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MIMO Gaussian Broadcast Channels With
Common, Private, and Confidential Messages

Ziv Goldfeld , Member, IEEE, and Haim H. Permuter , Senior Member, IEEE

Abstract— The two-user multiple-input multiple-output
Gaussian broadcast channel with common, private, and
confidential messages is considered. The transmitter sends
a common message to both users, a confidential message to
the User 1 and a private (non-confidential) message to the
User 2. The secrecy-capacity region is characterized by showing
that certain inner and outer bounds coincide and that the
boundary points are achieved by Gaussian inputs, which enables
the development of a tight converse. The proof relies on the
factorization of upper concave envelopes and a variant of
dirty-paper coding (DPC). It is shown that the entire region
is exhausted by using DPC to cancel out the signal of the
non-confidential message at Receiver 1, thus making DPC
against the signal of the confidential message unnecessary.
A numerical example illustrates the secrecy-capacity results.

Index Terms— Additive Gaussian channel, broadcast channel,
dirty-paper coding multiple-input multiple-output (MIMO) com-
munications, physical-layer security, upper concave envelopes.

I. INTRODUCTION

ADDITIVE Gaussian channels are a common model for
wireless communication, whose open nature makes it

vulnerable to a variety of security threats, such as eaves-
dropping. However, eavesdroppers are not always a malicious
entity from which all transmissions are concealed. Rather,
a legitimate recipient of one message may serve as an eaves-
dropper for other messages. We encapsulate this notion in
a two-user multiple-input multiple-output (MIMO) Gaussian
broadcast channel (BC) with common, private and confidential
messages (Fig. 1). The common message M0 is intended to
both users, while M1 and M2 are private messages that are
sent to User 1 and User 2, respectively. Furthermore, M1 is
confidential and is kept secret from User 2. Many real-life
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Fig. 1. MIMO Gaussian BC.

scenarios fall within this framework. One such example is a
banking site that simultaneously: (i) broadcasts an advertise-
ment to all online users (modeled by M0); (ii) offers public
information (such as material on different banking programs,
reports, forecasts, etc.) that is available only to users that are
interested in it (modeled by the private message M2); and
(iii) provides an online banking service, by which users can
access their account and perform transactions (this confidential
information is modeled by M1). Furthermore, 5th generation
(5G) mobile technology [1] puts significant emphasis on
advanced MIMO capabilities and multiuser communication.
In particular, schemes supporting multiple users exchanging
various kinds of information over a MIMO communication
system (and their fundamental limits) are of great interest.
The studied MIMO Gaussian BC is an instance of a system
where these aspects are jointly incorporated.

In recent years, information-theoretic security over MIMO
communication systems has been an active field of research
(see [2] for a recent survey of progress in this area). Most
noticeably, the secrecy-capacity of the Gaussian wiretap chan-
nel (WTC) was characterized in [3]–[5] for the multiple-
input single-output scenario, and in [6]–[10] for the MIMO
case. The Gaussian MIMO WTC with a common message
was studied in [11]. In [12], the secrecy-capacity region for
the setting with a degraded message set and an external
eavesdropper (from which all messages are concealed) was
derived. The MIMO Gaussian BC with confidential messages,
in which the private message to each user is kept secret from
the opposite user, without and with a common message, was
solved in [13] and [14], respectively. As the capacity region
of the MIMO Gaussian BC without secrecy requirements was
derived in [15] with no common message present, and in [16]
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TABLE I

MIMO GAUSSIAN BCS WITH/WITHOUT A COMMON MESSAGE AND WHERE NONE/SOME/ALL OF
THE PRIVATE MESSAGES ARE SECRET - SUMMARY OF RESULTS

with a common message, this work settles the two remaining
scenarios concerning secrecy. More specifically, focusing on
the two-user MIMO Gaussian BC with or without a common
message and where both, either or neither of the private
messages are secret, we derive the secrecy-capacity regions
of the only two instances that remained unsolved until now.
A pointer to each past result and the contribution of this work
are found in Table I.

Up until the more recent work of Geng and Nair [16],
all the aforementioned results established the optimality of
Gaussian inputs based on channel enhancement arguments,
originally used in [15] to characterize the private message
capacity region of the MIMO Gaussian BC (without secrecy
constraints). In a nutshell, the idea of [15] was to approximate
the actual BC using enhanced BCs, for which the entropy
power inequality applies and is invoked to establish the opti-
mality of Gaussian inputs (similarly to the proof for the scalar
case by Bergmans [17]). Continuity arguments are then used
to characterize the capacity region of the MIMO Gaussian
BC of interest. The limitation of the channel enhancement
technique seems to be the difficulty in generalizing it to
account for both private and common messages. Attempted
adaptations of this technique to scenarios comprising common
and private messages include, e.g., [18] and [19], where
generally unmatching inner and outer bounds or constant gap-
from-capacity results were derived for the MIMO Gaussian
BC without and with security requirements, respectively.

Our goal is to fully characterize the secrecy-capacity region
of the MIMO Gaussian BC with common, private and con-
fidential messages and show that it is attained by Gaussian
inputs. Since channel enhancement arguments are insufficient
for this purpose, we adopt the approach of [16] for proving
the optimality of Gaussians via factorization of upper concave
envelopes (UCEs). We start by characterizing the secrecy-
capacity region under an input covariance constraint for the
setting with private and confidential messages only (i.e.,
when no common message is present). The derivation first
describes the boundary points of a certain outer bound on
the secrecy-capacity region as an UCE of a function of the
input distribution. With this result at hand, we show that if
this UCE satisfies a specific factorization property, then it is
maximized by a Gaussian input distribution. Then, using an

adaptation of dirty-paper coding (DPC) [20], we establish the
equivalence of the outer bound to a particular inner bound,
thus characterizing the secrecy-capacity region. Interestingly,
optimality is achieved by using DPC to cancel out the signal
of the non-confidential message M2 at Receiver 1 only. The
other variant, i.e., DPC against the signal of the confidential
message M1, turns out to be unnecessary. This is in contrast
to the case without secrecy requirements [16], in which both
variants of DPC are necessary to exhaust the entire region.

We then focus on the MIMO Gaussian BC with common,
private and confidential messages (Fig. 1) and derive our main
result by characterizing its secrecy-capacity region. Although
this is a generalization of the problem without a common
message, the secrecy-capacity of the latter setting is solved
first. In doing so, we use the result without a common message
to show that Gaussian inputs are optimal for a certain portion
of the region with a common message. The rest of the region is
characterized by extending the tools from [16] and introducing
the notion of a double-nested UCE. Gaussian inputs once
again are shown to attain optimality. Finally, we visualize our
results by a numerical example. Since the obtained regions
are described as non-convex matrix optimization problems,
we convert them into a computationally efficient form by
relying on matrix decomposition properties from [21].

Organization: The UCE factorization method introduced
in [16] and further developed in this work relies on rather
heavy machinery and many technical functional analysis
results. The proofs of our main secrecy-capacity theorems
(i.e., without and with a common message) frequently refer
to these auxiliary results while also relying on additional
information-theoretic arguments (e.g., DPC). In structuring
this paper, it was important for us to distill the information-
theoretic arguments from the functional analysis aspects of
this work for two main reasons. First, this would ease the flow
trough the information-theoretic proofs and highlight the usage
of the UCE factorization method for showing that Gaussian
inputs achieve capacity. Second, by aggregating the machinery
behind this method in a separate section we hope to facili-
tate its application to additional research problems in future
work.

In accordance to the above, the rest of the paper is organized
as follows. Section II gives definitions and describes the
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MIMO Gaussian BC with common, private and confidential
messages. In Section III we state our main results: the secrecy-
capacity regions of the considered BC without and with a
common message, given in Theorems 1 and 2, respectively.
Discussions of these results and a numerical example to
illustrate the obtained regions are also given in Section III.
Section IV presents the various definitions and properties
related to UCEs used throughout this work (with proofs rele-
gated to Section VI). Section V contains the proofs of our main
secrecy-capacity results based on the technical background
supplied in Section IV. Finally, Section VII summarizes the
main results and insights of this work.

II. NOTATION AND PRELIMINARIES

A. Notation

We use the following notations. The set of natural numbers
(which does not include 0) is denoted by N, while R are
the reals. We further define R+ � {x ∈ R|x ≥ 0}. Given
two real numbers a, b, we denote by [a : b] the set of
integers

{
n ∈ N

∣
∣�a� ≤ n ≤ �b�}; when a = 1 we use the

shorthand [b]. Calligraphic letters denote sets, e.g., X , while
|X | stands for the cardinality of X . X n denotes the n-fold
Cartesian product of X . An element of X n is denoted by
xn = (x1, x2, . . . , xn); whenever the dimension n is clear from
the context, vectors (or sequences) are denoted by boldface
letters, e.g., x. The transpose and the Euclidean norm of x are
denoted by x	 and ‖x‖, respectively. Random variables are
denoted by uppercase letters, e.g., X , with similar conventions
for random vectors. All the random variables considered in this
work are real valued.

Probability density functions (PDFs) are denoted by the
lowercase letters p or q , with a subscript that identifies the
random variable and its possible conditioning. For example,
for two jointly continuous random vectors X and Y, let pX,
pX,Y and pX|Y denote, respectively, the PDF of X, the joint
PDF of (X, Y) and the conditional PDF of X given Y.
Expressions such as pX,Y = pX pY |X are to be understood
pointwise, i.e., pX,Y (x, y) = pX (x)pY |X(y|x), for all (x, y) ∈
X × Y . Accordingly, when three random variables X , Y and
Z satisfy pX |Y,Z = pX |Y , they form a Markov chain, which
we denote by X −Y − Z . The subscripts of a PDF are omitted
if its arguments are lowercase versions of the corresponding
random variables. General (i.e., not necessarily continuous)
probability distributions are denoted by the uppercase letters
P and Q, with conventions similar to those used for PDFs. The
expectation of a random variable X is EX . When a random
variable X is normally distributed we write X ∼ N (μ, σ 2),
where μ = EX is the expectation of X and σ 2 = var(X) is
its variance. Similarly, an n-dimensional Gaussian distribution
of dimension is defined by the expectation μ = EX ∈ R

n

and the covariance matrix K = E
[
(X − μ)(X − μ)	

]
, for

which we write X ∼ N (μ, K). Generally, non-italic capital
letters, e.g., A, denote matrices. We use A � 0 to indicate
that a matrix A is positive semi-definite, while A  B denotes
“less than or equal to” in the positive semi-definite ordering,
i.e., B − A � 0. The determinant of a square matrix A is
designated by |A|.

Definition 1 (Upper Concave Envelope): Let f : D → R

be a function defined on a convex set D. The UCE C f : D →
R of f is the pointwise smallest concave function such that(
C f
)
(x) ≥ f (x), ∀x ∈ D.

Another representation of the UCE C f of f relies on the
supporting hyperplanes of f . Namely, for any x ∈ D, we have(
C f
)
(x) = sup

V : EV =x
E f (V ).

B. Problem Definition

The outputs of a MIMO Gaussian BC at the i th channel
use are:

Y j (i) = G j X(i) + Z j (i), j = 1, 2, i ∈ [n], (1)

where G1, G2 ∈ R
t×t are channel gain matrices (assumed

to be known to all parties),
{
Z j (i)

}
i∈[n], for j = 1, 2,

is an independent and identically distributed (i.i.d.) sequence
of Gaussian random vectors taking values in R

t×1. For
each j = 1, 2 and i ∈ [n], the elements of Z j (i) =[

Z j,1(i) Z j,2(i) . . . Z j,t(i)
]	

are also i.i.d. Gaussian random
variables, whose expected values and variance are specified by
the parameters of the normal distribution of Z j (i). The input
sequence

{
X(i)

}
i∈[n] is subject to the covariance constraint

1

n

n∑

i=1

E

[
X(i)X(i)	

]
 K, (2)

where K � 0.
Remark 1 (Assumptions): We make the following assump-

tions on the channel gain matrices and the noise statistics:

1) G1 and G2 are square and invertible. The analysis
in this work relies on showing that certain inner and
outer bounds on the secrecy-capacity region coincide.
These bounds are characterized in terms of mutual
information terms between the channel input (or some
auxiliary random variables) and the channel outputs.
The mutual information terms, and hence the inner and
outer bounds, are continuous functions of the channel
gain matrices. For square matrices, recall that the set
of invertible matrices is a dense open set in the set of all
t × t matrices. Therefore, by continuity of the bounds,
the inner and outer bounds coincide for all channel gain
matrices. If G1 and G2 are not square, the singular
value decomposition (SVD) allows rewriting the original
MIMO BC as a MIMO BC with square gain matrices
(of size corresponding to the number of transmitting
antennas) using only reversible manipulations. These
manipulations have no effect on the secrecy-capacity
region of the channel (see, e.g., [15, Sec. 5]).

2) For each j = 1, 2, the Gaussian noise vectors,{
Z j (i)

}
i∈[n], are i.i.d. according to N (0, I), where I

is the t × t-identity matrix. This assumption is without
loss of generality due to the following reasons: First,
the mean of the Gaussian noise does not affect the
capacity region. Second, when the covariance matrix is
invertible, the noises can be whitened by multiplying (1)
by another invertible matrix. On the other hand, if the
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covariance matrix is non-invertible, the communication
scenario degenerates since a suitable linear transfor-
mation converts the Gaussian channel into a noiseless
channel with infinite capacity.

