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Abstract—In this paper, we propose a novel method to compute
the feedback capacity of channels with memory using reinforce-
ment learning (RL). In RL, one seeks to maximize cumulative
rewards collected in a sequential decision-making environment.
This is done by collecting samples of the underlying environment
and using them to learn the optimal decision rule. The main
advantage of this approach is its computational efficiency, even
in high dimensional problems. Hence, RL can be used to estimate
numerically the feedback capacity of unifilar finite state channels
(FSCs) with large alphabet size. The outcome of the RL algorithm
sheds light on the properties of the optimal decision rule, which
in our case, is the optimal input distribution of the channel. These
insights can be converted into analytic, single-letter capacity
expressions by solving corresponding lower and upper bounds.
We demonstrate the efficiency of this method by analytically
solving the feedback capacity of the well-known Ising channel
with a ternary alphabet. We also provide a simple coding scheme
that achieves the feedback capacity.

I. INTRODUCTION

Computing the capacity of a finite state channel (FSC) is a

difficult task that has been vigorously researched in recent

decades [1]. With the presence of feedback, the feedback

capacity of a FSC can be expressed using the directed informa-

tion [2], [3]. Despite the fact that the directed information is a

multi-letter expression, it was shown that it can be formulated

as a Markov decision process (MDP), which enables its

computability using known MDP algorithms [4].

When formulated as a MDP, the feedback capacity of a

FSC can be computed using a variety of methods, such as

value and policy iteration. These algorithms have been proven

very effective for channels with relatively small alphabets

of the channel input, output and state [4]–[10]. However,

a principal drawback is that their computational complexity

grows with the cardinality of the channel alphabet. Indeed,

even for channel parameters from the ternary alphabet, these

algorithms might be intractable.

We propose a machine learning (ML) approach to compute

the capacity of such channels. ML has been proven to be

a useful tool with a great impact in many research fields.

One example in communications is [11], wherein a learning-

based algorithm was applied to design a reliable code for

the additive white Gaussian noise channel with feedback. The

present work introduces a new role of ML in communications,

an efficient computation of multi-letter capacity expressions

using RL algorithms.

We propose a methodology that uses RL to compute the

feedback capacity of unifilar FSCs. Initially, a RL algorithm,

namely the deep deterministic policy gradient (DDPG), is

used to numerically estimate the feedback capacity. Then, the

outcome of the RL algorithm is used to conjecture the structure

of the analytic solution, which is expressed by a directed

graph. The conjectured graph, that is called a Q-graph, can

be used to compute analytic lower and upper bounds of the

feedback capacity [12]. The bounds are guaranteed to coincide

to the feedback capacity, in the case that the Q-graph of the

analytic solution is extracted. Furthermore, the Q-graph can be

used to derive a simple, capacity-achieving coding scheme of

the channel. In our work, the proposed methodology enabled

us to compute the feedback capacity of the Ising channel with

a ternary alphabet (Ising3), and derive a capacity achieving

coding scheme.

The remainder of the paper is organized as follows. Section

II includes the notation and preliminaries. In Section III, we

present our main results. Section IV provides background on

RL and on the DDPG algorithm. In Section V, we estimate

the feedback-capacity of the Ising3 using the DDPG algo-

rithm. In Section VI, we prove the feedback-capacity of the

Ising3 channel and present a simple capacity-achieving coding

scheme. Section VII contains conclusions and a discussion of

the future work.

II. NOTATION AND PROBLEM DEFINITION

A. Notation

Calligraphic letters, X , denote alphabet sets, upper-case

letters, X , denote random variables, and lower-case letters,

x, denote sample values. A superscript, xt, denotes the vector

(x1, . . . , xt). The probability distribution of a random variable,

X , is denoted by pX . We omit the subscript of the random

variable when it and the argument have the same letter, e.g.

p(x|y) = pX|Y (x|y). The binary entropy is denoted by H2(·)

B. Unifilar state channels

A FSC is defined by the triplet (X ×S, p(y, s′|x, s),Y×S),
where X is the channel input, Y is the channel output, S is

the channel state at the beginning of the transmission, and S′

is the channel state at the end of the transmission, where the
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cardinalities X ,Y,S, are assumed to be finite. At each time

t, the channel has the memory-less property

p(st, yt|x
t, st−1, yt−1) = p(yt|xt, st−1)p(st|xt, st−1, yt).

