizing over all possible input distributions, and letting
, we find that in order to have an error probability

arbitrarily small, the rate must satisfy

(72)

where inequality in (72) is due to Theorem 16.

The upper bound in the previous theorem holds for any FSC,
and does not depend on the initial state distribution . For
a case in which the initial state has a positive probability for
all , an upper bound that coincides with the achievable
rate can be derived.

Theorem 17: An achievable rate of an FSC, where the ini-
tial state has a positive probability for all , must satisfy

(73)

where is defined as in the previous section

(74)

Since is an achievable rate for any FSC (Theorem 14), we
conclude that for an FSC, where , the
capacity is .

Proof: Recall that a rate is achievable if there exists a
sequence of block codes such that the probability

of error goes to zero as . We denote
the error probability of a code given that the initial state is .
Since every initial state has a positive probability, we can
infer that rate is achievable, if there exists a sequence of block
codes such that the probability of error goes
to zero for all .

Since the message is independent of , it is possible to re-
peat the sequence of inequalities – given in (71), but with
conditioning the random variables on , i.e., .
Hence, we have

(75)
And, in particular

(76)

Finally, since an achievable rate requires as
for all , we have

(77)

Remark: The converse proofs are with respect to the average
error over all messages. This, of course, implies that it is also
true with respect to the maximum error over all messages. In the
achievability part, we proved that the maximum error over all
messages goes to zero when which, of course, also im-
plies that the average error goes to zero. Hence, both the achiev-
ability and the converse are true with respect to average error
probability and maximum error probability over all messages.

VII. STATIONARY INDECOMPOSABLE FSC WITHOUT ISI

In this section, we assume that the channel states evolve ac-
cording to a Markov chain that does not depend on the input,
namely, . In
addition, we assume that the Markov chain is indecomposable
according to Gallager’s definition. Such a channel is called a fi-
nite state Markovian indecomposable channel (FSMIC) in [25];
however, another suitable name, which we adopt henceforth, is
an indecomposable FSC without ISI.

The definition of an indecomposable FSC for the case of no
ISI [1, p. 106] implies that there is one ergodic class.

Definition 2: An FSC without ISI is indecomposable if, for
every , there exists an such that for

(78)

for all .

Gallager also provides in [1, Theorem 4.6.3] a necessary and
sufficient condition for verifying that the channel is indecom-
posable. The condition is that for some fixed , there
exists a state such that

(79)

This condition can be verified in a finite time, and it also implies
[26, Theorem 6.3.2] that there exists a unique steady-state dis-
tribution (stationary distribution), i.e.,

(80)
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where is the stationary distribution. If we
say that the channel is stationary.

Theorem 18: For a stationary and indecomposable FSC
without ISI, the capacity of the channel is given by

(81)

Proof: Since is achievable (Theorem 14), and since the
right-hand side of(81) is an upper bound on the capacity (step

in (71)), it is enough to show that

(82)

We will prove (82) by considering an input distribution for
that is arbitrary for the first epochs time and then equal to
the causally conditioned distribution obtained by maximizing

. Since the channel is indecomposable and
without ISI, the distribution of can be made arbitrarily close
to by choosing large enough, and this will allow us to
bound the difference between and .

Let , where are positive integers. Then

(83)

Let . induces
an input distribution

Now consider an input distribution

where is an arbitrary distribution that does not depend
on the feedback. Then, the joint distribution induced by
satisfies

(84)

Now, consider the following difference:

(85)

where follows from (84), follows from the assumption
that the channel is indecomposable (see (78)) and has no ISI
and its state distribution, hence, converges to a stationary distri-
bution, follows from a time shift, and follows because
stationarity of the channel implies that

.
Combining (83) and (85), we obtain

(86)

Finally, for any , we can choose such that
, and we can choose such that
, and therefore we conclude that (82)

holds.

From the definition of channel capacity, it follows that the
probability of error has to go to zero for all

. Hence, the stationarity condition in Theorem 18
can be relaxed to the condition that the support of con-
tains the support of , i.e., if ; how-
ever, the calculation of

in Theorem 18 should be still done as with an initial dis-
tribution .