We study the MIMO Gaussian BC with common, private
and confidential messages (Fig. 1). The sender communicates
three messages (M0, M1, M2) over the MIMO Gaussian BC
from (1). M0 is a common message that is intended to
both users, while M j , for j = 1, 2, is delivered to user j
only. The receivers are to recover their intended messages
with arbitrarily small error probability. Moreover, M1 is a
confidential message that is to be kept secret from User 2,
which is formally described by the weak-secrecy requirement

1

n
I (M1; Yn

2) −−−→
n→∞ 0, (3)

where n is the number of channel uses. In (3), the notation

Yn
2 �

[
Y2(1) Y2(2) . . . Y2(n)

]	
is used, where for each

i ∈ [n], Y2(i) is the output vector (taking values in R
t )

observed by User 2 at the i th channel instance. For any
covariance constraint K � 0, the secrecy-capacity region CK
is the closure of all achievable rate triples (R0, R1, R2) ∈ R

3+,
where achievability is defined in a standard manner (see,
e.g., [22]).

Remark 2 (Weak Versus Strong Secrecy): We set up the
problem in term of the weak-secrecy metric (3), merely
because the general inner and outer bounds we use [23]
were originally proven under this paradigm.1 Nonetheless,
the results from [23] are readily upgraded to strong secrecy
using the approach of Maurer and Wolf from [24], while
accounting for the channel being continuous in a manner simi-
lar to [25]. Since the focus of this paper is on the optimality of
Gaussian inputs and computable secrecy-capacity expressions,
we do not dwell on the employed notion of security.

III. SECRECY-CAPACITY RESULTS

A. MIMO Gaussian BCs With Private and Confidential
Messages

The MIMO Gaussian BC with private and confidential
messages but without a common message is defined as in
Section II-B, while setting R0 = 0. For any covariance
constraint K � 0, let ĈK be the corresponding secrecy-capacity
region, and for any 0  K�  K set the following shorthand
notations:

r̂1(K�) � 1

2
log

∣∣
∣
∣
∣
I + G1K�G	

1

I + G2K�G	
2

∣∣
∣
∣
∣

(4a)

r̂2(K
�) � 1

2
log

∣
∣
∣
∣
∣

I + G2KG	
2

I + G2K�G	
2

∣
∣
∣
∣
∣
. (4b)

1The work [23] derived bounds on the admissible rate region of a BC with
privacy leakage constraints. Zero leakage corresponds to secrecy, but since
leakage can only be defined in terms of rate the resulting notion of security
is weak-secrecy.

Define also

ĈK(K�) �

⎧
⎪⎨

⎪⎩
(R1, R2) ∈ R

2+

∣
∣
∣∣
∣
∣
∣

R1 ≤ r̂1(K�)
R2 ≤ r̂2(K�)

⎫
⎪⎬

⎪⎭
. (5)

The following theorem characterizes ĈK.
Theorem 1 (Secrecy-Capacity Without Common Message):

The secrecy-capacity region ĈK of the MIMO Gaussian BC
with private and confidential messages under the covariance
constraint (2) is

ĈK =
⋃

0K�K

ĈK(K�). (6)

The proof of Theorem 1 (given in Section V-A) shows that
certain inner and outer bounds of the secrecy-capacity region
coincide, and that Gaussian inputs are optimal. First, we show
that the boundary points of the outer bound are an UCE of a
function of the input distribution. Based on some properties
of UCEs (see Sections IV-A and IV-B) we deduce that a
Gaussian input distribution maximizes the considered UCE.
The secrecy-capacity region is then characterized by evaluating
the boundary points of the inner bound under a Gaussian input
vector and showing that they coincide with those of the outer
bound.

Remark 3 (Interpretation of Optimal Secrecy Rates): The
right-hand side (RHS) of (4a) is the secrecy-capacity of
the Gaussian MIMO WTC with input covariance K�, where
User 1 serves as the legitimate party and User 2 as the
eavesdropper. The RHS of (4b) is the capacity of the MIMO
Gaussian point-to-point channel with input covariance K−K�

and noise covariance I + K�. Thus, M1 being confidential
forces User 1 to treat the second user as an eavesdropper.
Then, the transmission rate of M2 (to User 2) is maximized
by consuming the remaining power, while treating the signal of
the first user as noise. The optimization over K� corresponds
to different choices of user prioritization.

Remark 4 (Relation to Dirty-Paper Coding): As evident
from the proof of Theorem 1 (see Proposition 8 in
Section V-A), the entire secrecy-capacity region ĈK is achieved
by using DPC to cancel out the signal of the non-confidential
message M2 at Receiver 1 only. The other variant, i.e., DPC
against the signal of the confidential message M1 at Receiver
2, is unnecessary. This is in contrast to the situation without a
secrecy requirement on M1 (namely, the private message BC),
for which the capacity region is exhausted by taking the convex
hull of both variants (DPC against M1 and DPC against M2).

Remark 5 (Relation to Common Message Case):
Theorem 1 is a special case of the secrecy-capacity
region of the MIMO Gaussian BC with common, private and
confidential messages CK (given in Theorem 2). Nonetheless,
we separately state and prove Theorem 1 since it is used as
an auxiliary result for the proof of Theorem 2, as it implies
the optimality of Gaussian inputs for a certain portion of CK.
More specifically, when the private message rate R2 is larger
than the common message rate R0, the optimizing distribution
of CK coincides with that of ĈK; Theorem 1 shows that this
distribution is Gaussian.
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As a corollary of Theorem 1, we characterize the secrecy-
capacity region under the average total power constraint. This
is a simple consequence of [15, Lemma 1].

Corollary 1 (Average Total Power Constraint): The
secrecy-capacity region of the MIMO Gaussian BC with
private and confidential messages under the average total
power constraint

1

n

n∑

i=1

∥
∥X(i)

∥
∥2 ≤ P, (7a)

is given by

ĈP =
⋃

0K: tr(K)≤P

ĈK. (7b)

Remark 6 (Computing Secrecy-Capacity Region): In gen-
eral, it is hard to compute (6) and (7b) as they
involve non-convex matrix optimization problems. Nonetheless,
in Section III-C we show how to convert (6) and (7b) into a
computationally efficient form based on matrix decomposition
properties from [21]. The simplified optimization problem is
then used to illustrate the secrecy-capacity region under an
average total power constraint ĈP on a numerical example.

B. MIMO Gaussian BCs With Common, Private and
Confidential Messages

To state the secrecy-capacity region CK of the MIMO
Gaussian BC with common, private and confidential messages
as defined in Section II-B, we define

r ( j )
0 (K1, K2) � 1

2
log

∣
∣
∣
∣
∣

I + G j KG	
j

I + G j (K1+K2)G	
j

∣
∣
∣
∣
∣
, j = 1, 2 (8a)

r1(K2) � 1

2
log

∣∣
∣
∣
∣
I + G1K2G	

1

I + G2K2G	
2

∣∣
∣
∣
∣

(8b)

r2(K1, K2) � 1

2
log

∣∣
∣
∣
∣
I + G2(K1 + K2)G	

2

I + G2K2G	
2

∣∣
∣
∣
∣
, (8c)

and r0(K1, K2) � min
{
r (1)

0 (K1, K2), r (2)
0 (K1, K2)

}
, and set

CK(K1, K2) �

⎧
⎪⎪⎨

⎪⎪⎩
(R0, R1, R2) ∈ R

3+

∣
∣
∣
∣
∣∣
∣
∣

R0 ≤ r0(K1, K2)
R1 ≤ r1(K2)
R2 ≤ r2(K1, K2)

⎫
⎪⎪⎬

⎪⎪⎭
. (9)

Theorem 2 (Secrecy-Capacity With Common Message):
The secrecy-capacity region CK of the MIMO Gaussian BC
with common, private and confidential messages under the
covariance constraint (2) is

CK =
⋃

0K1,K2:
K1+K2K

CK(K1, K2). (10)

Theorem 2 is proven in Section V-B.
Remark 7 (Interpretation of Optimal Secrecy Rates):

Our interpretation of the structure of CK is reminiscent of
Remark 3. First, (8b) indicates that User 1 achieves rates up to
the secrecy-capacity of the MIMO Gaussian WTC with input
covariance K2. The 2nd user treats this signal as an additive

Gaussian noise when decoding its private message M2,
which is transmitted using another (independent) Gaussian
signal with covariance K1 (see (8c)). According to (8a),
the remaining portion of the total covariance matrix, that is,
K − (K1 + K2), is employed to encode the common message
M0, which is decoded by each receiver while treating all other
signals as noise. As in the case without a common message,
a layered coding scheme, when optimized over the choices of
K1 and K2, exhausts the entire secrecy-capacity region.

As before, Theorem 2 produces a characterization of the
secrecy-capacity region under the average total power con-
straint.

Corollary 2 (Average Total Power Constraint): The
secrecy-capacity region of the MIMO Gaussian BC with
common, private and confidential messages under the
average total power constraint (7a) is given by

CP =
⋃

0K: tr(K)≤P

CK. (11)

C. Numerical Example

We illustrate the secrecy-capacity region ĈP of the MIMO
Gaussian BC with private and confidential messages (without
a common message) under an average total power constraint
P (Corollary 1). The region is described in (7b) as the union
of all secrecy-capacity regions ĈK, each under a covariance
constraint K � 0 with tr(K) ≤ P . However, ĈK itself is
described as matrix optimization problems that is not convex
in general, and is therefore, hard to compute.

We overcome the computational inefficiency of ĈK by
leveraging the decomposition proposed in [21, eq. (10)]: Every
positive semi-definite matrix K� ∈ R

t×t with K�  K can be
expressed as

K� = K
1
2 VDV	K

1
2

	
, (12)

where V ∈ R
t×t is a unitary matrix and D ∈ R

t×t is a diagonal
matrix whose diagonal values are between 0 and 1. Since in
the subsequent example the dimension is t = 2, a unitary
matrix V is nothing but a rotation matrix, i.e., we set

V =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, θ ∈ [0, 2π]. (13)

Running over all possible diagonal matrices D involves only
two parameters, viz. the diagonal entries of D. Finally, note
that K

1
2 is any matrix B satisfying BB	 = K. Obviously, there

are many such matrices (in fact if B satisfies BB	 = K, then
so does BU, for any unitary U). However, since the numerical
calculation runs over all matrices V from (13) anyway, any
choice of B would do. Our simulation uses the Cholesky
decomposition of K to calculate B.

The region ĈP is computed according to (7b), while noting
that one may restrict the optimization domain to positive semi-
definite matrices K with tr(K) = P . This observation follows
because for every K′ with tr(K′) = π < P , there is a K with
tr(K) = P , such that

ĈK′ ⊆ ĈK. (14)
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Fig. 2. Secrecy-capacity region under an average total power constraint
of the MIMO Gaussian BC without a common message, where: M1 is
confidential and M2 is private (solid blue) vs. M1 and M2 are both confidential
(dashed red).

The matrix K is constructed by increasing the (1, 1)-th entry of
K′ by P −π , while all other entries of K′ remain unchanged.
The construction satisfies K′  K and the inclusion in (14)
follows because fixing K�  K′  K and replacing K′ with K
in (4) does not alter (4a) and strictly increases (4b).

In the numerical example we set

G1 =
[

0.3 2.5
2.2 1.8

]
, G2 =

[
1.3 1.2
1.5 3.9

]
(15)

and P = 12. The secrecy-capacity region ĈP is given by
the solid blue curve in Fig. 2. For comparison, the secrecy-
capacity region of the MIMO Gaussian BC with confidential
messages [13] (i.e., when each user serves as the eavesdropped
of the message to the other user) is depicted by the dashed
red curve. As expected, Fig. 2 shows that imposing a secrecy
constraint on M2 at the 1st receiver strictly shrinks the secrecy-
capacity region. Although in both regions the maximal value
of R1 is the secrecy-capacity of the corresponding MIMO
Gaussian WTC (see (4a) and [13, eq. (4)]), the achievable
values of R2 drop if M2 is also confidential.

IV. OPTIMALITY OF GAUSSIAN INPUTS VIA

FACTORIZATION OF CONCAVE ENVELOPES

This section provides the mathematical background for
characterizing the secrecy-capacity regions of the considered
MIMO Gaussian BC without and with a common message
(Theorems 1 and 2). In the sequel we define some generic
functions and show that they are maximized by Gaussian
distributions. These functions are later used to describe the
boundary points of certain outer bounds on the secrecy-
capacity regions of interest. The properties established in this
section are leveraged to show that optimality is achieved
by Gaussian inputs, and that the resulting expressions are
attainable by a corresponding inner bound.

Sections IV-A and IV-B focus on functions that are reminis-
cent of those studied in [16, Secs. II-B and II-C]. Therefore,
to avoid verbatim repetition of arguments from [16], we state
some of the properties in Sections IV-A and IV-B without
proofs. The focus of is on a new function that was not
considered [16, Sec. IV-C], the properties of which we prove

in full detail. All the proofs for this section are relegated to
Section VI.