(1)

A FSC is called unifilar if the new channel state, st, is a time-

invariant function of the triplet st = f(xt, yt, st−1). For a FSC

with feedback, the input xt is determined by the message and

the feedback tuple yt−1.

The feedback capacity of a unifilar FSC is given by a multi-

letter expression that is presented in the following theorem.

Theorem 1. [4, Thm 1] The feedback capacity of a strongly

connected unifilar state channel, where the initial state s0
is available to both to the encoder and the decoder, can be

expressed by

Cfb = lim
N→∞

sup
{p(xt|st−1,yt−1)}N

t=1

1

N

N
∑

i=1

I(Xi, Si−1;Yi|Y
i−1).

C. Ising3 channel

The Ising channel model was introduced as an information

theory problem by Berger and Bonomi in 1990 [13], 70 years

after it was introduced as a problem in statistical mechanics

by Lenz and his student, Ernst Ising [14]. Berger and Bonomi

studied the channel with a binary alphabet size. We investigate

a generalized version of the Ising channel, where the alphabets

are not necessarily binary. The Ising channel is defined by

Y =

{

X ,w.p 0.5

S ,w.p 0.5
, (2)

S′ = X. (3)

Hence, if X = S then Y = X = S w.p 1. Otherwise, Y is

assigned by one of the last two symbols with equal probability.

III. MAIN RESULTS

The following theorems constitute our main results.

Theorem 2. The feedback capacity of a unifilar FSC can be

estimated by a RL algorithm.

Remark 1. Theorem 2 is a computational result. Specifically,

while previous estimations of the capacity were constrained

by the cardinality of the channel parameters, we show that the

RL algorithm is dimensional free.

Using the numerical results from the RL algorithm, one

can deduce the analytic solution structure by a Q-graph [12],

which is used to compute the feedback capacity.

The following theorem is an instance of a known channel

that we were able to solve using the numerical results from

the RL algorithm.

Theorem 3. The feedback-capacity of the Ising3 channel is

given by

Cfb = max
p∈[0,1]

2
H2(p) + 1− p

p+ 3
, (4)

where Cfb ≈ 0.961227 for p ≈ 0.263805.

Furthermore, we derive a simple coding scheme that

achieves the feedback capacity in Theorem 3.

Theorem 4. There exists a simple coding scheme for the

Ising channel with general alphabet X , with the following

achievable rate:

R(X ) = max
p∈[0,1]

2
H2(p) + (1− p) log (|X |−1)

p+ 3
. (5)

Note that for |X | = 3, the coding scheme achieves the capacity

in Theorem 3.

The coding scheme is described by a repeated procedure

that is given by the following:

Code construction and initialization:

- The message is a stream of n uniform bits.

- Transform the message into a stream of symbols from X ,

denoted by ν1ν2 . . . with the following statistics:

νi =

{

νi−1 ,w.p p

Unif[X\νi−1] ,w.p 1− p
(6)

In words, a new symbol equals the previous symbol with

probability p and, otherwise, it is randomly chosen from

the remaining symbols. This mapping can be done, for

instance, by using enumerative coding, as shown in [15].

- At the first time, the encoder transmits ν1 twice.

- The decoder, upon receiving y1, y2, decode ν̂1 = y2 and

sets c = 2.

The transmission procedure is given by the following:

Encoder:

1) If νt = νt−1 transmit νt twice and move to the next

symbol.

2) If νt 6= νt−1 transmit νt once and view the last feedback

y.

a) If y = νt move to the next symbol.

b) If y 6= νt transmit νt again and move to the next

symbol.

Decoder:

1) If yt 6= ν̂c−1 then ν̂c = yt, increment c = c+ 1.

2) If yt = ν̂c−1 then wait for yt+1, set ν̂c = yt+1, and

increment c = c+ 1.

In Section VI, we prove that the coding scheme yields a

zero-error code and that its maximum rate equals the feedback

capacity as given in Thm. 3.

