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Feedback Capacity of the Compound Channel
Brooke Shrader, Member, IEEE, and Haim Permuter, Member, IEEE

Abstract—In this work, we find the capacity of a compound
finite-state channel (FSC) with time-invariant deterministic feed-
back. We consider the use of fixed length block codes over the
compound channel. Our achievability result includes a proof
of the existence of a universal decoder for the family of FSCs
with feedback. As a consequence of our capacity result, we show
that feedback does not increase the capacity of the compound
Gilbert–Elliot channel. Additionally, we show that for a stationary
and uniformly ergodic Markovian channel, if the compound
channel capacity is zero without feedback then it is zero with
feedback. Finally, we use our result on the FSC to show that the
feedback capacity of the memoryless compound channel is given
by �������� ����� � �	.

Index Terms—Causal conditioning probability, code-trees,
compound channel, directed information, feedback capacity,
finite-state channel (FSC), Gilbert–Elliot channel, Pinsker’s in-
equality, Sanov’s theorem, types of code-trees, universal decoder.

I. INTRODUCTION

T HE compound channel consists of a set of channels in-
dexed by with the same input and output alphabets

but different conditional probabilities. In the setting of the com-
pound channel only one actual channel is used in all trans-
missions. The transmitter and the receiver know the family of
channels but they have no prior knowledge of which channel is
actually used. There is no distribution law on the family of chan-
nels and the communication has to be reliable for all channels
in the family.

Blackwell et al. [1] and independently Wolfowitz [2] showed
that the capacity of a compound channel consisting of memory-
less channels only, and without feedback, is given by

(1)

where denotes the input distribution to the channel,
denotes the conditional probability of a memo-

ryless channel indexed by , and the notation
denotes the mutual information of channel for the input
distribution , i.e.,

(2)
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The capacity in (1) is in general less than the capacity of
every channel in the family. Wolfowitz, who coined the term
“compound channel,” showed that if the transmitter knows the
channel in use, then the capacity is given by [3, Ch. 4]

(3)

where is the capacity of the channel indexed by . This shows
that knowledge at the transmitter of the channel in use helps in
that the infimum of the capacities of the channels in the family
can now be achieved. In the case that is a finite set, then it
follows from Wolfowitz’s result that is the feedback
capacity of the memoryless compound channel, since the trans-
mitter can use a training sequence together with the feedback
to estimate with high probability. In this paper, we show that
when is not limited to finite cardinality, the feedback capacity
of the memoryless compound channel is given by . One
might be tempted to think that for a compound channel with
memory, feedback provides a means to achieve the infimum of
the capacities of the channels in the family. However, this is not
necessarily true, as we show in Example 1, which is taken from
[4] and applied to the compound Gilbert–Elliot channel with
feedback. That example is found in Section V.

A comprehensive review of the compound channel and its
role in communication is given by Lapidoth and Narayan [5].
Recent results on the Gaussian compound channel for multiuser
and multiple-input multiple-output (MIMO) settings can be
found in [6]–[8]. Of specific interest in this paper are compound
channels with memory which are often used to model wireless
communication in the presence of fading [9]–[11]. Lapidoth
and Telatar [4] derived the following formula for the compound
channel capacity of the class of finite-state channels (FSCs)
when there is no feedback available at the transmitter:

(4)

where denotes the initial state of the FSC, and
and denote the input distribution and
channel conditional probability for block length . Lapidoth
and Telatar’s achievability result makes use of a universal
decoder for the family of FSCs. The existence of the universal
decoder is proved by Feder and Lapidoth in [12] by merging
a finite number of maximum-likelihood (ML) decoders, each
tuned to a channel in the family .

Throughout this paper, we use the concepts of causal con-
ditioning and directed information which were introduced by
Massey in [13]. Kramer extended those concepts and used them
in [14] to characterize the capacity of discrete memoryless
networks. Subsequently, three different proofs—Tatikonda
and Mitter [15], [16], Permuter, Weissman, and Goldsmith
[17], and Kim [18]—have shown that directed information and
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Fig. 1. Compound FSC with feedback that is a time-invariant deterministic function of the channel output.

causal conditioning are useful in characterizing the feedback
capacity of a point-to-point channel with memory. In particular,
this work uses results from [17] that show that Gallager’s [9,
Chs. 4, 5] upper and lower bound on capacity of a FSC can
be generalized to the case that there is a time-invariant deter-
ministic feedback, , available at the encoder at
time .

In this paper, we extend Lapidoth and Telatar’s work for the
case that there is deterministic time-invariant feedback available
at the encoder by replacing the regular conditioning with the
causal conditioning. Then we use the feedback capacity theorem
to study the compound Gilbert–Elliot channel and the memo-
ryless compound channel and to specify a class of compound
channels for which the capacity is zero if and only if the feed-
back capacity is zero. The proof of the feedback capacity of the
FSC is found in Section III, which describes the converse re-
sult, and Section IV, where we prove achievability. As a conse-
quence of the capacity result, we show in Section V that feed-
back does not increase the capacity of the compound Gilbert–El-
liot channel. We next show in Section VI that for a family of
stationary and uniformly ergodic Markovian channels, the ca-
pacity of the compound channel is positive if and only if the
feedback capacity of the compound channel is positive. Finally,
we return to the memoryless compound channel in Section VII
and make use of our capacity result to provide a proof of the
feedback capacity.1

The notation we use throughout is as follows. A cap-
ital letter denotes a random variable and a lower case
letter, , denotes a realization of the random variable.
Vectors are denoted using subscripts and superscripts,

and . We deal with
discrete random variables where a probability mass function on
the channel input is denoted and

denotes a
mass function on the channel output. When no confusion can re-
sult, we will omit subscripts from the probability functions, i.e.,

will denote .