Establishing Gaussian inputs as maximizers relies on the
notion of two-letter BCs [16, Sec. I-A], which is a special
case of a product BC (PBC).2

Definition 2 (Product BC): A PBC consists of a sender
(X1, X2) and two receivers (Y11, Y12) and (Y21, Y22), and
is described by a conditional PDF of the form q(1)

Y11,Y21|X1
×

q(2)
Y12,Y22 |X2

.
A MIMO Gaussian PBC can be represented as

[
Y11
Y12

]
=
[

G11 0
0 G12

] [
X1
X2

]
+
[

Z11
Z12

]
(16a)

[
Y21
Y22

]
=
[

G21 0
0 G22

] [
X1
X2

]
+
[

Z21
Z22

]
, (16b)

where Z11, Z12, Z21, Z22 ∼ N (0, I) are i.i.d. and independent
of (X1, X2). A two-letter version of a BC is a PBC in which
the components are identical, i.e., q(1)

Y11,Y21|X1
= q(2)

Y12,Y22|X2
.

In all subsequent definitions and results, the input covariance
constraining matrix K � 0 (see (2)) stays fixed.

A. Difference of Mutual Information Terms

Consider a BC qY1,Y2|X. For any η > 1, let sq
η be a

functional of X ∼ PX defined by

sq
η(X) � I (X; Y2) − ηI (X; Y1). (17)

Remark 8: The definition of sq
η(X) in (17) coincides with

that of sq
λ(X) � I (X; Y1) − λI (X; Y2) from [16, Sec. II-B]

(only differing in the ordering of the mutual information terms
and the labeling of the parameter). Accordingly, we restate
and use some of the properties of sq

η(X) established in [16]
without providing proofs. Additional attributes of sq

η(X) that
were not proven in [16] are rigorously derived.

For a pair of random variables (V , X) such that V − X −
(Y1, Y2) forms a Markov chain, set

sq
η(X|V ) � I (X; Y2|V ) − ηI (X; Y1|V ), (18)

and define the UCE of sq
η(X) as

Sq
η(X) �

(
Csq

η

)
(X) = sup

PV |X:
V −X−(Y1,Y2)

sq
η(X|V ). (19)

The second equality in (19) follows directly from Definition 1.
For any discrete random variable V we also set Sq

η(X|V ) �∑
v P(v)Sq

η(X|V = v), and naturally extend this definition
(merely an expectation) for an arbitrary V .

Proposition 1 (Concave Envelopes Properties): The UCE
Sq

η satisfies:

1) If V − X − (Y1, Y2) forms a Markov chain, then
Sq

η(X|V ) ≤ Sq
η(X).

2) If W − V − X − (Y1, Y2) forms a Markov chain, then
Sq

η(X|V , W ) = Sq
η(X|V ).

3) Sq
η(X) is convex in η inside (0, 2), for a fixed PX, and

therefore it is continuous in η at η = 1.3

2Henceforth, we omit the time index i .
3The 3rd property can be established by considering any bounded, open

interval containing 1, and not necessarily (0, 2).
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The proof of Proposition 1 is given in Section VI-A.
Definition 3 (Maximized Concave Envelope): For any

MIMO Gaussian BC qY1,Y2|X, define

V q
η (K) � sup

X: E[XX	]K
Sq

η(X) = sup
(V ,X): E[XX	]K,

V −X−(Y1,Y2)

sq
η(X|V ).

(20)
We subsequently show that (20) is achieved by a Gaussian

input distribution. Central to the proof is a certain factorization
property of Sq

η . To formulate this property, we first extend Sq
η

to PBCs. For a PBC q(1)
Y11,Y21|X1

× q(2)
Y12,Y22|X2

we set,

sq1×q2
η (X1, X2)

� I (X1, X2; Y21, Y22) − ηI (X1, X2; Y11, Y12), (21)

and define the quantities sq1×q2
η (X1, X2|V ), Sq1×q2

η (X1, X2)

and Sq1×q2
η (X1, X2|V ) analogously to the definitions of

sq
η(X|V ), Sq

η(X) and Sq
η(X|V ) from the above, respectively.

Proposition 2 (Factorization Property): For any PBC
q(1)

Y11,Y21|X1
× q(2)

Y12,Y22|X2
, the following chain of inequalities

holds

Sq1×q2
η (X1, X2) ≤ Sq1

η (X1|Y22) + Sq2
η (X2|Y11)

≤ Sq1
η (X1) + Sq2

η (X2). (22)
The proof of Proposition 2 follows by repeating the steps in
the proof of [16, Proposition 6], while switching the roles of
Y1 and Y2.

Theorem 3 (Gaussian Maximizer): Let X ∼ N (0, K).
There exists a decomposition X = X� + X′, such that X�

and X′ are independent, X� ∼ N (0, K�), X′ ∼ N (0, K−K�),
where K�  K, and Sq

η(X) = sq
η(X�) = V q

η (K). Furthermore,
this decomposition (i.e., the covariance matrix K�) is unique.

The proof of Theorem 3 is also omitted as it mimics the
proofs [16, Th.1 and Corollary 1].

B. Nested Upper Concave Envelopes

The function considered in this subsection is used to derive
the secrecy-capacity region of the considered MIMO Gaussian
BC without a common message (see Section V-A).

For a BC qY1,Y2|X, η > 1, λ = (λ1, λ2), where λ j > 0,
j = 1, 2, and any X ∼ PX define

tqλ,η(X) � λ1 I (X; Y1)−(λ1 + λ2)I (X; Y2)+λ1Sq
η(X), (23)

where Sq
η(X) is given by (19). As before, for a pair of random

variables (V , X) for which V − X − (Y1, Y2) forms a Markov
chain, let

tqλ,η(X|V )

� λ1 I (X; Y1|V ) − (λ1+λ2)I (X; Y2|V )+λ1Sq
η(X|V ), (24)

and set

Tq
λ,η(X) � C

(
tqλ,η(X)

) = sup
PV |X:

V −X−(Y1,Y2)

tqλ,η(X|V ). (25)

Define Tq
λ,η(X|V ) �

∑
v P(v)Tq

λ,η(X|V = v), for a V with a
countable alphabet and consider its natural extension when V
is an arbitrary random variable.

Remark 9 (Nested Concave Envelopes Properties): Simi-
larly to the properties of Sq

η stated in Proposition 1, since
Tq

λ,η is concave in PX, Jensen’s inequality implies that
Tq

λ,η(X|V ) ≤ Tq
λ,η(X), for any (V , X) satisfying V − X −

(Y1, Y2). Moreover, if W − V − X forms a Markov chain,
then Tq

λ,η(X|W, V ) = Tq
λ,η(X|V ), because PX|W,V = PX|V .

Finally, Tq
λ,η(X) is convex in η inside (0, 2), for a fixed PX,

and therefore it is continuous as a function of η at η = 1.
Definition 4 (Maximized Nested Concave Envelope): For

any MIMO Gaussian BC qY1,Y2|X, define

V̂ q
λ,η(K) � sup

X: E[XX	]K
Tq

λ,η(X) = sup
(V ,X): E[XX	]K,

V −X−(Y1,Y2)

tqλ,η(X|V ).

(26)
Proposition 3 (Continuity of Maximal Value): For any λ as

before, V̂λ,η(K) is continuous in η at η = 1.
The proof of Proposition 3 follows by arguments similar to
those in the proof of Property 3 of Proposition 1. Namely,
the continuity of V̂λ,η(K) at η = 1 follows by verifying
that V̂λ,η(K) is convex in η inside (0, 2) and using Propo-
sition 17 from [26, Ch. 5].

As before, to state the factorization property for nested
UCEs, we extend some of the preceding definitions to PBCs.
For a PBC q(1)

Y11,Y21|X1
× q(2)

Y12,Y22|X2
, we set

tq1×q2
λ,η (X1, X2)

� λ1 I (X1, X2; Y11, Y12) − (λ1 + λ2)I (X1, X2; Y21, Y22)

+ λ1Sq1×q2
η (X1, X2). (27)

Furthermore, define tq1×q2
λ,η (X1, X2|V ), Tq1×q2

λ,η (X1, X2) and

Tq1×q2
λ,η (X1, X2|V ) in a similar manner to tqλ,η(X|V ), Tq

λ,η(X)

and Tq
λ,η(X|V ), respectively. The following proposition states

the Tq1×q2
λ,η (X1, X2|V ) factorization property of interest, which

is used to prove the existence of a Gaussian maximizer for
V̂ q

λ,η(K) from (26).
Proposition 4 (Factorization Property): For any PBC

q(1)
Y11,Y21|X1

× q(2)
Y12,Y22|X2

, the following chain of inequalities
holds

Tq1×q2
λ,η (X1, X2) ≤ Tq1

λ,η(X1|Y22) + Tq2
λ,η(X2|Y11)

≤ Tq1
λ,η(X1) + Tq2

λ,η(X2) (28)

Furthermore, if the PBC is Gaussian and a triple (V �, X�
1, X�

2)
satisfies

tq1×q2
λ,η (X�

1, X�
2|V �) = Tq1×q2

λ,η (X�
1, X�

2) = Tq1
λ,η(X

�
1) + Tq2

λ,η(X
�
2)

(29)

then X�
1 − V � −X�

2 and t
q j
λ,η(X

�
j |V �) = T

q j
λ,η(X

�
j ), for j = 1, 2.

See Section VI-B for the proof of Proposition 4. The
existence of a Gaussian maximizer for V̂ q

λ,η(K) follows by
repeating the proofs of Theorem 2 and Corollary 2 in [16]
with respect to our definition of Tq

λ,η. The existence is stated
in the following Theorem, which we give without proof.

Theorem 4 (Gaussian Maximizer): Let X ∼ N (0, K).
There exists a unique decomposition X = X�

1 + X�
2 + X′

into independent random variables (X�
1, X�

2, X′), where X�
j ∼
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N (0, K j ), j = 1, 2, and X′ ∼ N (0, K − (K1 + K2)
)
,

K1 + K2  K, such that

Tq
λ,η(X) = tqλ,η(X

�
1 + X�

2) = V̂ q
λ,η(K) (30a)

Sq
η(X�

1 + X�
2) = sq

η(X
�
1) = V q

η (K1 + K2). (30b)

C. Double-Nested Upper Concave Envelopes

The definitions and properties in this section are used to
derive the secrecy-capacity region of the cooperative BC with
common, private and confidential messages (as defined in
Section II-B). Let qY1,Y2|X, η > 1 be a BC, λ0 = (λ0, λ1, λ2),
where λ j > 0 for j = 0, 1, 2 and λ0 > λ2, α ∈ [0, 1] and
ᾱ = 1 − α. For any X ∼ PX define

fqλ0,α,η(X) � (λ2 − ᾱλ0)I (X; Y2) − αλ0 I (X; Y1) + Tq
λ,η(X),

(31)

where Tq
λ,η(X) is given by (25) and λ = (λ1, λ2).

For (V , X) that satisfy the Markov chain V −X− (Y1, Y2),
we set fqλ0,α,η(X|V ) in an analogous manner to (24), while
Fq

λ0,α,η � Cfqλ0,α,η denotes the UCE of fqλ0,α,η. We also set
Fq

λ0,α,η(X|V ) �
∑

v P(v)Fq
λ0,α,η(X|V = v) for a discrete V

and, as before, consider its natural extension in the case where
V is arbitrary.

Remark 10 (Double-Nested Concave Envelopes Proper-
ties): The concavity of Fq

λ0,α,η in PX and Jensen’s inequality
imply that for any (V , X) with V − X − (Y1, Y2), we have
Fq

λ0,α,η(X|V ) ≤ Fq
λ0,α,η(X). If the chain W −V −X is Markov,

then Fq
λ0,α,η(X|W, V ) = Fq

λ0,α,η(X|V ), because PX|W,V =
PX|V . As a function of η, Fq

λ0,α,η(X) is convex inside (0, 2),
for any fixed X, and is thus continuous at η = 1.

Definition 5 (Maximized Double-Nested Concave Enve-
lope): For any MIMO Gaussian BC qY1,Y2|X, define

Ṽ q
λ0,α,η(K) � sup

X: E[XX	]K
Fq

λ0,α,η(X)

= sup
(V ,X): E[XX	]K,

V −X−(Y1,Y2)

fqλ0,α,η(X|V ). (32)

Remark 11 (Continuity of Maximal Value): As before, one
readily verifies that as a function of η, Ṽλ0,α,η(K) is convex
inside (0, 2), and deduce its continuity at η = 1.

The above notions are once again extended to PBCs.
Namely, for any PBC q(1)

Y11,Y21|X1
× q(2)

Y12,Y22|X2
, we set

fq1×q2
λ0,α,η(X1, X2)

= (λ2 − ᾱλ0)I (X1, X2; Y21, Y22)

− αλ0 I (X1, X2; Y11, Y12) + Tq1×q2
λ,η (X1, X2), (33)

and define fq1×q2
λ0,α,η(X1, X2|V ), Fq1×q2

λ0,α,η(X1, X2) and

Fq1×q2
λ0,α,η(X1, X2|V ) as the natural extensions to the PBC

scenario of fqλ0,α,η(X|V ), Fq
λ0,α,η(X) and Fq

λ0,α,η(X|V ) given
above, respectively.