IV. REINFORCEMENT LEARNING

In this section, we provide the definition of the basic RL

problem setting as presented in [16] and elaborate on the

DDPG algorithm.

A. Background

The RL field in ML comprises an agent that interacts with an

unknown environment by taking sequential actions. Formally,

at time t, the agent observes the environment’s state zt−1 and

then takes an action ut = A(zt−1). This incurs an immediate

reward rt and the agent’s next state zt, as shown in Fig. 1.
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The environment is assumed to satisfy the Markov property,

p
(

zt, rt|z
t−1, ut, rt−1

)

= p (zt, rt|zt−1, ut) . (7)

Hence, it can be defined by the conditional probabilities

p (zt|zt−1, ut) , p (rt|zt−1, ut)
1.

Agent

Environment

D ut

zt, rt

zt−1, rt−1

Fig. 1. Depiction of the agent-environment interface in RL. The agent
observes the environment state and chooses an action. In return, the
environment draws an immediate reward and a next state according to
p (rt|zt−1, ut) , p (zt|zt−1, ut).

The agent’s policy is a sequence of actions π =
{u1, u2, . . . }, and the cumulative rewards with respect to the

policy from time t onward are defined by Gt =
∑∞

k=t γ
k−trk,

where γ ∈ [0, 1] is the discount factor. The agent’s goal is to

find an optimal policy π∗ such that

π∗ = argmax
π

Eπ [Gt] . (8)

The subscript π of the expectation represents its dependence

on the policy.

In the next section, we present the state-action value func-

tion that is used as a tool to find π∗.

B. State-action Value function

The state-action value function Qπ(z, u) is defined as

Qπ(z, u) = Eπ [Gt|Zt = z, Ut = u] . (9)

That is, the expected cumulative rewards for taking action u

at state z and thereafter following policy π. Using the Markov

property (Eq. (7)) of the environment, one can decompose Eq.

(9) to

Qπ(z, u) =E [rt|Zt = z, Ut = u] +

γEπ [Qπ(Zt+1, Ut+1)|Zt = z, Ut = u] . (10)

The decomposition in (10) is essential when estimating the

function Qπ(·, ·) when π is fixed. Once the state-action value

function is estimated, it forms the basis for the improvement

of a given policy. That is, for each state z, the current action

u(z) can be improved to the action u′(z) by choosing

u′(z) = argmax
u

Qπ(z, u). (11)

1One can show that the marginal probabilities are sufficient since the
objective is to maximize additive rewards

C. Function approximation

The function approximators in RL are parameterized models

for Qπ(z, u), A(z). The actor is defined by Aµ(z), a para-

metric model of A(z), whose parameters are µ. The critic is

defined by Qω(z, u), a parametric model of the state-action

value function the corresponds to Aµ(z), whose parameters

are ω. Generally, the actor and critic are modeled by neural

networks (NNs), as shown in Fig 2.

Actor
NN

Critic
NN

z
Aµ(z)

Qω (z,Aµ(z))

Fig. 2. Depiction of actor and critic networks. The actor network comprises
a NN that maps the state z to an action u = Aµ(z). The critic NN maps
z, u pair to the estimated future cumulative rewards.

The function approximations are modeled by a differentiable

parametric model. Hence, learning Qπ(z, u), A(z) can be

done without visiting the entire state space. Specifically, the

approximation interpolates its estimate for observed states to

unobserved states, which enables the algorithm to converge

without visiting the entire state space. This constitutes the

main difference between the RL approach and previous meth-

ods, such as DP, which turn it into a tractable solution for

channels with high cardinality.

D. DDPG algorithm

The DDPG algorithm [17] is a deep RL algorithm for

deterministic action and continuous state and action spaces.

The training procedure comprises Nep episodes, where each

episode contains T sequential steps. A single step of the

algorithm comprises two parallel operations: (1) collecting

experience from the environment, and (2) training the actor

and critic networks to obtain the optimal policy.