II. PROBLEM STATEMENT AND MAIN RESULT

The problem we consider is depicted in Fig. 1. A message
from the set is to be transmitted over a com-

pound FSC with time-invariant deterministic feedback. The
family of FSCs has a common state space and common
finite input and output alphabets given by and . For a given

1Although Wolfowitz mentions the feedback problem in discussing the mem-
oryless compound channel [3, Ch. 4], to the best of our knowledge, this result
has not been proved in any previous work.

channel the channel output at time is characterized by
the conditional probability

(5)

which satisfies the condition
. The channel is in use over the sequence

of channel inputs. The family of channels is known to both
the encoder and decoder, however, they do not have knowledge
of the channel in use before transmission begins.

The message is encoded such that at time the code-
word symbol is a function of and the feedback sequence

. For notational convenience, we will refer to the input se-
quence as simply . The feedback sequence is
a time-invariant deterministic function of the output and is
available at the encoder with a single time unit delay. The func-
tion performed on the channel output to form the feedback

is known to both the transmitter and receiver before com-
munication begins. The decoder operates over the sequence of
channel outputs to form the message estimate .

For a given initial state and channel , the
channel causal conditioning distribution is given by

(6)

Additionally, we will make use of Massey’s directed informa-
tion [13]. When conditioned on the initial state and channel, the
directed information is given by

(7)

Our capacity result will involve a maximization of the directed
information over the input distribution which is
defined as

(8)

We make use of some of the properties provided in [13], [17]
in our work, including the following three which we restate for
our problem setting.

1) [13,
eq. (3)], [17, Lemma 1].
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2) ,
where random variable denotes the state of the FSC [17,
Lemma 4].

3) From [17, Lemma 5]

Note that properties 1) and 3) hold since
for our feedback setting, where it is assumed that

the state is not available at the encoder.
For a given initial state and channel , the average proba-

bility of error in decoding message is given by

where is a function of the message and of the feedback
. The average (over messages) error probability is denoted

, where . We say
that a rate is achievable for the compound channel with feed-
back as shown in Fig. 1, if for any there exists a code
of fixed block length and rate , i.e., , such that

for all and . Equivalently, rate
is achievable if there exists a sequence of rate- codes such

that

(9)

This definition of achievable rate is identical to that given in
previous work on the compound channel without feedback. A
different definition for the compound channel with feedback
could also be considered; for instance, in [19], the authors con-
sider codes of variable block length and define achievability
accordingly.

The capacity is defined as the supremum over all achievable
rates and is given in the following theorem.

Theorem 1: The feedback capacity of the compound FSC is
given by

(10)

Theorem 1 is proved in Section III, which shows the existence
of and proves the converse, and Section IV, where achiev-
ability is established.

III. EXISTENCE OF AND THE CONVERSE

We first state the following proposition, which shows that the
capacity as defined in Theorem 1 exists. The proof is found
in Appendix A.

Proposition 1: Let

(11)

Then is well defined and converges for . In addition,
let

(12)

Then

(13)

To prove the converse in Theorem 1, we assume a uniform
distribution on the message set, for which . Since
the message is independent of the channel parameters

and we apply Fano’s inequality as follows:

For any code we have

(14)

and therefore

(15)
By combining the above statement with Proposition 1 we have

(16)

Then for a sequence of codes of rate with
, this implies .

IV. ACHIEVABILITY

Before proving achievability, we mention a simple case which
follows from previous results. If the set has finite cardinality,
then achievability follows immediately from the results in [17,
Theorem 14], which are true for any FSC with feedback. Hence,
we can construct an FSC where the augmented state is and
by assuming a positive probability for all initial states
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Fig. 2. Illustration of coding scheme for (a) setting without feedback, (b) setting with binary feedback as used in [17], and (c) a code-tree that was created by
concatenating smaller code-trees. In the case of no feedback, each message is mapped to a codeword, and in the case of feedback each message is mapped to a
code-tree. The third scheme is a code-tree of depth � created by concatenating two trees of depth �.

then we get that for any and any the
rate is achievable if

(17)

More work is needed in the achievability proof when the set
is not restricted to finite cardinality. This is outlined in the

following subsections in three steps. In the first step, we assume
that the decoder knows the channel in use and we show in
Theorem 2 that if and if the decoder consists of an ML
decoder, then there exist codes for which the error probability
decays uniformly over the family and exponentially in the
block length. The codes used in showing this result are codes
of block length where each subblock of length is gen-
erated independent and identically distributed (i.i.d.) according
to some distribution. In the second step, we show in Lemma
3 that if instead the codes are chosen uniformly and indepen-
dently from a set of possible block-length- codes, then the
error probability still decays uniformly over and exponen-
tially in the block length. In the third and final step, we show in
Theorem 4 and Lemma 5 that for codes chosen uniformly and
independently from a set of block-length- codes, there ex-
ists a decoder that for every channel achieves the same
error exponent as the ML decoder tuned to .

