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ABSTRACT 
We introduce Gaussian mixture models of ‘structure’ and 
colour features in order to classify coloured textures in im- 
ages, with a view to the retrieval of textured colour im- 
ages from databases. Classifications are performed sepa- 
rately using structure and colour and then combined using 
a confidence criterion. We apply the models to the VisTex 
database and to the classification of man-made and natural 
areas in aerial images. We compare these models with oth- 
ers in the literature, and show an overall improvement in 
performance. 

1. INTRODUCTION 

In many domains of image processing, there is a strong cor- 
respondence between entities in the scene and textures (by 
texture, we mean both what we will later call ‘structure’ 
information, and colour information) in the image. This im- 
plies that the ability to classify these textures can furnish 
important semantic information about the scene. Conse- 
quently, the problems of texture description and classifica- 
tion, and the closely related problem of segmentation, have 
received considerable attention, with numerous approaches 
being proposed (see, e.g., [ l ]  and references therein). In 
particular, in the field of content-based image retrieval, the 
ability to answer the question: “Is there a significant amount 
of such-and-such texture in this image?”, can be the basis 
for many types of query. 

One approach to characterizing textures is to  use statisti- 
cal models. Many kinds of statistical models have been ap- 
plied to texture classification, but the closest to the models 
proposed in this paper are those based on various Markov 
models. Motivated by the desire to incorporate contextual 
information, Li and Gray [Z] proposed a 2D HMM for im- 
age classification. A somewhat different model is the non- 
causal HMM described in [3]. Another recently popular 
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class of models uses hidden Markov trees to model the joint 
statistics of wavelet coefficients [4, 5,  61. In [4, 5,  71, an 
independent mixture model (IMM) in the wavelet domain 
is introduced. This model bears some similarities to the 
GMM proposed in this paper, since it employs a mixture 
of Gaussians, but in the IMM each wavelet feature is mod- 
elled separately by a mixture of models, and it is assumed 
that the features are independent. In the GMM framework 
adopted in this paper, no independence assumption about 
the features is made. The performance of the IMM-based 
classification was evaluated in [4, 5, 71, using the wavelet 
coefficients at each pixel as features. 

2. GMMS FOR TEXTURE CLASSIFICATION 

We introduce our classification model, describe Gaussian 
mixture models and motivate their use. We assume that we 
are dealing with N texture classes, labelled by n t N 
{l, . . . , N}, corresponding to different entities. 

2.1. Classification model 

Since texture is not a local phenomenon, in order to classify 
a pixel one must take into account a neighbourhood of that 
pixel. We will compute features from, and assign classes 
to, S x S subimages called ‘blocks’. The set of blocks is 
denoted B. We define the neighbourhood P(6) of a block 
b, called a ‘patch’, to be the set of blocks in a larger T x T 
subimage with b at its centre. We denote by Db the data 
associated to block b, and by Vb E N the classification of 
b. Given the likelihood of the data in a block given its class, 
P T ( D b l V b ) ,  we use the following classification rule: 

This says: “Assign to a block 6 that class n which, if all the 
blocks in P(b) bad class n, would maximize the probability 
of the data in P(b)” (we assume conditional independence 
of the data in the blocks in a patch given the classification). 
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The effect of this classification rule is similar to that of a 
Ports prior, in that it encourages spatial homogeneity of the 
classification. Its advantage is that it is not necessary to con- 
sider the classifications of neighbouring blocks in making a 
classification decision. This reduces computation time con- 
siderably. 

2.2. Gaussian mixture models 

The data Db associated to each block will he a vector of 
features, denoted Z. We must choose, for each texture class, 
a probability distribution that represents the feature statis- 
tics of a block of that class. We will use Gaussian mixture 
models for this purpose. Thus, for a given texture class, the 
probability that 5 be observed is a convex combination of 
M Gaussian densities: 

"I 

where b(Z, c, E) is a Gaussian of mean 6 and covariance 
C. The parameters for a given class are thus { p L ,  i, C,li t 

It is clear that modelling a texture class with a GMM 
rather than a single Gaussian gives a great deal of added 
flexibility to the model. Indeed, if one is allowed an arbi- 
trary number of components, any continuous density func- 
tion can be approximated to any desired accuracy. A GMM 
is also the natural model to use if a texture class contains a 
number of distinct subclasses, as is often the case (for ex- 
ample, forest texture in an aerial image). 

2.3. Parameter estimation for GMMs 

To apply the above classification procedure, we must learn 
the parameters of the GMM models. Given a training set 
consisting of the data from T blocks of a particular texture 
class, X = E T } ,  we would like to estimate the pa- 
rameters of the Gaussian mixture density using a maximum 
likelihood estimator. Fortunately, maximum likelihood pa- 
rameter estimation for a GMM can be solved using the EM 
algorithm [SI, or by using k-means. Lack of space prevents 
an exposition of these algorithms here, but note that the up- 
date steps for GMMs are expressible in closed form. 

M ) .  

2.4. The BKG model 

In addition to the texture classes that we wish to classify, we 
introduce also the background ('BKG') class. Its parame- 
ters are learned from the blocks in the union of the training 
sets of each class, the k-means algorithm being used be- 
cause of its faster convergence properties on large amounts 
of data. The BKG model has two roles. First, it is used to 
initialise the training of the individual texture models, thus 

ensuring that the initialisation is the same for all classes and 
not biased towards any one. Second, the BKG model is used 
as a 'no decision' class. If the BKG model is more likely 
than any of the individual classes, then no decision is made. 