VIII. FEEDBACK AND SIDE INFORMATION

The results of the previous sections can be extended to the
case where side information is available at the decoder that
might also be fed back to the encoder. Let be the side informa-
tion available at the decoder and the setting of communication
that us shown Fig. 3. If the side information satisfies

(87)
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Fig. 3. Channel with feedback and side information � .

then it follows that

(88)

where . We can now apply Theorem 14 and get

(89)

where denotes the feedback available at the receiver at time
, which is a time-invariant function of and .

Here we consider only the case in which the side information
is the state of the channel, i.e., , and we show in the
next theorem that if the state is known both to the encoder and
decoder, then output feedback does not increase the capacity of
a connected FSC. In this section, we no longer assume that there
is no ISI; rather we assume that the FSC is connected, which we
define as follows.

Definition 3: We say that a finite-state channel is connected
if there exists an input distribution and integer

such that

for some
(90)

Theorem 19: Feedback does not increase the capacity of a
connected FSC when the state of the channel is known both at
the encoder and the decoder.

The theorem is proved in Appendix VIII by using the lower
and upper bound of capacity of FSC with time-invariant feed-
back. For several particular cases, this result has been already
shown. For instance, Shannon showed in [2] that feedback does
not increase the capacity of a discrete memoryless channel
(DMC). A DMC can be considered as an FSC with only one
state, and therefore the state of the channel is known to the
encoder and the decoder. For the case that the channel has no
ISI, namely, , the result was
shown by Viswanathan in [17]. And, if the input distribution
is restricted to the form (as opposed to

), then results from Tatikonda’s
thesis [7, Lemmas 4.5.3–4.5.5] can directly prove the theorem.

IX. SOURCE–CHANNEL SEPARATION

For channels that their feedback capacity is given by

(91)

and for ergodic sources, a simple derivation can show that the
optimality of the source–channel separation holds. This means
that the distortion that ca be achieved with the communication
scheme in Fig. 4 can also be achieved with the communication
scheme presented in Fig. 5. Conditions on the source and the
channel for having a separation are needed, since even for the
case of no feedback, the separation does not always hold [27,
Sec. III]. Sufficient and necessary conditions for the separation
in the absence of feedback are given in [27]. Here, sufficient
conditions are given for the case that deterministic feedback is
allowed.

Theorem 20: Consider a channel with its capacity given in
(91) (e.g., stationary indecomposable FSC without ISI). Let

and be given. Let be the rate distortion function
of a discrete, stationary, ergodic source with respect to a single-
letter criterion generated by a bounded distortion measure .
Then the source output can be reproduced with fidelity
at the receiving end if . Conversely, fidelity is
unattainable at the receiving end if .

Remark: For simplicity of presentation, we assumed one
channel use per source symbol. The derivation below extends
to the general case where the average number of channel uses
per letter is , analogously as in [1, Ch. 9].

Proof: The direct proof, namely, that if it is
possible to reproduce the source with fidelity , is straight-
forward by using the source–channel separation scheme from
Fig. 5. The encoder first encodes the source into an index using
a rate distortion scheme at a rate and then sends this index
as a message through the channel with feedback. Since the max-
imum probability of error is arbitrary small at a rate less then ,
the fidelity is achieved, where is arbitrarily small.

For the converse, namely that has to be less or equal
to , we use the directed data processing inequality which was
derived by Tatikonda [7, Lemma 4.8.1], primarily, for this pur-
pose (e.g., see [7, Theorem 5.3.2] for its use in a converse for
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Fig. 4. Source and channel coding, where the channel has time-invariant feedback.

Fig. 5. Source and channel separation.

sequential rate distortion through a channel).2 The directed data
processing inequality says that in the setting given in Fig. 4, for
any channel, we have the inequality

(92)

Based on this inequality, we have

(93)

Inequality follows the converse for rate distortion [28,
Theroem 7.2.5]. Inequality follows the directed data pro-
cessing inequality, and follows the converse of channel with
feedback, where as .