In the sections that follow, denotes the set of
probability distributions on causally conditioned on .

A. Achievability for a Decoder Tuned to

We begin by proving that if the decoder is tuned to the channel
in use, i.e., if the decoder knows the channel in use,

and if , then the average error probability approaches
zero. This is proved through the use of random coding and ML
decoding.

The encoding scheme consists of randomly generating a
code-tree for each message , as shown in Fig. 2(b) for the case
of binary feedback. A code-tree has depth corresponding to
the block length and level designates a set of possible
codeword symbols. One of the symbols is chosen as the
input according to the feedback sequence . The first
codeword symbol is generated as . The second
codeword symbol is generated by conditioning on the previous
codeword symbol and on the feedback,
for all possible values of . For instance, in the binary case,

, two possible values (branches) of will be generated
and the transmitted codeword symbol will be selected from
among these two values according to the value of the feedback

. Subsequent codeword symbols are generated similarly,
for all possible . For a given

feedback sequence , the input distribution, corresponding
to the distribution on a path through the tree of depth , is

(18)

A code-tree of depth is a vector of symbols, where

(19)

and each element in the vector takes value from the alphabet
. We denote a random code-tree by and a realization

of the random code-tree by . The probability of a tree
is uniquely determined by

. For instance, consider the case of binary feed-
back, , and a tree of depth , for which

. A code-tree is a vector where is the
symbol sent at time , is the symbol sent at time
for feedback , and is the symbol sent at time
for feedback . Then

(20)

which is uniquely determined by . In general, for
a code-tree of depth , the following holds:

(21)

A code-tree for each message is randomly generated, and
for each message and feedback sequence the codeword

is unique. The decoder is made aware of the code-
trees for all messages. Assuming that the ML decoder knows
the channel in use, it estimates the message as follows:

(22)
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As shown in [17], since is uniquely determined by and
and since is a deterministic function of , we have the

equivalence

(23)

so the ML decoder can be described as

(24)

Let denote the average (over messages) error prob-
ability incurred when a code of block length is used over
channel with initial state . The following theorem bounds
the error probability uniformly in when the decoder
knows the channel in use. The theorem is proved in
Appendix B.

Theorem 2: For a compound FSC with initial state ,
input alphabet , and output alphabet , assuming that the de-
coder knows the channel in use, then there exists a code of rate

and block length , where and is chosen such
that , for which the error probability
of the ML decoder satisfies

(25)

for any , where

otherwise.
(26)

The result in Theorem 2 is shown by the use of a ran-
domly generated code-tree of depth for each message

. For every feedback sequence , the corresponding
path in the code-tree is generated by the input distribution

given by

(27)

where is the distribution that achieves the supremum in .
The random codebook used in proving Theorem 2 consists
of code-trees. Each code-tree in the codebook is a con-
catenated code-tree with depth consisting of code-trees,
each of depth . For a given feedback sequence (cor-
responding to a certain path in the concatenated code-tree) the
codeword is generated by . An example of
a concatenated code-tree is found in Fig. 2(c).

B. Achievability for Codewords Chosen Uniformly Over a Set

In this subsection, we show that the result in Theorem 2 im-
plies that the error probability can be similarly bounded when
codewords are chosen uniformly over a set. In other words,
we convert the random coding exponent given in Theorem 2,
where it is assumed that the codebook consists of concatenated
code-trees of depth in which each subtree of depth is
generated i.i.d. according to , to a new random coding ex-

ponent for which the concatenated code-trees in the codebook
are chosen uniformly from a set of concatenated code-trees.
This alternate type of random coding, where the concatenated
code-trees are chosen uniformly from a set, is the coding ap-
proach subsequently used to prove the existence of a universal
decoder.

We first introduce the notion of types on code-trees. Let
denote the concatenation of depth- code-trees

, where is defined in (19) and .
The type (or empirical probability distribution) of a concate-
nated code-tree is the relative proportion of occur-
rences of each code-tree . Equivalently,
multiplied by the type of indicates the number of
times each depth- code-tree from the set occurs in
the concatenated code-tree . Let denote
the set of types of concatenated code-trees of depth .

Let denote the average probability of error in-
curred when a code-tree of depth and rate drawn according
to a distribution is used over the channel

. We now prove the following result.

Lemma 3: Given , let
denote the distribution given by the

-fold product of , i.e.,

(28)

For a given type , let
denote the distribution that is uniform

over the set of concatenated code-trees of type . For
every distribution there exists a type

whose choice depends on and but
not on such that

(29)

for all , where
tends to as .