Moving forward, the factorization property of Fq1×q2
λ0,α,η is

stated in Proposition 5, while Proposition 6 establishes the
existence of its maximizer.

Proposition 5 (Factorization Property): For any PBC
q(1)

Y11,Y21|X1
× q(2)

Y12,Y22|X2
, the following chain of inequalities

holds

Fq1×q2
λ0,α,η(X1, X2) ≤ Fq1

λ0,α,η(X1|Y22) + Fq2
λ0,α,η(X2|Y11)

≤ Fq1
λ0,α,η(X1) + Fq2

λ0,α,η(X2) (34)

Furthermore, if the PBC is Gaussian and a triple (V �, X�
1, X�

2)
satisfies

fq1×q2
λ0,α,η(X

�
1, X�

2|V �) = Fq1×q2
λ0,α,η(X

�
1, X�

2)

= Fq1
λ0,α,η(X

�
1) + Fq2

λ0,α,η(X
�
2), (35)

then X�
1 − V � − X�

2 and f
q j
λ0,α,η(X

�
j |V �) = F

q j
λ0,α,η(X

�
j ), for

j = 1, 2.
See Section VI-C for the proof of Proposition 5.
Proposition 6 (Existence of a Maximizer): There exists a

pair (V �, X�) with |V�| ≤ t (t+1)
2 + 1 and E

[
XX	]  K, such

that

Ṽ q
λ0,α,η(K) = fqλ0,α,η(X

�|V �). (36)

Furthermore, one may assume that E[X�|V � = v�] = 0, for
every v� ∈ V�.

The existence of a maximizer and the cardinality bound on
V� are proven in Section VI-D. A zero conditional expecta-
tion can be assumed because centering conditioned on each
V � = v� does not change the mutual information terms and
hence fqλ0,α,η(X

�
2|V �) remains unchanged as well. In addition,

the centered versions of the input continues to satisfy the
covariance constraint.

To show that the distribution that achieves Ṽ q
λ0,α,η(K) is

Gaussian, we use the invariance of fqλ0,α,η to rotation. This
invariance property is stated in the context of the next Propo-
sition, which is proven in Section VI-E.

Proposition 7 (Invariance to Rotation): Let (V , X) ∼ P�
V ,X

attain Ṽ q
λ0,α,η(K), with |V| = m ≤ t (t+1)

2 + 1, and let Xv be a
centered random variable (zero mean) distributed according to
the conditional PMF P�

X|V =v . Let (V1, X1, V2, X2) ∼ P�
V ,X ×

P�
V ,X be two i.i.d. copies of (V �, X�). Define

Ṽ = (V1, V2)

Xθ1

∣
∣{Ṽ = (v1, v2)

} ∼ 1√
2
(Xv1 + Xv2)

Xθ2

∣
∣{Ṽ = (v1, v2)

} ∼ 1√
2
(Xv1 − Xv2),

where Xv1 and Xv2 are taken to be independent random
variables, i.e., (Xv1, Xv2) ∼ P�

X|V =v1
× P�

X|V =v2
. Then Xθ1 −

Ṽ − Xθ2 and Ṽ q
λ0,α,η(K) = fqλ0,α,η(Xθ j |Ṽ ), for j = 1, 2.

The existence of a Gaussian Maximizer for Ṽ q
λ0,α,η(K) is

stated next.
Theorem 5 (Existence of Gaussian Maximizer): There exists

an X� ∼ N (0, K�), where K�  K, such that Ṽ q
λ0,α,η(K) =

fqλ0,α,η(X
�). Furthermore, the zero mean maximizer is unique.

See Section VI-F for the proof.
Corollary 3 (Gaussian Maximizer Properties): Let X ∼

N (0, K). There is a unique decomposition X = X�
1 + X�

2 +
X�

3 + X′ into independent random variables (X�
1, X�

2, X�
3, X′),
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where X�
j ∼ N (0, K j ), for j = 1, 2, 3, and X′ ∼ N (0, K −

(K1 + K2 + K3)
)
, with K1 + K2 + K3  K, such that

Fq
λ0,α,η(X) = fqλ0,α,η(X

�
1 + X�

2 + X�
3) = Ṽ q

λ0,α,η(K)

(37a)

Tq
λ,η(X

�
1 + X�

2 + X�
3) = tqλ,η(X

�
1 + X�

2) = V̂ q
λ,η(K1 + K2+K3)

(37b)

Sq
η(X�

1 + X�
2) = sq

η(X
�
1) = V q

η (K1 + K2). (37c)
Corollary 3, which is a consequence of Theorem 5, is our

main tool for characterizing the secrecy-capacity region of
the MIMO Gaussian BC with common, private and confi-
dential messages. The proof of the Corollary is provided in
Section VI-G.

V. PROOFS OF SECRECY-CAPACITY RESULTS

A. Proof of Theorem 1

We establish the secrecy-capacity region of the MIMO
Gaussian BC with private and confidential messages by show-
ing that certain outer bound and inner bounds match. In partic-
ular, we consider special cases of the inner and outer bounds
[23, Ths. 1 and 3], respectively. To state the bounds, let
Ĉ denote the secrecy-capacity region of the corresponding
discrete-memoryless (DM) BC.

Bound 1 (Outer Bound): Let Ô be the closure of the union
of rate pairs (R1, R2) ∈ R

2+ satisfying:

R1 ≤ I (U ; Y1|V ) − I (U ; Y2|V ) (38a)

R2 ≤ I (V ; Y2) (38b)

over all (V , U) − X − (Y1, Y2). Then Ĉ ⊆ Ô.
Bound 2 (Inner Bound): Let Î be the closure of the union

of rate pairs (R1, R2) ∈ R
2+ satisfying:

R1 ≤ I (U ; Y1) − I (U ; V ) − I (U ; Y2|V ) (39a)

R2 ≤ I (V ; Y2) (39b)

over all (V , U) − X − (Y1, Y2). Then Î ⊆ Ĉ.
The reader is referred to Appendix A for the proofs

of Bounds 1 and 2. Let ĈK, ÔK and ÎK denote the
secrecy-capacity region, the outer bound and the inner bound
for a MIMO Gaussian BC computed under a covariance
input constraint E

[
XX	]  K. Accordingly, we have

ÎK ⊆ ĈK ⊆ ÔK.
The opposite inclusion, i.e., ÔK ⊆ ÎK, is shown next. The

regions ÎK and ÔK are closed, convex and bounded subsets
of the first quadrant, and therefore, are characterized by the
intersection of their supporting hyperplanes.

Lemma 1 (Supporting Hyperplanes): The following are
supporting hyperplanes of ÔK and ÎK:

R1 ≥ 0, R1 ≤ HK
1 , R2 ≥ 0, R2 ≤ HK

2 , (40)

where

HK
1 � max

(V ,U )−X−(Y1,Y2):
E[XX	]K

I (U ; Y1|V ) − I (U ; Y2|V ) (41a)

HK
2 � max

X: E[XX	]K
I (X; Y2). (41b)

Furthermore, (HK
1 , 0) and (0,HK

2 ) are boundary points of
ÔK and ÎK .

Lemma 1 is proven in Appendix B. It shows that if we set
R�

1 � max
{

R1
∣
∣(R1, 0) ∈ ÔK

}
and R�

2 � max
{

R2
∣
∣(0, R2) ∈

ÔK
}
, then (R�

1, 0) and (0, R�
2) are attainable in ÎK. Con-

sequently, to show that the regions coincide, it suffices to
establish

max
(R1,R2)∈ÔK

λ1 R1 + λ2 R2 ≤ max
(R1,R2)∈ÎK

λ1 R1 + λ2 R2, (42)

for λ1, λ2 > 0. Observe that

max
(R1,R2)∈ÔK

λ1 R1 + λ2 R2

(a)≤ sup
(V ,U )−X−(Y1,Y2):

E[XX	]K

λ1

[
I (U ; Y1|V ) − I (U ; Y2|V )

]

+ λ2 I (V ; Y2)
(b)= sup

(V ,U )−X−(Y1,Y2):
E[XX	]K

λ1 I (X; Y1|V ) − (λ1 + λ2)I (X; Y2|V )

+ λ1

[
I (X; Y2|V , U) − I (X; Y1|V , U)

]
+ λ2 I (X; Y2)

(c)≤ sup
V −X−(Y1,Y2):

E[XX	]K

λ1 I (X; Y1|V ) − (λ1 + λ2)I (X; Y2|V )

+ lim
η↓1

λ1Sq
η(X|V ) + λ2 I (X; Y2)

≤ sup
E[XX	]K

λ2 I (X; Y2) + sup
V −X−(Y1,Y2):

E[XX	]K

lim
η↓1

tλ,η(X|V )

(d)= sup
E[XX	]K

λ2 I (X; Y2) + sup
E[XX	]K

lim
η↓1

Tλ,η(X)

(e)= sup
E[XX	]K

λ2 I (X; Y2) + lim
η↓1

V̂λ,η(K), (43)

where:
(a) uses (38);
(b) is because (V , U) − X − (Y1, Y2) forms a Markov chain;
(c) follows by the definition of sq

η(X|V ) and since conditioned
on V , U−X−(Y1, Y2) forms a Markov chain, i.e., it holds that
PY1,Y2|V ,U,X = PY1,Y2|X. Furthermore, (c) uses the continuity
of Sq

η(X|V ) in η at η = 1 (see Property 3 of Proposition 1),
which implies that for any (V , X)

Sq
1(X|V ) � Sq

limη↓1 η(X|V ) = lim
η↓1

Sq
η(X|V );

(d) is by the definition of Tq
λ,η(X), the Markov relation

V − X − (Y1, Y2), and because Tq
λ,η(X) is continuous in η

at η = 1 (see Remark 9);
(e) follows by Proposition 3.

By Theorem 4, for every η > 1, there exist independent
random variables X�

1 ∼ N (0, K1), X�
2 ∼ N (0, K2) and

X′ ∼ N (0, K − (K1 + K2)
)
, K1 + K2  K, such that

V̂ q
η (K) = tqλ,η(X

�
1+X�

2) and Sq
η(X�

1+X�
2) = sq

η(X�
1). Moreover,

setting X = X�
1 + X�

2 + X′ maximizes λ2 I (X; Y2) and attains
V̂ q

η (K) simultaneously. In order to conform to the notation in
the bounds, let V � = X′. Taking the limit as η ↓ 1, we have

max
(R1,R2)∈ÔK

λ1 R1 + λ2 R2

≤ λ1 I (X; Y1|V �) − (λ1 + λ2)I (X; Y2|V �)
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+ λ1

[
I (X; Y2|V �, X�

2) − I (X; Y2|V �, X�
2)
]

+ λ2 I (X; Y2)

≤ λ1

[
I (X�

2; Y1|V �) − I (X�
2; Y2|V �)

]
+ λ2 I (V �; Y2). (44)

The following proposition is used to show that (44) is
achievable within ÎK.

Proposition 8 (Partial Dirty-Paper Coding (P-DPC)): Fix
a covariance matrix K and let X = X�

1 + X�
2 + V �, where

X�
1, X�

2 and V are independent Gaussian random vectors with
covariance matrices K1, K2 and K − (K1 + K2), respectively,
for some 0  K1, K2  K with K1 + K2  K. Let Y j =
G j X + Z j , for j = 1, 2, where Z j ∼ N (0, I) is independent

of (X�
1, X�

2, V �). Set U = X�
2 + AV �, where A = K2G̃	

1

[
I +

G̃1K2G̃	
1

]−1
and G̃1 =

[
I + G1K1G	

1

]− 1
2
G1. Then

I (X�
2; Y1|V �) − I (X�

2; Y2|V �)

= I (U �; Y1) − I (U �; V �) − I (X�
2; Y2|V �). (45)

Proof: We first write

Y1 = G1X + Z1

= G1(X�
1 + X�

2 + V �) + Z1

= G1(X�
2 + V �) + (G1X�

1 + Z1)
(a)= G1X̃ + Z′

1, (46)

where (a) follows by setting X̃ � X�
2 + V � and Z′

1 �
G1X�

1 + Z1. By the independence of X�
1, X�

2, V � and Z1,
we have that X̃ and Z′

1 are also independent. Moreover, Z′
1 ∼

N (0, I+G1K1G	
1

)
, where the covariance matrix I+G1K1G	

1
is diagonalizable (due to its symmetry) and invertible (because
it is positive definite). Denoting 	 � I + G1K1G	

1 , gives

	 = Q
Q	, (47)

where Q is a unitary matrix and 
 is diagonal, and furthermore
	− 1

2 = Q
− 1
2 Q	. By defining Ỹ1 = 	− 1

2 Y1, we have

Ỹ1 = G̃1X̃ + Z̃1, (48)

where G̃1 = 	− 1
2 G1, Z̃1 = 	− 1

2 Z′
1 and Z̃1 ∼ N (0, I).

Setting U � as above and invoking the classic Dirty-Paper
Coding Theorem (here we use the formulation from [16,
Proposition 12]), we have

I (X̃; Ỹ1|V �) = I (U �; Ỹ1) − (U �; V �). (49)

Furthermore,

I (X�
2; Y2|V �) = I (X�

2 + AV �; Y2|V �) = I (U �; Y2|V �).