In the first operation, the agent collects experience from the

environment. Given the current state zt−1, the agent chooses

an action ut according to a ǫ-greedy policy, where ǫ ∈ [0, 1].
That is, with probability 1 − ǫ the agent acts according to

Aµ(zt−1), and with probability ǫ the agent takes a random

action uniformly over the action space. The term ǫ denotes

the exploration parameter, and it is crucial to encourage the

agent to search the entire state and action spaces. Then the

agent samples from the environment the incurred reward rt
and the next state zt. The transition tuple (zt−1, ut, rt, zt) is

then stored in a replay buffer, a bank of experience, that is

used to improve the actor and critic networks. Finally, the

agent updates its current state to be zt and moves to the next

step.

The second operation entails training the actor and critic

networks. First, Nmb transitions are drawn randomly from the

replay buffer. Second, for each transition, we compute its target

based on the right-hand side of Eq. 10.

yi = ri + γQω (z′i, Aµ(z
′
i)) , ∀i = 1, . . . , Nmb. (12)
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Then we minimize the following objective with respect to the

parameters of the critic network ω as given by

L (ω) =
1

Nmb

Nmb
∑

i=1

[Qω (zi, Aµ(zi))− yi]
2
. (13)

The aim of this update is to train the Critic to comply with

Eq. (10). Afterward, we train the actor to maximize the critic’s

estimation of future cumulative rewards. That is, we train the

actor to choose actions that result in high cumulative rewards

according to the critic’s estimation. The actor update formula

is given by

∇µQω(z,Aµ(z)) =
1

Nmb

Nmb
∑

i=1

∇aQω (zi, a) |a=A(zi)∇µA (zi) .

(14)

To conclude, the algorithm alternates between improving the

critic’s estimation of future cumulative rewards and training

the actor to choose actions that maximize the critic’s estima-

tion. The algorithm work flow is depicted in Fig. 3.

zt−1
Actor
NN

Aµ(zt−1)
ǫ-greedy

ut
environment

zt−1, ut, rt, zt

zt
D

replay-buffer

Nmb examplesCompute
networks
updates

update critic

update actor

Critic
NN

Fig. 3. Depiction of the work flow of the DDPG algorithm. At each time
step t, the agent samples a transition from the environment using ǫ-greedy
policy and stores the transition in the replay buffer. Simultaneously, Nmb past
transition are drawn from the replay buffer and used to update the critic and
actor NN according to Equations (13) and (14) respectively.

V. ESTIMATING THE CAPACITY OF THE ISING3 CHANNEL

USING RL

In This section, we show the formulation of the feedback

capacity as a RL problem, including details of the implemen-

tation of the RL algorithm and the experiments we conducted

on various unifilar FSCs with feedback.

A. Formulation of the feedback capacity as a RL problem

We formulate the Ising3 feedback capacity as a RL

problem that is based on the formulation as done in [4].

We define the state by a two-dimensional vector, zt =
[p (st = 0|yt) , p (st = 1|yt)]

T
. The action is defined by ut =

p (xt|zt−1) ∈ R
3×3. The reward is defined by rt =

I(Xt, St−1;Yt|Y
t−1), which is a deterministic function of

p
(

xt, st−1, yt|t
t−1

)

= zt−1utp (yt|xt, st−1). Hence, the con-

ditional distribution p (rt|zt−1, ut) is induced by the channel

distribution Eq. (2). The next state distribution is given by

the BCJR equation as given in Eq. (35) in [4]. Accordingly,

the conditional distribution p (zt|zt−1, ut) is induced by the

channel distribution, Eq. (2) and the state evolution, Eq. (3).

B. Implementation of the RL algorithm

We model Qπ(z, u), Aµ(z) with two NNs, each of which is

composed of three fully connected hidden layers of 300 units

separated by a batch normalization layer. The actor network

input is the state z and its output is a matrix Aµ(z) ∈ R
3×3

such that Aµ(z)
T
1 = 1. The critic network input is the tuple

{z,Aµ(z)} and its output is a scalar, which is the estimate for

the cumulative future rewards. In our experiments, we trained

the networks for Nep = 104 episodes. Each episode length is

T = 500 steps. For the exploration, we chose ǫ = 0.1 and

decayed it by 0.999 each episode.

C. Experiments

We conducted several experiments to verify the effective-

ness of our formulation. First, we focused on experimenting

channels whose analytic solution was proven in the past, such

as the Trapdoor channel [4], Ising channel with a binary

alphabet [5], [8], Binary Erasure channel with input constraint

[6], and the Dicode channel [12]. The results showed that the

obtained achievable rates were within 99.99% of the feedback

capacity for all channels.