Proof: The proof follows the approach of [4, Lemma
3] except that our codebook consists of code-trees rather
than codewords; we include this proof for completeness
in describing the notion of types on code-trees. Given a
codebook of rate chosen according
to , we can construct a subcode of rate in the
following way. Let denote the type with the highest oc-
currence in . The number of types in is upper-bounded
by , so the number
of concatenated code-trees of type is lower-bounded by

. We construct the code by picking the
first concatenated code-trees of type . Since
is a subcode of , its average probability of error is
upper-bounded by the average probability of error of
times .

Conditioned on , the codewords in are mutually inde-
pendent and uniformly distributed over a set of concatenated
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code-trees of type . Since is a random code, the type is
also random, and let denote the distribution of . Pick a real-
ization of the type , denoted , that satisfies

. (This is possible since the number of
types is upper-bounded by .) Then

(30)

(31)

and

(32)

(33)

Combining this result with Theorem 2, we have that there ex-
ists a type such that when the codewords
are chosen uniformly from the type class of , given by the
distribution , the average probability of error is bounded as

(34)

(35)

It is then possible to choose such that for all

(36)

and

(37)

which implies that the probability of error is bounded as

(38)

C. Existence of a Universal Decoder

We next show that when a codebook is constructed by
choosing code-trees uniformly from a set, there exists a uni-
versal decoder for the family of finite-state channels with
feedback. This result is shown in the following four steps.

• We define the notion of a strongly separable family of
channels given by the causal conditioning distribution. The
notion of strong separability means that the family is well
approximated by a finite subset of the channels in .

• We prove that for strongly separable and code-trees
chosen uniformly from a set, there exists a universal
decoder.

• We describe the universal decoder which “merges” the ML
decoders tuned to a finite subset of the channels in .

• We show that the family of FSCs given by the causal con-
ditioning distribution is a strongly separable family.

Our approach follows precisely the approach of Feder and Lapi-
doth [12] except that our codebook consists of concatenated
code-trees (rather than codewords) and our channel is given by
the causal conditioning distribution.

Let denote a concatenated code-tree of depth
where

, and let denote a set of such code-trees,
. As described in Lemma 3, will

be the set of code-trees of type and
the code-tree for each message will be chosen uniformly
from this set, i.e., for any

. As described below, for a given output
sequence , ML decoding will correspond to comparing
the functions . Note that
comparing the functions is equivalent to
comparing the channel causal conditioning distributions since

as shown below.

(39)

(40)

(41)

(42)

In the above, holds since is a known, deterministic
function of and holds since the code-tree to-
gether with the feedback sequence uniquely determines the
channel input .

For notational convenience, the results below on the universal
decoder are stated for block length , where denotes a
code-tree of depth and denotes a set of such code-trees.
These results extend to the set of concatenated code-trees
and any exceptions are described in the text. Furthermore, we
introduce the following notation: denotes the ML decoder
tuned to channel ; denotes the average (over messages
and codebooks chosen uniformly from a set) error probability
when decoder is used over channel ; and denotes
the average (over messages) error probability when codebook
and decoder is used over channel .

Definition 1: A family of channels
defined over common input and output alphabets is

said to be strongly separable for the input code-tree sets ,
, if there exists some that upper-

bounds the error exponents in the family, i.e., that satisfies

(43)

such that for every and block length , there exists a
subexponential number (that may depend on and on )
of channels

(44)
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that well approximate any in the following sense: For
any there exists , so that

(45)

and

(46)

The notion of strong separability means that the family is
well-approximated by a finite subset of the
channels in the family. In order to prove that the family of fi-
nite-state channels with feedback is separable, we will need a
value that satisfies (43). The error probability is
lower-bounded by the probability that the output sequence
corresponding to two different messages is the same for a given
realization of the channel and code-tree. For a random code-tree
this is lower-bounded by a uniform memoryless distribution on
the channel output. Then and a suitable
candidate for is . The following theorem shows the
existence of a universal decoder for a strongly separable family
and input code-tree sets . The proof follows from the proof
of Theorem 2 in [12] except that we replace the channel con-
ditional distribution with the causal conditioning
distribution .

Theorem 4: If a family of channels defined over common fi-
nite-input and -output alphabets is strongly separable for
the input code-tree sets , then there exists a sequence of
rate- block-length- codes and a sequence of decoders

such that

(47)

The universal decoder in Theorem 4 is given by “merging”
the ML decoders tuned to channels , , that
are used to approximate the family . In order to describe the
merging of the ML decoders, we first present the ranking func-
tion . An ML decoder tuned to the channel can be described
by a ranking function defined as the mapping

(48)

where a rank of denotes the code-tree that is most
likely given output , rank denotes the second most likely
code-tree, and so on. For a given received sequence , every
code-tree in the set is assigned a rank. For code-trees

(49)

By (42), comparing the function is equiva-
lent to comparing the channel causal conditioning distribution

. Letting denote the ML decoder tuned to ,
we can describe the decoder as

iff

(50)

where represents the code-tree chosen for message
, . In the case that multiple code-trees maximize

the likelihood for a given , the ranking
function determines which code-tree (and, correspondingly,
message) is chosen by the decoder. In the case that the same
code-tree from is chosen for more than one message, the
ranks will be identical and a decoding error will occur. Note
that for a given output sequence , the decoder
will not always return the code-tree for which

, since the code-tree may or
may not be in the codebook.