(50)

Note that Y1 �→ 	− 1
2 Y1 is an invertible mapping, and as

such, preserves mutual information. We conclude the proof as
follows:

I (X�
2; Y1|V �) − I (X�

2; Y2|V �)
(a)= I (X̃; Y1|V �) − I (U �; Y2|V �)
(b)= I (X̃; Ỹ1|V �) − I (U �; Y2|V �)
(c)= I (U �; Ỹ1) − I (U �; V �) − I (U �; Y2|V �)
(d)= I (U �; Y1) − I (U �; V �) − I (U �; Y2|V �), (51)

where (a) is because X̃ = X�
2 + V � and by (50), (b) and

(d) follow since Y1 �→ 	− 1
2 Y1 preserves mutual information,

while (c) uses (49).
Inserting U � as stated in Proposition 8 into the RHS of (44),

we obtain

max
(R1,R2)∈ÔK

λ1 R1 + λ2 R2

≤ λ1

[
I (X�

2; Y1|V �) − I (X�
2; Y2|V �)

]
+ λ2 I (V �; Y2)

= λ1

[
I (U �; Y1)− I (U �; V �)− I (U �; Y2|V �)

]
+λ2 I (V �; Y2)

(a)≤ max
(R1,R2)∈ÎK

λ1 R1 + λ2 R2, (52)

where (a) follows since (U �, V �) − X − (Y1, Y2) forms a
Markov chain and E

[
XX	]  K is satisfied, which implies

that the rate pair R1 = I (U �; Y1)− I (U �; V �)− I (U �; Y2|V �)
and R2 = I (V �; Y2) belongs to ÎK. Concluding, we see that
ÎK = ĈK = ÔK, which characterizes the secrecy-capacity
region of the MIMO Gaussian BC with private and confidential
messages.

Furthermore, equality (and hence the extreme points of ĈK)
is achieved by Gaussian inputs as stated in Proposition 8, thus
making the region computable. By evaluating ÎK (or, equiva-
lently ÔK) with respect to this input distribution, we describe
the secrecy-capacity region ĈK as the union of rate pairs
(R1, R2) ∈ R

2+ satisfying:

R1 ≤ 1

2
log

∣
∣
∣
∣
∣
I + G1(K1 + K2)G	

1

I + G1K1G	
1

∣
∣
∣
∣
∣

− 1

2
log

∣
∣
∣
∣∣
I + G2(K1 + K2)G	

2

I + G2K1G	
2

∣
∣
∣
∣∣

(53a)

R2 ≤ 1

2
log

∣
∣
∣
∣∣

I + G2KG	
2

I + G2(K1 + K2)G	
2

∣
∣
∣
∣∣
, (53b)

where the union is over all positive semi-definite matrices
K1, K2, such that K1 + K2  K. We further simplify (53)
by noting that the RHS of (53a) is the secrecy-capacity of
the MIMO Gaussian WTC as derived in [16, Appendix III],
which is maximized by setting K1 = 0 (see [7]–[9]). Further
note that K1 = 0 cannot decrease the RHS of (53b). Thus,
by relabeling K2 � K� we establish (6).

B. Proof of Theorem 2

As in the case without a common message, the secrecy-
capacity region CK is derived by showing that certain outer
bound and inner bounds on CK coincide. Denoting by C the
region of the DM-BC with common, private and confidential
messages, we bound it as follows.

Bound 3 (Outer Bound): Let O be the closure of the union
of rate triples (R0, R1, R2) ∈ R

3+ satisfying:

R0 ≤ min
{

I (W ; Y1), I (W ; Y2)
}

(54a)

R1 ≤ I (U ; Y1|W, V ) − I (U ; Y2|W, V ) (54b)

R0 + R2 ≤ I (V ; Y2|W ) + min
{

I (W ; Y1), I (W ; Y2)
}

(54c)

over all (W, V , U) − X − (Y1, Y2). Then C ⊆ O.
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Bound 4 (Inner Bound): Let I be the closure of the union
of rate triples (R0, R1, R2) ∈ R

3+ satisfying:

R0 ≤ min
{

I (W ; Y1), I (W ; Y2)
}

(55a)

R1 ≤ I (U ; Y1|W ) − I (U ; V |W ) − I (U ; Y2|W, V ) (55b)

R2 ≤ I (V ; Y2|W ) (55c)

over all (W, V , U) − X − (Y1, Y2). Then I ⊆ C.
The proofs of Bounds 3 and 4 are relegated to Appendix A.

Denoting by OK and IK the adaptations of Bounds 3 and 4
to a MIMO Gaussian BC with a covariance input constraint
E
[
XX	]  K, we have IK ⊆ CK ⊆ OK.
Next, we use the factorization of UCEs method to show

that the opposite inclusion OK ⊆ IK also holds. Given the
supporting hyperplanes characterization of bounded and closed
convex sets, using a similar reasoning as in Section V-A (see
Lemma 1), it suffices to study max(R0,R1,R2)∈CK λ0 R0+λ1 R1+
λ2 R2, for λ j > 0, j = 1, 2, 3. Further note that it suffices to
restrict attention to the case where λ0 > λ2. This follows from
the following observation: If a rate triple (R0, R1, R2) is in CK
then so does the triple (0, R1, R2 + R0), since one may always
treat the common message as part of the (non-confidential)
private message to Receiver 2. Assuming λ0 ≤ λ2, we have

λ0 R0 + λ1 R1 + λ2 R2 ≤ 0 · R0 + λ1 R1 + λ2(R0 + R2), (56)

and therefore,

max
(R0,R1,R2)∈CK

λ0 R0 + λ1 R1 + λ2 R2

= max
(0,R1,R2)∈CK

λ1 R1 + λ2 R2

= max
(R1,R2)∈ĈK

λ1 R1 + λ2 R2, (57)

where ĈK is the secrecy-capacity region without a common
message that was characterized in Section III-A.

Hence, it suffices to show that for all λ j > 0, j = 1, 2, 3,
with λ0 > λ2, we have

max
(R0,R1,R2)∈OK

λ0 R0 + λ1 R1 + λ2 R2

≤ max
(R0,R1,R2)∈IK

λ0 R0 + λ1 R1 + λ2 R2. (58)

Now, for any α ∈ [0, 1] set ᾱ = 1 − α, and consider the
following.

max
(R0,R1,R2)∈OK

λ0 R0 + λ1 R1 + λ2 R2

(a)≤ sup
(W,V ,U )−X−(Y1,Y2):

E[XX	]K

λ0

[
α I (W ; Y1) + ᾱ I (W ; Y2)

]

+ λ1

[
I (U ; Y1|W, V ) − I (U ; Y2|W, V )

]

+ λ2 I (V ; Y2|W )
(b)= sup

(W,V ,U )−X−(Y1,Y2):
E[XX	]K

αλ0 I (X; Y1) + ᾱλ0 I (X; Y2)

+ (λ2 − ᾱλ0)I (X; Y2|W ) − αλ0 I (X; Y1|W )

+ λ1 I (X; Y1|W, V ) − (λ1 + λ2)I (X; Y2|W, V )

+ λ1 I (X; Y2|W, V , U) − λ1 I (X; Y1|W, V , U)
(c)≤ sup

(W,V )−X−(Y1,Y2):
E[XX	]K

αλ0 I (X; Y1) + ᾱλ0 I (X; Y2)

+ (λ2 − ᾱλ0)I (X; Y2|W ) − αλ0 I (X; Y1|W )

+ λ1 I (X; Y1|W, V ) − (λ1 + λ2)I (X; Y2|W, V )

+ lim
η↓1

λ1Sq
η(X|W, V )

(d)≤ sup
W−X−(Y1,Y2):

E[XX	]K

αλ0 I (X; Y1) + ᾱλ0 I (X; Y2)

+ (λ2 − ᾱλ0)I (X; Y2|W ) − αλ0 I (X; Y1|W )

+ lim
η↓1

Tq
λ,η(X|W )

≤ sup
E[XX	]K

αλ0 I (X; Y1) + ᾱλ0 I (X; Y2)

+ sup
W−X−(Y1,Y2):

E[XX	]K

lim
η↓1

fqλ0,α,η(X|W )

(e)≤ sup
E[XX	]K

αλ0 I (X; Y1) + ᾱλ0 I (X; Y2)

+ sup
E[XX	]K

lim
η↓1

Fq
λ0,α,η(X)

( f )≤ sup
E[XX	]K

αλ0 I (X; Y1) + ᾱλ0 I (X; Y2) + lim
η↓1

Ṽ q
λ0,α,η(K),

(59)

where:
(a) is by (54);
(b) follows because (W, V , U)−X−(Y1, Y2) forms a Markov
chain;
(c) is by the definition of Sq

η(X|W, V ) since conditioned on
(W, V ), U −X−(Y1, Y2) forms a Markov chain, and because
Sq

η(X|V , W ) is continuous in η at η = 1 (Property 3 of
Proposition 1);
(d) follows by the definition of Tq

λ,η(X|W ) since conditioned
on V , W − X − (Y1, Y2) forms a Markov chain. Furthermore,
the continuity of Tq

λ,η(X|W ) in η at η = 1 (see Remark 9) is
also exploited;
(e) is by the definition of Fq

λ0,α,η(X) (while noting that W −
X − (Y1, Y2) forms a Markov chain), and because Fq

λ,η(X) is
continuous at η = 1 (Remark 10);
(f) makes use of the continuity argument from Remark 11.

Recall that for any η > 1, λ j > 0, for j = 0, 1, 2, and
λ0 > λ2, Corollary 3 implies that there exist independent
random variables X�

j ∼ N (0, K j ), j = 1, 2, 3, and X′ ∼
N (0, K − (K1 + K2 + K3)

)
, such that (37) is satisfied.

Furthermore, setting X = X�
1 + X�

2 + X�
3 + X′ not only attains

Ṽ q
η (K), but it also simultaneously maximizes αλ0 I (X; Y1) and

ᾱλ0 I (X; Y2). Relabeling W � = X′ and V � = X�
3 while taking

the limit as η ↓ 1, we have

max
(R0,R1,R2)∈OK

λ0 R0 + λ1 R1 + λ2 R2

≤ αλ0 I (X; Y1) + ᾱλ0 I (X; Y2)

+ (λ2 − ᾱλ0)I (X; Y2|W �) − αλ0 I (X; Y1|W �)

+ λ1 I (X; Y1|W �, V �) − (λ1 + λ2)I (X; Y2|W �, V �)

+ λ1 I (X; Y2|W �, V �, X�
2) − λ1 I (X; Y1|W �, V �, X�

2)

≤ λ0

[
α I (W �; Y1) + ᾱ I (W �; Y2)

]

+ λ1

[
I (X�

2; Y1|W �, V �) − I (X�
2; Y2|W �, V �)

]

+ λ2 I (V �; Y2|W �). (60)
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Using Proposition 8, we set U = X�
2 + ÃV � as before and

obtain

I (X�
2; Y1|W �, V �) − I (X�

2; Y2|W �, V �)

= I (U �; Y1|W �) − I (U �; V �|W �) − I (X�
2; Y2|W �, V �).

(61)

Inserting (61) into (60), yields

max
(R0,R1,R2)∈OK

λ0 R0 + λ1 R1 + λ2 R2

≤ λ0

[
α I (W �; Y1) + ᾱ I (W �; Y2)

]

+ λ1

[
I (U �; Y1|W �)− I (U �; V �|W �)− I (U �; Y2|W �, V �)

]

+ λ2 I (V �; Y2|W �)

≤ sup
(W,V ,U )−X−(Y1,Y2):

E[XX	]K

λ0

[
α I (W ; Y1) + ᾱ I (W ; Y2)

]

+ λ1

[
I (U ; Y1|W ) − I (U ; V |W ) − I (U ; Y2|W, V )

]

+ λ2 I (V ; Y2|W ). (62)

Since (62) holds for all α ∈ [0, 1], we have

max
(R0,R1,R2)∈OK

λ0 R0 + λ1 R1 + λ2 R2

≤ min
α∈[0,1] sup

(W,V ,U )−X−(Y1,Y2):
E[XX	]K

λ0

[
α I (W ; Y1) + ᾱ I (W ; Y2)

]

+ λ1

[
I (U ; Y1|W ) − I (U ; V |W ) − I (U ; Y2|W, V )

]

+ λ2 I (V ; Y2|W ). (63)

Having (63), the desired equality OK = IK is a consequence
of the following Proposition.4

Proposition 9 (Max-Min Interchanging): The following
max-min interchanging holds

min
α∈[0,1] sup

(W,V ,U )−X−(Y1,Y2):
E[XX	]K

λ0

[
α I (W ; Y1) + ᾱ I (W ; Y2)

]

+ λ1

[
I (U ; Y1|W ) − I (U ; V |W ) − I (U ; Y2|W, V )

]

+ λ2 I (V ; Y2|W )

= sup
(W,V ,U )−X−(Y1,Y2):

E[XX	]K

min
α∈[0,1]λ0

[
α I (W ; Y1) + ᾱ I (W ; Y2)

]

+ λ1

[
I (U ; Y1|W ) − I (U ; V |W ) − I (U ; Y2|W, V )

]

+ λ2 I (V ; Y2|W )

= sup
(W,V ,U )−X−(Y1,Y2):

E[XX	]K

λ0 · min
{

I (W ; Y1), I (W ; Y2)
}

+ λ1

[
I (U ; Y1|W ) − I (U ; V |W ) − I (U ; Y2|W, V )

]

+ λ2 I (V ; Y2|W ). (64)
The proof of Proposition 9 is given in Appendix D. Now,

noting that (W, V , U) − X − (Y1, Y2) forms a Markov chain
and E

[
XX	]  K, we see that the triple

R0 = min
{

I (W ; Y1), I (W ; Y2)
}

R1 = I (U ; Y1|W ) − I (U ; V |W ) − I (U ; Y2|W, V )

4Proposition 9 bears strong resemblance [16, Proposition 13] that was
originally established in [27]

R2 = I (V ; Y2|W )

is inside the inner bound IK. Hence

max
(R0,R1,R2)∈OK

λ0 R0 + λ1 R1 + λ2 R2

≤ sup
(W,V ,U )−X−(Y1,Y2):

E[XX	]K

λ0

[
α I (W ; Y1) + ᾱ I (W ; Y2)

]

+ λ1

[
I (U ; Y1|W ) − I (U ; V |W ) − I (U ; Y2|W, V )

]

+ λ2 I (V ; Y2|W )

≤ max
(R0,R1,R2)∈IK

λ0 R0 + λ1 R1 + λ2 R2, (65)

which implies that ÎK = ĈK = ÔK and characterizes the
secrecy-capacity region of the MIMO Gaussian BC with
common, private and confidential messages.