X. CONCLUSION AND FUTURE WORK

We determined a sequence of achievable rates and a sequence
of upper bounds on the capacity of FSCs with feedback that is
a deterministic function of the channel output. All bounds are
computable for any . The achievable rates are obtained via a
random generated coding scheme that utilizes feedback, along
with an ML decoder; the upper bounds are obtained via Fano’s
inequality. The techniques in this paper extend Gallager’s tech-
nique by using causal conditioning rather than regular condi-
tioning and by including deterministic feedback. If the initial
state has positive probability for all states , or if the
channel is a stationary indecomposable FSC without ISI, then
the capacity is established.

In addition to the coding theorem that is presented here,
there are two additional coding theorems that appeared in

2As mentioned by one of the reviewers, the data processing inequality can be
also derived from Massey’s result in [5, Theorem 3], ��� �� � � ��� �

� �, and the fact that we have the Markov form � � � � � .

parallel. The first, by Tatikonda and Mitter [29] is based on
Tatikonda’s thesis, and the second is by Kim [30]. The assump-
tions, the techniques, and the final results complement each
other. Tatikonda and Mitter3 assume an arbitrary channel and
use Feinstein’s lemma and the notion of in probability.
Kim assumes a stationary channel (channels in which their state
process evolves independently of the input and is a stationary
and ergodic process) and uses ergodic theory to analyze the
error probability of a decoder based on the method of types.
Here, we assume a finite-state channel and use Gallager’s
methods to bound the error probability of an ML decoding.

By using the directed information formula for the capacity
of FSCs with feedback developed in this work, it was shown
in [31] that the feedback capacity of a channel introduced by
Blackwell in 1961 [32], also known as the trapdoor channel [26],
is the logarithm of the golden ratio. The capacity of Blackwell’s
channel without feedback is still unknown. One future work is
to find the capacity of additional channels with time-invariant
feedback.

APPENDIX I
PROOF OF LEMMA 4

3In [29], in addition to the general coding theorem, the authors also treat
Markov channels, provide mixing conditions that insure information stability,
formulate the capacity problem as a Markov decision process, and formulate an
ML decoder.
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(94)

Equality is due to the definition of the directed informa-
tion. Inequality holds because the magnitude of the differ-
ence between two positive numbers is smaller than the max-
imum of the numbers. Inequality results from the fact that

and then uses
the chain rule of mutual information. Inequality is because
the mutual information of two variables is smaller than the en-
tropy of each variable, and the last inequality holds because the
cardinality of the alphabet of is .

APPENDIX II
PROOF OF LEMMA 6

The joint distribution can be calcu-
lated recursively by the following recursive, shown in
(95) at the bottom of the page, where

. It follows from (95) that

(96)
By summing over and dividing by , we get
(27), and, similarly, by only summing over and dividing by

, we get (26).

APPENDIX III
PROOF OF THEOREM 9

The proof follows [1, pp. 136–137], but we take into account
that we have codewords generated by rather than
codewords generated by and that the ML is
rather than . The proof hinges on the fact that given
an output , there is a mapping from to a unique . For
the case of noisy feedback, this property does hold and because
of that the theorem is not valid for noisy feedback.

Proof:

(97)

where is the probability of decoding error
conditioned on the message , the output , and the input

. The second equality is due to Lemma 1. Throughout the
reminder of the proof we fix the message . For a given tuple

, define the event , for each , as the
event, in which the message is selected in such a way that

, which according to (40) is the same as
, where is a shorthand notation

for , and is a shorthand notation for
. From the definition of we have

any (98)

where denotes the indicator function

any

(99)

where the last inequality is due to inequality (98). By substi-
tuting inequality (99) in (97), we obtain

(100)

By substituting , and recognizing that is a
dummy variable of summation, we obtain (42) and complete the
proof.

APPENDIX IV
PROOF OF THEOREM 10

This proof follows Gallager’s proof in [1, Theorem 5.9.1]
with a modification that is presented here. First, Gallager argues
that under the assumption that the initial state is uniformly dis-
tributed over the alphabet , if , then we can infer

(95)
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that for any state , . Hence, we start
the proof by assuming uniform distribution of the initial state,
i.e., .

In the case that there is no feedback and the initial state has a
uniform distribution, then we trivially have

(101)

For the case of a channel with feedback, we need several steps
to derive a similar equality for the causal conditioning distribu-
tions.