Now consider a set of channels from the family , given
by . The codebooks for these channels
will be drawn randomly from the set . (Note that the same
set is used for all channels since, as shown in Lemma
3, the type is chosen independent of the
channel .) The ML decoders matched to these channels,
denoted , can be merged as shown in [12]. The
merged decoder is described by its ranking function
which is a mapping

(51)

that ranks all of the code-trees in for each output se-
quence . The ranking is established for a given
by assigning rank to the code-tree for which , rank

to the code-tree for which , rank to the code-
tree for which , and so on. After considering the
code-trees with rank for all , the code-trees with rank

in , are considered in order and added
into the ranking . The process continues until the code-
trees with rank for all have been assigned a rank
in . Throughout this process, if a code-tree has already
been ranked, it is simply skipped over, and its original (higher)
ranking is maintained. The rank of a code-tree in can be
upper-bounded according to its rank in as shown in [12]
and stated as follows:

(52)

This bound on the rank in implies another (looser) upper
bound.

(53)

Equation (53) can be used to upper-bound the error probability
when sequences output from the channel are decoded
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by the merged decoder . This is a key element of the proof
of Theorem 4. Finally, we state the following lemma, which
shows that the family of FSCs defined by the causal conditioning
distribution is strongly separable. Together with Theorem 4, this
establishes existence of a universal decoder for the problem we
consider, and completes our proof of achievability.

Lemma 5: The family of all causal-conditioning FSCs
defined over common finite input, output, and state alphabets

is strongly separable in the sense of Definition 1 for
any input code-tree sets .

Proof: See Appendix C.

V. COMPOUND GILBERT–ELLIOT CHANNEL

The Gilbert–Elliot channel is a widely used example of an
FSC. It has a state space consisting of “good” and “bad” states,

and in either of these two states, the channel
is a binary-symmetric channel (BSC). The Gilbert–Elliot
channel is a stationary and ergodic Markovian channel, i.e.,

is
satisfied and the Markov process described by
is a stationary and ergodic process. For a given channel , the
BSC crossover probability is given by for and

for . The channel state forms a stationary
Markov process with transition probabilities

(54)

(55)

For a given , the Gilbert–Elliot channel is equivalent to the
following additive noise channel:

(56)

where denotes modulo- addition and . Con-
ditioned on the state process , the noise forms a
Bernoulli process given by

(57)

For a given channel , the capacity of the Gilbert–Elliot channel
is found in [11] and is achieved by a uniform Bernoulli input
distribution.

The following example illustrates that the feedback capacity
of a channel with memory is in general not given by

(58)

as in the memoryless case.

Example 1: [4] Consider the example of a Gilbert–Elliot
channel where
for with feedback. The compound feedback
capacity of this channel is zero because assuming that we start
in the bad state, for any block length , the channel that corre-
sponds to will remain in the bad state for the duration of
the transmission with probability .
While the channel is in the bad state the probability of error

for decoding the message is positive with or without feedback,
hence no reliable communication is possible.

However, if we fix , then the capacity is at least
, because we can use a deep enough interleaver to make

the channel look like memoryless BSC with crossover proba-
bility .

A Gilbert–Elliot channel is described by the four parame-
ters and that lie between and and
for any fixed is continuous in those parame-
ters. The continuity of follows from the fact that

is continuous in the four parameters for any
, and also because (as shown in Appendix C in (111) and

(113)) we can express as

(59)

Let us denote by the closure of the family of channels.
Hence, instead of we can write since is com-
pact and since is continuous in . Now, let
denote the uniform distribution over . We have

(60)

where follows from the fact that
and follows from the fact that for any channel a uniform
distribution maximizes its capacity. Therefore, we can restrict
the maximization to the uniform distribution instead of

. Hence, feedback does not increase the capacity
of the compound Gilbert–Elliot channel. This result holds for
any family of FSCs for which the uniform input distribution
achieves the capacity of each channel in the family and is
closely related to Alajaji’s result [20] that feedback does not
increase the capacity of discrete additive noise channels.

VI. FEEDBACK CAPACITY IS POSITIVE IF AND ONLY IF

CAPACITY WITHOUT FEEDBACK IS POSITIVE

In this section, we show that the capacity of a compound
channel that consists of stationary and uniformly ergodic Mar-
kovian channels is positive if and only if it is positive for the
case that feedback is allowed. The intuition of this result comes
mainly from Lemma 9 that states that

(61)

The reason our proof is restricted to the family of channels that
are stationary and uniformly ergodic Markovian is because for
this family of channels we can show that the capacity is zero
only if for every finite ,

(62)
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A stationary and ergodic Markovian channel is an FSC where
the state of the channel is a stationary and ergodic Markov
process that is not influenced by the channel input and output.
In other words, the conditional probability of the channel output
and state given the input and previous state is given by

(63)

where the Markov process, described by the transition proba-
bility , is stationary and ergodic. We say that the
family of channels is uniformly ergodic if all channels in the
family are ergodic and for all there exists an such
that for all

(64)

where is the stationary (equilibrium) distribution of the
state for channel . We define the sequence as

(65)

Theorem 6: The channel capacity of a family of stationary
and uniformly ergodic Markovian channels is positive if and
only if the feedback capacity of the same family is positive.