To obtain the description of CK stated in (10), note that
when λ0 > λ2, equality (and hence the extreme points of CK)
is achieved by setting

X = X�
1 + X�

2 + V � + W �, (66)

where X�
j ∼ N (0, K j ), j = 1, 2, V � ∼ N (0, K3) and W � ∼

N (0, K − (K1 + K2 + K3)
)

are independent of each other,
and U = X�

2 + ÃV �, where Ã is the P-DPC matrix from
Proposition 8. For the case when λ0 ≤ λ2, (56)-(57) imply
that the boundary-achieving input distribution corresponds to
the one that achieves the secrecy-capacity region when there
is no common message (see Section V-A). Setting K3 = K −
(K1 + K2) recovers the optimal input distribution for the case
without common message.

By evaluating IK (or, equivalently OK) with respect to (66),
we characterize the secrecy-capacity region CK as the union
of rate triples (R0, R1, R2) ∈ R

3+ satisfying:

R0 ≤ min

{
1

2
log

∣∣
∣
∣
∣

I + G1KG	
1

I + G1(K1 + K2 + K3)G	
1

∣∣
∣
∣
∣
,

1

2
log

∣
∣
∣
∣
∣

I + G1KG	
1

I + G1(K1 + K2 + K3)G	
1

∣
∣
∣
∣
∣

}
(67a)

R1 ≤ 1

2
log

∣
∣
∣
∣
∣
I + G1(K1 + K2)G	

1

I + G1K1G	
1

∣
∣
∣
∣
∣

− 1

2
log

∣
∣
∣
∣
∣
I + G2(K1 + K2)G	

2

I + G2K1G	
2

∣
∣
∣
∣
∣

(67b)

R2 ≤ 1

2
log

∣
∣
∣
∣
∣
I + G2(K1 + K2 + K3)G	

2

I + G2(K1 + K2)G	
2

∣
∣
∣
∣
∣
, (67c)

where the union is over all positive semi-definite matrices
K1, K2, K3, such that K1 + K2 + K3  K.

The region from (67) is further simplified using reasoning
similar to this from Section V-A. First, (67b) indicates that
the signal to User 1 is a sum of two independent zero
mean Gaussian random vector with covariance K1 and K2.
The signal that corresponds to K2 carries the confidential
message M1, while the K1 signal is an artificial noise sent (on
purpose) to confuse User 2 (which serves as an eavesdropper
of M1). The lack of structure in the artificial noise adds to
the noise floor at both receivers (see also [13, Remark 4]).
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However, since the RHS of (67b) is the secrecy-capacity of
the MIMO Gaussian WTC, it is maximized by setting K1 = 0.
Furthermore, since in both (67a) and (67c) K1 serves as noise
(i.e., it is not used to encode any of the messages), setting
K1 = 0 achieves optimality. This is since K1 = 0 corresponds
to revealing the K1 signal to both receivers, which can only
increase the transmission rates. Taking K1 = 0 and recasting
K3 as K1, recovers (10).

VI. PROOFS OF UPPER CONCAVE ENVELOPES PROPERTIES

A. Proof of Proposition 1

Property 1 follows by Jensen’s inequality since Sq
η is

concave in PX, while for Property 2 we use the fact that
PX|W,V = PX|V . To prove Property 3, fix PX and let η1, η2 ∈
(0, 2), α ∈ [0, 1] and ᾱ = 1 − α. Observe that

Sq
αη1+ᾱη2

(X)

= sup
PV |X:

V −X−(Y1,Y2)

I (X; Y2|V ) − (αη1 + ᾱη2)I (X; Y1|V )

≤ α · sup
PV |X:

V −X−(Y1,Y2)

I (X; Y2|V ) − η1 I (X; Y1|V )

+ ᾱ · sup
PV |X:

V −X−(Y1,Y2)

I (X; Y2|V ) − η2 I (X; Y1|V )

= αSq
η1

(X) + ᾱSq
η2

(X).

Clearly, Sq
η(X) is also bounded for every η ∈ (0, 2) and by

invoking Proposition 17 from [26, Ch. 5], we have that Sq
η(X)

is continuous inside every closed subinterval of (0, 2), and in
particular, at η = 1.

B. Proof of Proposition 4

Let V − (X1, X2) − (Y11, Y12, Y21, Y22) form a Markov
chain. We have,

tq1×q2
λ,η (X1, X2|V )

= λ1 I (X1, X2; Y11, Y12|V )

− (λ1+λ2)I (X1, X2; Y21, Y22|V ) + λ1Sq1×q2
η (X1, X2|V )

= λ1

[
I (X1, X2; Y11|V ) + I (X1, X2; Y12|V , Y11)

]

− (λ1 + λ2)
[

I (X1, X2; Y22|V ) + I (X1, X2; Y21|V , Y22)
]

+ λ1Sq1×q2
η (X1, X2|V )

(a)= λ1

[
I (X1; Y11|V , Y22) + I (X2; Y12|V , Y11)

+ I (Y11; Y22|Y11)
]

− (λ1 + λ2)
[

I (X2; Y22|V , Y11)

+ I (X1; Y21|V , Y22) + I (Y11; Y22|V )
]

+ λ1Sq1×q2
η (X1, X2|V )

(b)≤ λ1 I (X1; Y11|V , Y22) − (λ1 + λ2)I (X1; Y21|V , Y22)

+ λ1Sq1
η (X1|V , Y22) + λ1 I (X2; Y12|V , Y11)

− (λ1 + λ2)I (X2; Y22|V , Y11) + λ1Sq2
η (X2|V , Y11)

− λ2 I (Y11; Y22|V )
(c)≤ Tq1

λ,η(X1|Y22) + Tq2
λ,η(X2|Y11) − λ2 I (Y11; Y22|V )

(d)≤ Tq1
λ,η(X1) + Tq2

λ,η(X2) − λ2 I (Y11; Y22|V )

≤ Tq1
λ,η(X1) + Tq2

λ,η(X2), (68)

where:
(a) is since given V we have the Markov chain (Y11, Y21) −
X1 − X2 − (Y12, Y22);
(b) follows from Proposition 2 by the definition of Sq

η(·|·);
(c) is because (V , Y22)−X1−(Y11, Y21) and (V , Y11)−X2 −
(Y12, Y22) form Markov chains;
(d) follows by Remark 9 due to the Markov chains Y22 −X1−
(Y11, Y21) and Y11 − X2 − (Y12, Y22).

Now for (V �, X�
1, X�

2), an end-to-end equality holds in (68).
In particular, this implies that I (Y�

11; Y�
22|V �) = 0, i.e., that

Y�
11−V � −Y�

22 forms a Markov chain. By [16, Proposition 2],
we have that X�

1 − V � −X�
2, which further implies the Markov

chain

(Y�
11, Y�

21) − X�
1 − V � − X�

2 − (Y�
12, Y�

22). (69)

The end-to-end equality in (68) also gives

Tq1
λ,η(X

�
1)

= λ1 I (X�
1; Y�

11|V �, Y�
22) − (λ1 + λ2)I (X�

1; Y�
21|V �, Y�

22)

+ λ1Sq1
η (X�

1|V �, Y�
22)

(a)= λ1 I (X�
1; Y�

11|V �) − (λ1 + λ2)I (X�
1; Y�

21|V �)

+ λ1Sq1
η (X�

1|V �), (70)

where (a) follows because (69) implies that the chain Y�
22 −

V � − X�
1 − (Y�

11, Y�
21) is Markov. Similarly, it can be shown

that Tq2
λ,η(X

�
2) = tq2

λ,η(X
�
2|V �).

C. Proof of Proposition 5

Let V −(X1, X2)−(Y11, Y12, Y21, Y22) be a Markov chain.
We have,

fq1×q2
λ0,α,η(X1, X2|V )

= (λ2 − ᾱλ0)I (X1, X2; Y21, Y22)

− αλ0 I (X1, X2; Y11, Y12) + Tq1×q2
λ,η (X1, X2|V )

(a)= (λ2 − ᾱλ0)I (X1; Y21|V , Y22) − αλ0 I (X1; Y11|V , Y22)

− αλ0 I (Y11; Y22|V ) + (λ2 − ᾱλ0)I (X2; Y22|V , Y11)

− αλ0 I (X2; Y21|V , Y11) + (λ2 − ᾱλ0)I (Y11; Y22|V )

+Tq1×q2
λ,η (X1, X2|V )

(b)≤ (λ2 − ᾱλ0)I (X1; Y21|V , Y22) − αλ0 I (X1; Y11|V , Y22)

+Tq1
λ,η(X1|V , Y22) + (λ2 − ᾱλ0)I (X2; Y22|V , Y11)

−αλ0 I (X2; Y21|V , Y11) + Tq2
λ,η(X2|V , Y11)

− (λ0 − λ2)I (Y11; Y22|V )
(c)≤ Fq1

λ0,α,η(X1|Y22) + Fq2
λ0,α,η(X2|Y11)

− (λ0 − λ2)I (Y11; Y22|V )
(d)≤ Fq1

λ0,α,η(X1) + Fq2
λ0,α,η(X2) − (λ0 − λ2)I (Y11; Y22|V )

≤ Fq1
λ0,α,η(X1) + Fq2

λ0,α,η(X2), (71)

where:
(a) is similar to step (a) in the proof of Proposition 4;
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(b) uses Proposition 4 and the definition of Tq
λ,η(·|·);

(c) is because (V , Y22)−X1−(Y11, Y21) and (V , Y11)−X2−
(Y12, Y22) form Markov chains;
(d) follows by Remark 10 due to the Markov chains Y22 −
X1 − (Y11, Y21) and Y11 − X2 − (Y12, Y22).

For (V �, X�
1, X�

2) that satisfy (35), an end-to-end equality
holds in (71), implying that I (Y�

11; Y�
22|V �) = 0. Invoking

[16, Proposition 2], we deduce that X�
1 − V � − X�

2 forms a
Markov chain, which further implies the Markov chain

(Y�
11, Y�

21) − X�
1 − V � − X�

2 − (Y�
12, Y�

22). (72)

By the end-to-end equality in (68), we also have

Fq1
λ0,α,η(X

�
1)

= (λ2 − ᾱλ0)I (X�
1; Y�

21|V �, Y�
22) − αλ0 I (X�

1; Y�
11|V �, Y�

22)

+ Tq1
λ,α,η(X

�
1|V �, Y�

22)

(a)= (λ2 − ᾱλ0)I (X�
1; Y�

21|V �) − αλ0 I (X�
1; Y�

11|V �)

+ Tq1
λ,α,η(X

�
1|V �), (73)

where (a) uses (72), which implies that Y�
22 − V � − X�

1 −
(Y�

11, Y�
21) forms a Markov chain. Similarly, it can be shown

that Fq2
λ0,α,η(X

�
2) = fq2

λ0,α,η(X
�
2|V �).

D. Proof of Proposition 6

A key arguments in the proof of Proposition 6 is the
continuity of the nested UCE Tq

λ,η(X) =
(
Ctqλ,η

)
(X) in PX.

We shall establish this continuity using [16, Proposition 21],
which we reproduced as follows.

Proposition 10 (Boundedness and Continuity of UCE):
Consider the space of all Borel probability distributions on
R

t endowed with the topology induced by weak convergence.5

Let
{
Xn
}

n∈N
be a sequence of random variable that satisfies

the following two properties: (i) ∃ p > 1, B ∈ R such that
E‖Xn‖p ≤ B, ∀n ∈ N (i.e., the sequence has a uniformly

bounded pth moment); (ii) Xn
D−−−→

n→∞ X�. If g : R
t → R

is a bounded real-valued function that satisfies g(Xn) −−−→
n→∞

g(X�), then its UCE G = Cg is bounded and satisfies
G(Xn) −−−→

n→∞ G(X�).