(102)

Equality is shown in (40), and equality holds due to the
assumption that the initial state and the message are in-
dependent. Thus, assuming that is uniformly distributed, the
bound on error probability under ML decoding given in The-
orem 9 becomes (103), shown at the bottom of the page. Ex-
pression (103) is almost identical to [1, eq. (5.9.1)], only here the
regular conditioning is replaced by causal conditioning. Now we
can apply steps identical to Gallager’s in [1, eqs. (5.9.2)-(5.9.5)],
and we get

(104)

These steps are: deriving a bound on the maximum error prob-
ability (over the messages) from the average error probability,
and using the inequalities, , for
and Jensen’s inequality , for .

Finally, by substituting and (44) and (45) into
(104), the theorem is proved.

APPENDIX V
PROOF OF LEMMA 12

The proof follows closely the proof of [1, Lemma 5.9.1]. The
main difference is in the step of obtaining (108) and is due to the
fact that not every property that holds for regular conditioning
also holds for causal conditioning.

Let us divide the input into two sets and
. Similarly, let us divide the output into two sets

and and the feedback into and
. Let

and

be the probability assignments that achieve the maxima
and , respectively. Let us consider the probability assign-
ment . Then

(105)

where is the state that minimizes .
Now

(106)

Equality can be proved in the same way as (40) was proved.
The term can be also expressed in terms of

in the following way:

(107)

Hence, we obtain

(108)

(103)
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(109)

As in [1, eqs. (5.9.11)–(5.9.15)], we get (109), shown at the top
of the page. Inequality is due to inequality (105). Equality

is due to (108). Inequality results from
. Inequality is due to Minkowski’s inequality

for .

APPENDIX VI
PROOF OF THE MARKOV CHAIN

Lemma 21: For an FSC , with and without feedback, we
have

(110)

for any .
Proof:

(111)

Similarly, has the expansion

(112)

Therefore, we get that

(113)

Since does not appear in the last expression, we
can conclude that

for .
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APPENDIX VII
PROOF OF THE MARKOV CHAIN

Lemma 22: For an FSC , with an input distribution of the
form

(114)

the following holds:

(115)

Proof:

(116)

where equality is due to the assumption in (114), and
equality is due to Lemma 21, which is given in the pre-
ceding appendix.

APPENDIX VIII
PROOF OF THEOREM 19

Proof: First, we note that because the state of the channel is
known both to the encoder and the decoder, and because the FSC
is connected, we can assume that with probability , where

is arbitrarily small, the FSC channel can be driven, in a fi-
nite time, to the state that maximizes the achievable rate. Hence,
the achievable rate (Theorem 14) equals the upper bound

(Theorem 15), and therefore the capacity of the channel in
the present of feedback, which we denote as , is given by

, where satisfies

(117)

Equality follows by replacing with according to
the communication setting. Equality follows from the
FSC property. Inequality holds because conditioning
reduces entropy. Equality holds because maximizing
over the set of causal conditioning probability
is the same as maximizing over the set of probabilities

, as shown in the following argument. The
sum is determined uniquely by the
sequence of probabilities . Let us prove
by induction that this sequence of probabilities is determined by

only through .
For , we have

(118)

Since and are determined by the channel
properties, the input distribution to the channel can influence
only the term . Now, let us assume that the argument is
true for and let us prove it for .

(119)
The term is the same under both sequences of probabil-
ities because of the assumption that the argument holds for .
The term is determined by the channel, so the
only term influenced by the input distribution is .
This proves the validity of the argument for all and, conse-
quently, the equality .

Inequality (117) proves that the achievable rate, when there
is feedback and state information, cannot exceed

Now let us prove that if the state of the channel is known at
the encoder and the decoder and there is no feedback, we can
achieve this rate. For this setting we denote the capacity as
and as in the case of feedback, the capacity does not depend on
the initial state and is given as , where
satisfies

(120)
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Equality in (120) follows by the same sequence of equalities
that lead to step in (117), and replacing with . Equality

follows from the FSC property. Inequality holds because
we restrict the range of probabilities over which the maximiza-
tion is performed. Equality holds because under an input
distribution , we have the following Markov chain:

. Inequality holds due to
(117).

Taking the limit on both sides of (120) shows that
. Since trivially also we have

.
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