Since a memoryless channel is an FSC with only one state,
the theorem implies that the feedback capacity of a memoryless
compound channel is positive if and only if it is positive without
feedback. The theorem also implies that for a stationary and er-
godic point-to-point channel (not compound), feedback does not
increase the capacity for cases that the capacity without feed-
back is zero. The stationarity of the channels in Theorem 6 is
not necessary since according to our achievability definition, if
a rate is less than the capacity, it is achievable regardless of the
initial state. We assume stationarity here in order to simplify the
proofs. The uniform ergodicity is essential to the proof that is
provided here but there are also other family of channels that
have this property. For instance, for the regular point-to-point
Gaussian channel this result can be concluded from factor two
result that claims that feedback at most doubles capacity (cf.,
[21]–[23]).

The proof of Theorem 6 is based on the following lemmas. We
refer the reader to Appendix D for the proofs of these lemmas.

Lemma 7: For any channel with feedback, if the input to the
channel is distributed according to

then

(66)

Lemma 8: The feedback capacity of a family of stationary
and uniformly ergodic Markovian channels is

(67)

The limit of exists and is equal to .

Lemma 9: Let the input distribution to an arbitrary channel
be uniform over the input , i.e., . If under this
input distribution , then the channel has the

property that for all
and this implies that

(68)

Proof of Theorem 6: Let denote the capacity without
feedback and denote the capacity with feedback.

is trivial. To show that
we use Lemma 8 to conclude that since then

and therefore for any

(69)

In order to conclude the proof, we show that if (69) holds,
then it also holds when we replace by . Since

is continuous in and since the set
is a subset of the unit simplex which is bounded, then the

infimum over the set can be replaced by the minimum over
the closure of the set . Since (69) holds also for the case that

is restricted to be the uniform distribution, then Lemma 9
implies that the channel that satisfies for
all is in the closure of and therefore

(70)

VII. FEEDBACK CAPACITY OF THE MEMORYLESS

COMPOUND CHANNEL

Recall that the capacity of the memoryless compound channel
(without feedback) is [1], [2]

(71)

Wolfowitz also showed [3] that when is known to the encoder,
the capacity of the memoryless compound channel is given by
switching the and the , i.e.,

(72)

In this section, we make use of Theorem 1 to show that (72)
is equal to the feedback capacity of the memoryless compound
channel.

A. Finite Family of Memoryless Channels

Based on Wolfowitz’s result it is straightforward to show that
if the family of memoryless channels is finite, , then
the feedback capacity of the compound channel is given by
switching the and the

(73)

This result can be achieved in two steps. Given a probability of
error , first, the encoder will use uses of the channels
in order to estimate the channel with probability of error less
than . Since the number of channels is finite such an exists.
In the second step, the encoder will use a coding scheme with
block length adapted for the estimated channel to obtain an
error probability that is smaller than . Hence, we get that the
total error of the code of length is smaller than .
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B. Arbitrary Family of Memoryless Channels

For the case that the number of channels is infinite, the ar-
gument above does not hold, since there is no guarantee that
for any there exists a block length such that an

code achieves an error less than for all channels in
the family.2 However, we are able to establish the feedback ca-
pacity using our capacity theorem for the compound FSC, and
the result is stated in the following theorem.

Theorem 10: The feedback capacity of the memoryless com-
pound channel is

(74)

Theorem 10 is a direct result of Theorem 1 and the following
lemma.

Lemma 11: For a family of memoryless channels we have

(75)

The proof of Lemma 11 requires two lemmas, which we
state below. The proofs of Lemmas 12 and 13 are found in
Appendix E.

Lemma 12: Let and
. For two conditional dis-

tributions and with

(76)

there exists an upper bound

(77)

where as .

Lemma 13: For any , any , and any channel
, there exists an such that we can choose a channel

as a function of inputs and outputs such that

(78)

where denotes the distance between the estimated channel
and the actual channel , i.e.,

(79)

2In a private communication with A. Tchamkerten [24], it was suggested that
the feedback capacity of the memoryless compound channel with an infinite
family can also be established using the results in [12] (which show that the
family of all discrete memoryless channels is strongly separable). The family is
finitely quantized, a training scheme is used to estimate the appropriate quanti-
zation cell, the coding is performed according to the representative channel of
that cell, and the decoding is done universally as in [12].

Proof of Lemma 11: We prove the equality by showing the
following two inequalities hold:

(80)

(81)

where as . Inequality (80) is proved by the fact
that is less than or equal to and by the fact that
for a memoryless channel an i.i.d input maximizes the directed
information

(82)

In order to prove inequality (81) we consider the following
input distribution. The first inputs are used to estimate the
channel and we denote the estimated channel as . After the
first inputs, the input distribution is the i.i.d. distribution that
maximizes the mutual information between the input and the
output for the channel . According to Lemma 13, we can esti-
mate the channel to within an distance smaller than
with probability greater than , where . According
to Lemma 12, by adjusting the input distribution to a channel
that is at distance less than from the actual channel in use,
we lose an amount that goes to zero as . Under the input
distribution described above we have the following sequence of
inequalities:

(83)
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where

(a) and (f) follow from a change of notation.