Before proving Proposition 6 at the end of this subsection,
we first verify that Proposition 10 applies to Tq

λ,η(X). This
is done by showing that tqλ,η(X) is bounded and continuous,
as stated in the subsequent Lemma 2 and 3. The lemmas are
proven, respectively, in Appendices C-A and C-B.

Lemma 2 (Boundedness of Nested Concave Envelopes): For
η > 1 and λ1, λ2 > 0 there is a Bλ,η ∈ R, such that tqλ,η(X) ≤
Bλ,η, for all PX.

Lemma 3 (Continuity of Nested Concave Envelopes): Con-
sider the space of all Borel probability distributions on R

t

endowed with the topology induced by weak convergence and
let
{
Xn
}

n∈N
be a sequence of random variable that satisfies:

5A sequence
{

Xn
}

n∈N
of real-valued random variables is said to converge

weakly or, equivalently, converge in distribution to a random variable X if
limn→∞ FXn (x) = F(x), for every x ∈ R for which FX is continuous,
where FXn and FX are the cumulative distribution functions of Xn and X ,

respectively. This notion of convergence is denoted by Xn
D−−−−→

n→∞ X

(i) ∃ p > 1, B ∈ R such that E‖Xn‖p ≤ B, ∀n; (ii)

Xn
D−−−→

n→∞ X�. Then tqλ,η(Xn) −−−→
n→∞ tqλ,η(X

�).

Based on Lemmas 2 and 3, [16, Proposition 21]states that
Tq

λ,η(Xn) is bounded and that it satisfies Tq
λ,η(Xn) −−−→

n→∞
Tq

λ,η(X
�). The existence of a unique maximizer of Ṽλ0,α,η(K)

is established as follows. Let K̂ � 0 and define

ṽλ0,α,η(K̂) � sup
X: E[XX	]=K̂

fλ0,α,η(X)

= sup
X: E[XX	]=K̂

(λ2 − ᾱλ0)I (X; Y2)

− αλ0 I (X; Y1) + Tq
λ,η(X). (74)

Let
{
Xn
}

n∈N
be a sequence of random variables with

E
[
XnX	

n

] = K̂, such that fλ0,α,η(Xn) ↑ ṽλ0,α,η(K̂), as n → ∞.
By [16, Proposition 17] and since E

[
XnX	

n

] = K̂ for every
n ∈ N, we have that

{
Xn
}

n∈N
is a tight sequence,6 and that

there exist an X�
K̂

and a convergent subsequence
{
Xnm

}
m∈N

such that Xnm

D−−−−→
m→∞ X�

K̂
. Invoking [16, Proposition 18] once

more we have that h
(
Y j,nm

) −−−−→
m→∞ h

(
Y�

j,K̂

)
, for j = 1, 2,

where Y1,nm , Y2,nm , Y�
1,K̂

and Y�
2,K̂

are the corresponding
outputs. Thus,

fλ0,α,η(X�
K̂
) = ṽλ0,α,η(K̂). (75)

By the definition of Ṽ q
λ0,α,η(K), we write

Ṽ q
λ0,α,η(K) = sup

(V ,X): E[XX	]K,
V −X−(Y1,Y2)

fqλ0,α,η(X|V )

= sup
(V ,X): E[XX	]K,

V −X−(Y1,Y2)

∑

v

P(v)fqλ0,α,η(X|V = v).

(76)

Since Ṽ q
λ0,α,η(K) is a convex combination as above, to obtain

the maximizer subject to the covariance constraint it suffices to
restrict attention to the family of maximizers X�

K̂
, for K � 0.

Thus,

Ṽ q
λ0,α,η(K) = sup

{αi },{K̂i }: αi≥0∑
i αi=1,

∑
i αi K̂iK

∑

i

αi ṽ
q
λ0,α,η(K̂). (77)

It takes t (t+1)
2 constraints to preserve the covariance matrix

(due to its symmetry) and one other constraint to preserve∑
i αi ṽ

q
λ0,α,η(K̂). Hence, by using the Bunt-Carathedory the-

orem [28], we can restrict ourselves to convex combinations
of at most m � t (t+1)

2 + 1 points, i.e.,

Ṽ q
λ0,α,η(K) = sup

{αi },{K̂i }: αi ≥0∑m
i=1 αi =1,

∑m
i=1 αi K̂iK

m∑

i=1

αi ṽ
q
λ0,α,η(K̂). (78)

Consider any sequence of convex combinations{{
α

(n)
i

}
i∈[m],

{
K(n)

i

}
i∈[m]

}

n∈N

that approaches the supremum

6As defined in [16], a sequence of random variables
{
Xn
}

n∈N
taking values

in R
t is tight if for every ε > 0 there exists a compact set Cε ⊂ R

t , such
that P

(
Xn /∈ Cε

) ≤ ε, ∀n ∈ N.
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as n → ∞. The compactness of the m-dimensional simplex
implies that α

(n)
i −−−→

n→∞ α�
i , for all i ∈ [m]. Furthermore,

we have the following property of the limiting points α�
i ; see

Appendix C-C for the proof.
Lemma 4: For any i ∈ [m], if α�

i = 0 then
α

(n)
i ṽq

λ0,α,η

(
K(n)

i

) −−−→
n→∞ 0.

Based on Lemma 4, we assume that α� � mini∈[m] α�
i > 0,

which implies that K (n)
i  2

α� K uniformly in i ∈ [m], for large
enough n. Hence, for each i ∈ [m] we can find a convergent
subsequence

{
K(nk )

i

}
k∈N

, such that K(nk )
i −−−→

k→∞ K�
i . Putting

these together, we have

Ṽ q
λ0,α,η(K) =

m∑

i=1

α�
i ṽq

λ0,α,η(K
�
i ), (79)

i.e., one can always find a pair of random variables (V �, X�)
with |V�| ≤ t (t+1)

2 + 1, such that Ṽ q
λ0,α,η(K) = fqλ0,α,η(X

�|V �).

E. Proof of Proposition 7

Denote qY1,Y2|X � q and consider the two-letter BC
q(y11, y21|x1) × q(y12, y22|x2). We have

2Ṽ q
λ0,α,η(K)

(a)= fqλ0,α,η(X1|V1) + fqλ0,α,η(X2|V2)

(b)= fq×q
λ0,α,η(X1, X2|V1, V2)

(c)= fq×q
λ0,α,η(Xθ1, Xθ2 |Ṽ )

(d)≤ Fq×q
λ0,α,η(Xθ1, Xθ2)

(e)≤ Fq
λ0,α,η(Xθ1) + Fq

λ0,α,η(Xθ2)

( f )≤ Ṽ q
λ0,α,η(K) + Ṽ q

λ0,α,η(K) = 2Ṽ q
λ0,α,η(K), (80)

where:
(a) is because P�

V ,X achieves Ṽ q
λ0,α,η(K);

(b) uses the independence of (V1, X1) and (V2, X2);
(c) is a consequence of [16, Proposition 1] (namely, the invari-
ance with respect to rotation of the mutual information
between the input and output of an additive Gaussian channel);
(d) follows by the definition of the double-nested UCE;
(e) uses Proposition 5;
(f) is the definition of Ṽ q

λ0,α,η(K), while noting that the
independence of Xv1 and Xv2 , for every v1 �= v2 ∈ V , implies
that

E
[
Xθ1X	

θ1

] = E

[
1

2
E

[
XV1X	

V1

∣
∣∣Ṽ
]

+ 1

2
E

[
XV2X	

V2

∣
∣∣Ṽ
]]

= E
[
Xθ2X	

θ2

]
(81)

and

E
[
Xθ2 X	

θ2

] =
∑

v

P�
V (v)Kv = E

[
E
[
XX	∣∣V

]]  K,

where we have denoted Kv � E
[
XvX	

v

]
.

Since the extremes of the chain of inequalities in (80)
match, all inequalities are, in fact, equalities. Equality in
step (d) implies that PṼ |Xθ1 ,Xθ2

achieves Fq×q
λ0,α,η(Xθ1, Xθ2).

Furthermore, by Proposition 5, since (d) and (e) are equalities

we have that Xθ1 −Ṽ −Xθ2 , and that PṼ |Xθ1
and PṼ |Xθ2

achieve

Fq
λ0,α,η(Xθ1) and Fq

λ0,α,η(Xθ1), respectively. Finally, equality in

(f) means that Ṽ q
λ0,α,η(K) = Fq

λ0,α,η(Xθ j |Ṽ ) = fqλ0,α,η(Xθ j |Ṽ ),
for j = 1, 2.

F. Proof of Theorem 5

As a consequence of Proposition 7, for any fixed (v1, v2) ∈
V2, Xv1 +Xv2 and Xv1 −Xv2 are independent. Combined with
Xv1 and Xv2 being independent zero mean random variables,
Corollary 3 in Appendix I-A of [16] implies that Xv1 and
Xv2 are Gaussian random vectors with the same covariance
matrix. Since the pair (v1, v2) ∈ V2 is arbitrary, we see that
all Gaussian vectors {Xv}v∈V have the same covariance matrix.
Furthermore, we may assume that {Xv}v∈V are all centered,
and therefore, we get that this is an i.i.d. set of Gaussian
random variables. Denoting this common covariance matrix
by K�, it clearly satisfies K�  K. Letting X� ∼ N (0, K�),
we have

Ṽ q
λ0,α,η(K)

(a)= fqλ0,α,η(X|V )

(b)=
m∑

i=1

P�
V (vi )f

q
λ0,α,η(Xvi )

(c)=
m∑

i=1

P�
V (vi )f

q
λ0,α,η(X

�)

= fqλ0,α,η(X
�), (82)

where (a) follows since (V , X) ∼ P�
V ,X attains Ṽ q

λ0,α,η(K)
(Proposition 6), (b) follows by the definition of Xv in the
statement of Proposition 7, while (c) follows since X� and
Xvi are identically distributed, for every i ∈ [m].

To account for the uniqueness of the zero-mean maximizer
we first show that if a zero mean random vector X is a max-
imizer, i.e., Ṽ q

λ0,α,η(K) = fqλ0,α,η(X), it must be Gaussian. Let
X1 and X1 be two i.i.d. copies of X. Applying Proposition 7
while taking V to be a constant, we obtain that X1 + X2 and
X1 − X2 are also independent. Hence, by [16, Corollary 3], X
is Gaussian.

Next, suppose that Ṽ q
λ0,α,η(K) has two independent Gaussian

maximizers denoted by A1 ∼ N (0, K1) and A2 ∼ N (0, K2),
such that K1, K2  and K1 �= K2. Let (V , X) be a pair of
random variables, such that V ∼ Ber

( 1
2

)
on V = {1, 2},

X
∣
∣{V = 1

} ∼ N (0, K1) and X
∣
∣{V = 2

} ∼ N (0, K2).
Note that (V , X) also attains Ṽ q

λ0,α,η(K). Taking v1 = 1 and
v2 = 2, Proposition 7 implies that A1 + A2 and A1 − A2
are independent, which contradict Corollary 3 from [16] as
K1 �= K2.

G. Proof of Corollary 3

By Theorem 5, there is an X� ∼ N (0, K�), such that K� 
K and fqλ0,α,η(X

�) = Ṽ q
λ0,α,η(K). Let X′ ∼ N (0, K − K�) be

independent of X� and set X = X� + X′. Thus X ∼ N (0, K)
and by definition we have Fq

λ0,α,η(X) ≤ Ṽ q
λ0,α,η(K).

On the other hand,

Fq
λ0,α,η(X) = sup

PV |X:
V −X−(Y1,Y2)

fqλ0,α,η(X|V )
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(a)≥ fqλ0,α,η(X|X′)
(b)= fqλ0,α,η(X

�)

= Ṽ q
λ0,α,η(K), (83)

where (a) follows since X′ − X − (Y1, Y2) forms a Markov
chain, while (b) follows because X

∣∣{X′ = x′} ∼ X�+x′. Thus,

Ṽ q
λ0,α,η(K) = Fq

λ0,α,η(X)

= fqλ0,α,η(X
�)

= (λ2 − ᾱλ0)I (X�; Y2) − αλ0 I (X�; Y1)

+ Tq
λ,η(X

�). (84)

By Theorem 4, one can decompose X� into independent
X�

1 ∼ N (0, K1) and X�
2 ∼ N (0, K2), with K1 + K2  K�,

such that

Tq
λ,η(X

�) = tqλ,η(X
�
1 + X�

2) = V̂ q
λ,η(K

�), (85)

and

Sq
η(X�

1 + X�
2) = sq

η(X
�
1) = V q

η (K1 + K2). (86)

The proof of existence is concluded by setting X�
3 ∼

N (0, K3), where K3 = K� − (K1 + K2) and noting that
X = X�

1 +X�
2 +X�

3 +X′ ∼ N (0, K) and X� = X�
1 +X�

2 +X�
3 ∼

N (0, K�), which implies that (37) holds. The uniqueness of
the decomposition (i.e., of the covariance matrices K1, K2 and
K3) is a direct consequence of Theorems 3, 4 and 5.