3. FEATURE EXTRACTION 

We must choose sizes for a block and a patch. For segmen- 
tation, there is a trade-off between our ability to discrimi- 
nate classes and the accuracy of boundary estimation. How- 
ever, for retrieval purposes, the accuracy of texture hound- 
aries is not such a big issue. We choose a block size of 
S = 16, since this seems large enough to capture a reason- 
able sample of the largest structures in the textures in the 
images with which we are dealing. Choosing patch size is 
equivalent to  choosing a degree of smoothing for the classi- 
fications: there is a tendency for blocks near the centre of a 
given patch to he assigned the same class, since their corre- 
sponding patches have many blocks in common. We choose 
square patches containing nine blocks. 

3.1. Structure Features 

Structure features are designed to capture spatial regularity 
of the texture over the block. We extract structure informa- 
tion from the intensity images alone. We compared several 
sets of features for this purpose: the energies in different 
wavelet subbands for both Haar and Daubechies wavelets; 
AR models of different orders; and the energies of DCT 
coefficients in regions of frequency space corresponding to 
a wavelet decomposition. We found in practice that the 
wavelet-like DCT and the Haar wavelet features performed 
best, although only the AR models did significantly worse. 
The DCT is computationally the most efficient however, and 
we chose these energies as our structure features. 

3.2. Colour features 

Colour provides an extremely powerful cue for the distin- 
guishing of different entities in the scene. As colour fea- 
tures, we used the mean RGB values over a block and the 
data covariance of the RGB values over a block. Since the 
covariance matrix is symmetric, only half of it, including the 
diagonal, is included in the feature vector. The colour fea- 
ture vector is thus a 9-dimensional vector, 3 coming from 
the mean and 6 from the covariance. 

3.3. Combining colour and structure 

We combine the colour and texture models in the following 
way. For each block, and for both structure and colour fea- 
tures, we compute the right hand side of equation 1 for all 
classes. Let nl (b)  and n2(b) be the maximizing and next-to- 
maximizing classes for block b. We define the 'confidence' 
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Fig. 1. Textures from the Vistex Database: BarkO; 
Barkl2; FabricO; Fahric4; Fabric7; FabricB; Fabric1 I ;  Fab- 
ricl3; FabriclS; Fabricl7; Fabricl9; flowerso; Food.OOOO; 
Leavesl2; Grassl; CloudsO; BrickO; Wood2; watel0; Tile7; 
Stone4; Sand.OOOO; Misc2; MetalO. 

If the classifications resulting from using the structure fea- 
tures and the colour features conflict, we choose the deci- 
sion with the highest confidence. 

4. EXPERIMENTAL RESULTS 

The experiments in this section were conducted on the MIT 
Vision Texture (VisTex) database, and on the aerial images 
of the San Francisco Bay area that were used in [9, 2, IO, 
111. 

4.1. Vistex texture database 

We chose randomly 24, 512 x 512 textured colour images 
from the Vistex database. The textures are displayed in 
figure 1. Each image was divided into subimages of size 
32 x 32 pixels. All blocks extracted from the first 96 subim- 
ages of each texture were used for training, while the re- 
maining 160 subimages were used for testing. 

For each class we trained a GMM with five components 
using 30 iterations of the EM algorithm. We chose five com- 
ponents because increasing the number of components did 
not improve the results significantly. We used 30 iterations 
for a similar reason: the EM algorithm appeared to have 
converged after this number of iterations. We used the same 
initialization for each texture class: the BKG model. The 
results of the classification using the colour features, the 
structure features and the combined decision are shown in 
table 1. 

Sand0 
Misc2 
MetalO 

88.3 93.2 95.6 

Table 1. VisTex results 

4.2. Aerial images 

This database includes six 512 x 512 grey-scale images. 
There exist also manual segmentations of the images into 
man-made and natural areas. We use these segmentations 
as ground truth. The images are displayed in Figure 2. 

We used this database for evaluation exactly as it was 
used in [9, 21. For each iteration, one image was used as 
test data, and the other five were used as training data. Per- 
formance is evaluated by averaging over all iterations: Each 
class (‘man-made’ and ‘natural’) was modelled by a five- 
component GMM of the stmcture features. For initializa- 
tion we used the BKG model. 

The results from the GMM algorithm were compared to 
the results from other statistical models reported in [2, 91: 
the 2D HMM (two-dimensional bidden Markov model) [2]; 
the 2D MHMM (two-dimensional multi-resolution hidden 
Markov model) [9]; CART (a decision tree algorithm) [12]; 
and LVQl (version 1 of Kohonen’s learning vector quan- 
tization) [13]. The classification error rates for each test 
image in the six-fold cross-validation and the average error 
rates are listed in table 2. 
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Fig. 2. Aerial images. On the left of each pair, the original 
images. On the right, the manual segmentations. The dark 
areas are natural, the lighter areas, man-made. 

2 1  18.0 

4 1  25.2 
3 1  28.9 

Iteration CART 1 LVQl I HMM- GMM 
1 1 22.6 1 21.6 I 19.0 I 17.3 I 16.4 

19.1 1 17.6 I 16.3 I 14.0 
19.6 

24.9 I 24.0 1 20.5 1 19.1 
5 14.2 
6 20.2 

Ave. 21.5 

18.7 18.3 12.5 4.2 
18.1 13.3 11.5 15.4 
21.8 18.8 16.0 14.8 

~~~~~ 

Table 2. Classification error rates (percentage) by algorithm 

5. CONCLUSION 

We have described Gaussian mixture models of texture and 
colour features, and used them for the classification of tex- 
tures in the VisTex database and for classifying ‘man-made’ 
and ‘natural’ areas in aerial images. We have compared 
these models with others in the literature, and shown an 
overall improvement in performance. 
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