(b) follows the fact that we sum fewer elements. The pa-
rameter is a function of and and is
determined according to Lemma 13. For brevity of no-
tation we denote simply as .

(c) follows from the fact that

(d) follows from the fact that the estimated channel is a
random variable denoted as and it is a deterministic
function of as described in Lemma 13.

(e) follows by restricting the input distribution
to one that uses first uses of the channel to estimate
as described in Lemma 13, and then uses an i.i.d. distri-
bution, i.e., for

(g) follows from the fact that with probability we have
that the distance and by
applying Lemma 12, which states that for this case we
lose where as .

(h) follows from the fact that is identical to
.

Finally, since is fixed for any then we can
achieve any value below for
large . Therefore inequality (81) holds.

VIII. CONCLUSION

The compound channel is a simple model for communication
under channel uncertainty. The original work on the memory-
less compound channel without feedback characterizes the ca-
pacity [1], [2], which is less than the capacity of each channel
in the family, but the reliability function remains unknown. An
adaptive approach to using feedback on an unknown memory-
less channel is proposed in [19], where coding schemes that
universally achieve the reliability function (the Burnashev error
exponent) for certain families of channels (e.g., for a family
of BSCs) are provided. By using the variable-length coding
approach in [19], the capacity of the channel in use can be
achieved. In our work, we consider the use of fixed-length block
codes and aim to ensure reliability for every channel in the
family; as a result, our capacity is limited by the infimum of
the capacities of the channels in the family. For the compound
channel with memory that we consider, we have characterized
an achievable random coding exponent, but the reliability func-
tion remains unknown.

The encoding and decoding schemes used in proving our
results have a number of practical limitations, including the
memory requirements for storing codebooks consisting of
concatenated code-trees at both the transmitter and receiver as
well as the complexity involved in merging the ML decoders

tuned to a number of channels that is polynomial in the block
length. As such, our work motivates a search for more practical
schemes for feedback communication over the compound
channel with memory.

APPENDIX A
PROOF OF PROPOSITION 1

The proposition is nearly identical to [4, Proposition 1], ex-
cept that we replace by
and by using results from [17] on directed
mutual information and causal conditioning. We first prove the
following lemma, which is needed in the proof of Proposition 1.
The lemma shows that directed information is uniformly contin-
uous in . For our time-invariant deterministic feed-
back model, , and the lemma
holds for any such feedback.

Lemma 14: (Uniform continuity of directed information) If
and are two causal conditioning distri-

butions such that

(84)
then for a fixed

(85)

Proof: Directed information can be expressed as a dif-
ference between two terms

. Let us consider the total variation of
.

(86)

By invoking the continuity lemma of entropy [25, p, 33, The-
orem 2.7], we get

(87)
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where and are the entropies induced by
and , respectively. Now let us consider the

difference :

(88)

By combining inequalities (87) and (88) we conclude the proof
of the lemma.

By Lemma 14, is uniformly continuous
in . Since is a member of a compact
set, the maximum over is attained and is well-
defined.

Next, we invoke a result similar to [4, Lemma 5]. Given in-
tegers and such that , input sequences

, and with corresponding
output sequences and , let be defined as

Then

This result follows from [4, Lemma 5] and [17, Lemma 4].

Finally, if we let and achieve
the maximizations in and , respectively, then we have

or equivalently

Clearly, , and by the convergence
of a super-additive sequence, .

APPENDIX B
PROOF OF THEOREM 2

The theorem is proved through a collection of results in [4]
and [17]. Let denote the error probability of the ML
decoder when a random code-tree of block length is used at
the encoder

(89)

The following corollary to [17, Theorem 9] bounds the expected
value , where the expectation is with respect to the
randomness in the code. The result holds for any initial state .

Corollary 15: Suppose that an arbitrary message
enters the encoder with feedback and that ML decoding

tuned to is employed. Then the average probability of de-
coding error over the ensemble of codes is bounded, for any
choice of , by

(90)

Proof: Identical to [17, Proof of Theorem 9] except that
is replaced by .

Next, we let denote the average (over messages)
error probability incurred when a code-tree of block length
is used over channel with initial state . Using Corollary 15,
we can bound as in the following Corollary to [17,
Theorem 10].

Corollary 16: For a compound FSC with states, where
the codewords are drawn independently according to a given
distribution and ML decoding tuned to

is employed, the average probability of error for
any initial state , channel , and is
bounded as

(91)
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where

and

(92)

Proof: Identical to [17, Proof of Theorem 10] except for:
(i) we replace by , (ii) we con-
sider the error averaged over all messages (rather than the error
for an arbitrary message ), and (iii) we assume a fixed input
distribution rather than minimizing the error prob-
ability over all .