Our aim is to solve a channel with large cardinality that

previous methods have failed to solve due to computational

complexity. We chose the Ising3 channel as a candidate and

used our formulation to estimate its feedback capacity. We ran

a simulation over the Ising3 channel with the same RL model

as used in the previous experiments. By the end of training, we

obtained a policy whose achievable rate is 0.96110. Another

Fig. 4. State histogram of the optimal policy as obtained from RL. The
histogram was generated by a Monte-Carlo evaluation of the estimated policy.

property of the obtained policy is that it visits only six discrete

states as shown in Fig. 4. Furthermore, the transition between

states is determined uniquely given the output of the channel.

These transitions can be shown as a Q-graph, as depicted in

Fig. 5.
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replacements
Q1

Q2

Q3

Q4

Q5

Q6

Fig. 5. Q-graph showing the transitions between states as a function of
the channel’s output. Blue, red and green lines correspond to Y = 0, 1, 2,
respectively. States with dashed lines and states with solid line behave
similarly.

In the next section we use the Q-graph we obtained from

the estimated policy of the RL algorithm to solve the Ising3

channel.

VI. ANALYTIC SOLUTION FOR THE ISING3 CHANNEL

In this section, we prove Theorem 3 concerning the feed-

back capacity of the Ising3. Specifically, we use the graphical

structure in Fig. 5 to compute a tight upper bound, and analyze

the rate of the proposed coding scheme.

1) Bounds on the feedback capacity: The Q-graph method,

introduced in [12], is a general technique that exploits the

discrete histogram in Fig. 4 to provide upper and lower bounds

on the capacity. The upper bound states that for any choice of

a Q-graph,

Cfb ≤ sup
p(x|s,q)

I (X,S;Y |Q) , (15)

where the joint distribution is PS,QPX|S,QPY |X,S and PS,Q

is a stationary distribution. The upper-bound is tight, that is,

equals to the feedback capacity, when the maximizer of (15)

satisfies the Markov chain S′ −Q′ − (Q,Y ).
We use convex optimization tool to compute the upper-

bound in (15) with respect to the Q-graph in Fig. 5. The

result is used to conjecture a parameterized input PX|S,Q as

the optimal solution. Then, using the convexity of the upper

bound (as a function of the entire joint distribution), one can

show that the conjectured solution is optimal, and that the

upper-bound can be simplified to the expression in Theorem

3. The tightness of the upper bound is shown via the Markov

chain above.

2) Coding scheme - Sketch of proof for Theorem 4: The

coding scheme in Section 4 is a generalization of the optimal

coding scheme for |X | = 2 that was presented in [5]. We

analyze the achievable rate by computing the entropy rate of

input symbols, divided by the expected time until decoding a

single symbol.

The entropy rate can be computed from the the symbols

transition entropy:

H(νi|νi−1) = H2(p) + (1− p) log [|X |−1] . (16)

The expected time until decoding a single symbol νi is

E [L] = p · 2 + (1− p) · 1.5. (17)

That is since when νi = νi−1, the symbol is sent twice, and

when νi 6= νi−1, the symbol is sent once or twice with equal

probability. The proof is completed by dividing Eq. (16) by

Eq. (17) and taking a maximum over p.

VII. CONCLUSIONS

We derived an estimation algorithm of the feedback capacity

of a unifilar FSC using RL. The RL approach addresses the

cardinality constraint and establishes RL as a useful tool for

channels with high cardinality. We provided an example over

the Ising3 channel, where we used the insights provided by the

numerical results to analytically compute its feedback capacity.

Furthermore, we showed a simple capacity-achieving coding

scheme for the Ising3 channel with feedback.

Additionally, our preliminary results imply that we are able

to solve the Ising channel for any alphabet size. Then, we plan

to solve different channels numerically and, hopefully, estab-

lish methods to induce their analytic solution, and capacity-

achieving coding schemes. Furthermore, we plan to use the

feedback capacity problem as a framework to improve the RL

algorithms.
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