The two results stated above provide us with a bound on the
error probability, however, the bound depends on the channel

in use. Instead, we would like to bound the error probability
uniformly over the class . To do so, we cite the following two
lemmas from previous work.

Lemma 17: Given and
, let and define

(93)

Then as defined in Corollary 16 satisfies

(94)

Proof: Identical to[17, Proof of Lemma 12] except that we
replace by .

Lemma 18:

(95)

Proof: The lemma follows from [4, Lemma 2]), which
holds for a channel and input distribution satisfying

and

We now follow the technique in [4] by using Lemmas 17
and 18 to bound the error probability independent of both
and . For a given rate , let and pick
in such a way that . Then

(96)

Let be the input distribution that
achieves the supremum in , i.e.,

(97)

Next, we use to define a distribution
for a sequence of length , , as

follows:

(98)

(99)

For this new input distribution and sequence of length ,
we can bound the error exponent

(100)

as follows:

(101)

(102)

(103)

(104)

(105)

where is due to Lemma 17, follows from Lemma
18, and follows from (97). As in [4], we can max-
imize the lower bound on the error exponent by setting

. With this choice of we have

otherwise.
(106)

Theorem 2 follows by combining (106) with the result in Corol-
lary 16 (for block length ).

APPENDIX C
PROOF OF LEMMA 5

To prove the lemma, we must first establish two equal-
ities relating the channel causal conditioning distribu-
tion to the channel probability law

. The following set of equalities hold.

(107)

(108)
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(109)

(110)

where is due to [17, Lemma 2] and follows from our
assumption that the input distribution does not depend on the
state sequence . By the chain rule for causal conditioning
[17, Lemma 1], (110) implies that

(111)

Also

(112)

(113)

where follows from the definition of the compound finite-
state channel. Having established (111) and (113), Lemma 5 fol-
lows immediately from [12, Lemma 12], where the conditional
probability is quantized and the quantiza-
tion cells are represented by channels . The
proof of our result differs only in that the upper bound on the
error exponents in the family is given by .

APPENDIX D
PROOF OF LEMMAS 7, 8, AND 9

The proof of Lemma 7 is based on an identity that is given by
Kim in [18, eq. (9)]

(114)

Proof of Lemma 7: Using Kim’s identity we have

(115)

Now we bound the sum in the last equality

(116)

where follows from the assumption that

Proof of Lemma 8: The proof consists of two parts. In the
first part, we show that is sup-additive and there-
fore . In the second
part, we prove the capacity of the family of stationary and uni-
formly ergodic Markovian channels by showing that

(117)

where is defined in (11).
First part: We show that the sequence is

sup-additive and therefore the limit exists. Let integers and
be such that and denote input distributions

, and in short-
ened forms as and . We have

(118)
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where follows by restricting the maximization to causal con-
ditioning probabilities of the product form

follows from Lemma 7, and follows from stationarity of
the channel.

Second Part: We show that

Due to Lemma 4 in [17]

therefore, it is enough to prove that

(119)

The difference in (119) is always positive, hence, it is enough
to upper-bound it by an expression that goes to zero as .
Again by Lemma 4 in [17], we can bound the second term in
(119)

(120)

where holds for every and is due to Lemma 7 and
holds by the stationarity of the channel. Hence, (120) implies
that we can bound the difference

(121)

Inequality is due to the fact that
and due to (120). Inequality holds since

for a uniformly ergodic family of channels,

for all implies that for any input distribu-
tion and any channel

After dividing (121) by , and since can be arbitrarily small
and is fixed for a given , then (119) holds.

Proof of Lemma 9: From the assumption of the lemma we
have

(122)

By assuming a uniform input distribution,
and by using the fact that if the Kullback–Leibler divergence

is zero, then for
all , we get that (122) implies that
for all . It follows that

(123)

(124)

APPENDIX E
PROOF OF LEMMAS 12 AND 13

Proof of Lemma 12: The proof is based on the fact that
is uniformly continuous in , namely, for

any

(125)
where as . (The uniform continuity of mutual
information is a straightforward result of the uniform continuity
of entropy [25, Theorem 2.7].) We have

(126)

where the last inequality is due to (125). We conclude the proof
by bounding the last term in (126) by , which implies that
if we let then (77) holds.

(127)

Similarly, we have

and therefore

(128)
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APPENDIX F
PROOF OF LEMMA 13

The channel is chosen by finding the conditional em-
pirical distribution induced by an input sequence consisting of

copies of each symbol of the alphabet . We estimate the
conditional distribution separately for each . We
insert for uses of the channel and we estimate
the channel distribution when the input is as the type of
the output which is denoted as . From Sanov’s theorem
(cf. [26, Theorem 12.4.1]) we have that the probability that type

will be at -distance larger than from
is upper-bounded by

(129)

where denotes
the divergence between the two distributions. Using Pinsker’s
inequality [26, Lemma 12.6.1] we have that

(130)

and therefore

(131)
The term goes to zero as goes to
infinity for and, therefore, for any we can find

an such that . Finally, we have

(132)

where the inequality on the right is due to the union bound.
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