VII. SUMMARY AND CONCLUDING REMARKS

The two-user MIMO Gaussian BC with common, private
and confidential messages was studied. The private message
to Receiver 1 is confidential and kept secret from Receiver 2.
The secrecy-capacity region without a common message was
characterized first and Gaussian inputs were shown to achieve
optimality. The proof relied on establishing an equivalence
between certain inner and outer bounds using factorization
of UCEs [16] and a variant of DPC [20]. Our results showed
that using DPC to cancel out the signal of the non-confidential
message at Receiver 1 exhausts the entire region, making DPC
against the signal of the confidential message unnecessary.

This secrecy-capacity region without a common message
was then used to characterize a portion of the region with
a common message. The rest of the region was found using
double-nested UCEs. The secrecy-capacity region without a
common message was illustrated using a numerical example.
To make the region (efficiently) computable, matrix decom-
position properties from [21] were leveraged. The region was
shown to be strictly larger than the secrecy-capacity region of
the MIMO Gaussian BC with confidential messages (in which
each private message is kept secret from the opposite user).

APPENDIX A
DERIVATION OF INNER AND OUTER BOUNDS

A. Outer Bounds 1 and 3

We first establish Bound 3 as an outer bound on the secrecy-
capacity region of the setting with a common message, and

then use it to establish Bound 1 as an outer bound on the
region without a common message.

The result of [23, Th. 3] characterizes an outer bound
RO(L1, L2) on the (L1, L2)-leakage-capacity region of a DM-
BC with common and private messages, for some leakage
thresholds (L1, L2) ∈ R

2+. Setting L1 = 0 and letting
L2 → ∞ in RO(L1, L2) (which corresponds to M1 being
confidential and M2 not being subject to any secrecy require-
ments), we have that the closure of the union of rate triples
(R0, R1, R2) ∈ R

3+ satisfying:

R0 ≤ min
{

I (W ; Y1), I (W ; Y2)
}

(87a)

R1 ≤ I (U ; Y1|W, V ) − I (U ; Y2|W, V ) (87b)

R1 ≤ I (U ; Y1|W ) − I (U ; Y2|W ) (87c)

R0 + R2 ≤ I (V ; Y2|W ) + min
{

I (W ; Y1), I (W ; Y2)
}

(87d)

R0 + R1 + R2 ≤ I (U ; Y1|W ) + I (V ; Y2|W, U)

+ min
{

I (W ; Y1), I (W ; Y2)
}

(87e)

over all (W, U, V ) − X − (Y1, Y2), is an outer bound on
C. By removing the rate bounds in (87c) and (87e) from
RO(0,∞), one recovers the region O from (54). Clearly
RO(0,∞) ⊆ O, which shows that C ⊆ O and establishes
Bound 3.

When there is no common message, one obtains Bound 1,
i.e., that Ĉ ⊆ Ô, by setting R0 = 0 into Bound 3. This follows
by noting that

I (V ; Y2|W ) + min
{

I (W ; Y1), I (W ; Y2)
} ≤ I (W, V ; Y2),

(88)

and defining Ṽ = (W, V ).

B. Inner Bounds 2 and 4

Referring to [23, Th. 1], we have RI(0,∞) as an inner
bound on C, where RI(0,∞) is the closure of the union of
rate triples (R0, R1, R2) ∈ R

3+ satisfying:

R0 ≤ min
{

I (W ; Y1), I (W ; Y2)
}

(89a)

R1 ≤ I (U ; Y1|W )− I (U ; V |W )− I (U ; Y2|W, V )

(89b)

R0 + R1 ≤ I (U ; Y1|W ) + min
{

I (W ; Y1), I (W ; Y2)
}

(89c)

R0 + R2 ≤ I (V ; Y2|W ) + min
{

I (W ; Y1), I (W ; Y2)
}

(89d)

R0 + R1 + R2 ≤ I (U ; Y1|W ) + I (V ; Y2|W ) − I (U ; V |W )

(89e)

+ min
{

I (W ; Y1), I (W ; Y2)
}

(89f)

over all (W, U, V )−X−(Y1, Y2). The inclusion I ⊆ RI(0,∞)
immediately follows by noting that if (R1, R2) satisfy (55)
then they also satisfy (89). A simple consequence of the above
is that Bound 2 is an inner bound on the secrecy-capacity
region without a common message, which follows by setting
R0 = 0 and W = 0 into Bound 4.
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APPENDIX B
PROOF OF LEMMA 1

First notice that (40) are supporting hyperplanes of ÔK and
that the points (HK

1 , 0) and (0,HK
2 ) are on its boundary.

Furthermore, R1 ≥ 0, R2 ≥ 0 and R2 ≤ HK
2 are also

supporting hyperplanes of ÎK, and since (0,HK
2 ) ∈ ÎK, it is

a boundary point of ÎK. Note that HK
1 describes the secrecy-

capacity of the MIMO Gaussian WTC, where User 1 serves
as the legitimate receiver and User 2 as the eavesdropper.
Therefore (see [7]–[9]),

HK
1 = 1

2
max

0K�K
log

∣
∣
∣I + G1K�G	

1

∣
∣
∣− log

∣
∣
∣I + G2K�G	

2

∣
∣
∣ .

(90)

To see that (HK
1 , 0) is also in ÎK consider the following. For

every 0  K�  K, let X1 and X2 be independent Gaussian
random vectors with covariances K� and K−K�, respectively.
Set

U = X1 + AX2

V = X2

X = X1 + X2,

where A = K�G	
1

[
I + G1K�G	

1

]−1 is the precoding matrix
for suppressing V from Y1 [20, Th. 1]. Evaluating the mutual
information terms on the RHS of (39a), we first have

I (U ; Y1) − I (U ; V ) = I (X; Y1|V ) = 1

2
log

∣
∣∣I + G1K�G	

1

∣
∣∣ .

(91)

Moreover,

I (U ; Y2|V ) = I
(
X1 + AX2; G2(X1 + X2) + Z2

∣
∣X2

)

= I (X1; G2X1 + Z2|X2)
(a)= I (X1; G2X1 + Z2)

= 1

2
log

∣
∣
∣I + G2K�G	

2

∣
∣
∣ , (92)

where (a) follows because (X1, Z2) and X2 are independent.
Combining (91) with (92) yields

I (U ; Y1) − I (U ; V ) − I (U ; Y2|V )

= 1

2
log

∣
∣
∣I + G1K�G	

1

∣
∣
∣− 1

2
log

∣
∣
∣I + G2K�G	

2

∣
∣
∣, (93)

which implies that (HK
1 , 0) ∈ ÎK. Furthermore, since (HK

1 , 0)

is on the boundary of ÔK and ÎK ⊆ ÔK, (HK
1 , 0) must also

be a boundary point of ÎK, and therefore, R1 ≤ HK
1 is a

supporting hyperplane of ÎK.

APPENDIX C
PROOF OF AUXILIARY RESULTS FOR

PROPOSITION 6 - LEMMAS 2 AND 3

A. Proof of Lemma 2

By Theorem 4, we have that if E
[
XX	]  K, then

V̂ q
λ,η(K) = tqλ,η(X

�), (94)

where X� = X�
1 +X�

2, and X�
1 and X�

2 are independent random
variables with X�

j ∼ N (0, K j ), for j = 1, 2, such that K� �

K1 + K2  K. Furthermore, by the definition of the UCE and
the definition of V̂ q

λ,η(K), (94) implies that for every X ∼ PX

with E
[
XX	]  K, we have

tqλ,η(X) ≤ Tq
λ,η(X) ≤ V̂ q

λ,η(K) = tqλ,η(X
�). (95)

Thus,

sup
X: E[XX	]K

tqλ,η(X)

≤ λ1 I (X�; Y1) − (λ1 + λ2)I (X�; Y2) + λ1Sq
η(X�)

(a)= λ1 I (X�; Y1) − (λ1 + λ2)I (X�; Y2) + λ1sq
η(X�

1)

(b)≤ λ1 I (X�; Y1) − (λ1 + λ2)I (X�; Y2) + λ1Cη, (96)

where (a) is by Theorem 4, while (b) follows from an
adaptation of [16, Proposition 19] to the function sq

η(X) as
defined in (17), which implies that for η > 1 there exists a
Cη, such that sq

η(X) ≤ Cη, for all PX (see Remark 8). By (96),
we have

sup
X

tqλ,η(X)

≤ sup
0K: X∼N (0,K)

λ1 I (X; Y1) − (λ1 + λ2)I (X; Y2) + λ1Cη.

(97)

Let 	 j = (G	
j Gj)

−1, j = 1, 2. For X ∼ N (0, K), we write

2λ1 I (X; Y1) − 2(λ1 + λ2)I (X; Y2)

= λ1 log |I + G1KG	
1 | − (λ1 + λ2) log |I + G2KG	

2 |
= λ1 log |I + KG1G	

1 | − (λ1 + λ2) log |I + KG2G	
2 |

(a)= −λ1 log |	1| + (λ1 + λ2) log |	2|
+ λ1

(
log |	1 + K| − λ log |	2 + K |), (98)

where (a) is by setting λ � λ1+λ2
λ1

> 1. To bound the last
two terms, we use the min-max theorem on eigenvalues: Let
μi (A) be the i th smallest eigenvalue of the symmetric matrix
A ∈ R

t×t , we have

μi (A) = min
Li

max
0 �=u∈Li

u	Au
u	u

= max
Lt+1−i

min
0 �=u∈Lt+1−i

u	Au
u	u

, (99)

where Li is an i -dimensional subspace of R
t . Since the t-

dimensional subspace of R
t is unique (that is, Lt = Rt ),

we obtain

μ1(A) = max
Lt

min
0 �=u∈Lt

u	Au
u	u

= min
0 �=u∈Lt

u	Au
u	u

(100a)

μt (A) = min
Lt

max
0 �=u∈Lt

u	Au
u	u

= max
0 �=u∈Lt

u	Au
u	u

. (100b)

The RHSs of (100) imply that for every non-zero u ∈
R

t we have μ1(A) ≤ u	Au
u	u ≤ μt (A). We upper and

lower bound the i th eigenvalue of K + 	 j , for j = 1, 2,
as follows

μi (K + 	 j ) = min
Li

max
0 �=u∈Li

(
u	Ku
u	u

+ u		 j u
u	u

)
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

≥ min
Li

max
0 �=u∈Li

(
u	Ku
u	u

+ μ1(	 j )

)
= μi (K) + μ1(	 j ),

≤ min
Li

max
0 �=u∈Li

(
u	Ku
u	u

+ μt (	 j )

)
= μi (K) + μt (	 j ).

(101)

Hence the eigenvalues of K + 	 j , j = 1, 2, satisfy

μi (K) + μ1(	 j ) ≤ μi (K + 	 j ) ≤ μi (K) + μt (	 j ), (102)

where i ∈ [t]. We now bound the last two terms in (98) as

log |	1 + K| − λ log |	2 + K |
=

t∑

i=1

log

(
μi (K + 	1)

μi (K + 	2)λ

)

(a)≤
t∑

i=1

log

(
μi (K) + μt (	1)

(
μi (K) + μ1(	2)

)λ

)

≤ t · max
i

log

(
μi (K) + μt (	1)

(
μi (K) + μ1(	2)

)λ

)

(b)≤ t · log

(
μ� + μt (	1)

(
μ� + μ1(	2)

)λ

)

, (103)

where (a) follows from by (101), and (b) is by setting μ� =
max

{
0, 1

1−λ

(
μ1(	2) − λμt (	1)

)}
and noting that μi (K) ≥ 0

and that the derivative of the function c(x) � log
(
x +

μt (	1)
)−λ log

(
x +μ1(	2)

)
is zero at x = μ�, negative when

x > μ� and positive when x < μ�. Since μt (	1), μ1(	2) > 0
(which holds since the positive semi-definite matrices 	1 and
	2 are invertible), we conclude that for every X ∼ PX

tqλ,η(X) ≤ −λ1 log |	1| + (λ1 + λ2) log |	2|

+ λ1 · t · log

⎛

⎝ μ� + μt (	1)
(
μ� + μ1(	2)

) λ1+λ2
λ1

⎞

⎠

� Bλ,η < ∞. (104)

B. Proof of Lemma 3

The proof of Lemma 3 follows immediately by an adap-
tation of [16, Proposition 20] (see Remark 8) and by
[16, Th. 5], which, respectively, imply that Sq

η(Xn) −−−→
n→∞

Sq
η(X�), and that h(Y j,n) −−−→

n→∞ h(Y�
j ), for j = 1, 2. Here

Y1,n and Y2,n are the outputs of the MIMO Gaussian BC
with input Xn .

C. Proof of Lemma 4

Let i ∈ [m] be such that α�
i = 0 and note that for every

K̂ � 0, we have

ṽq
λ0,α,η

(
K̂
) (a)= fqλ0,α,η

(
X�

K̂

)

(b)≤ λ2 I
(
X�

K̂
; Y2

)+ B̂λ0,α,η

≤ λ2

2
log

∣∣I + G2K̂G	
2

∣∣+ B̂λ0,α,η, (105)

where (a) follows from (75) and the non-negativity of mutual
information, while (b) is since Tq

λ,η(X) is bounded. Let
{
α

(nk )
i

}
k∈N

be a subsequence of
{
α

(n)
i

}
n∈N

, such that α
(nk )
i > 0

for every k ∈ N (if there is no such subsequence, the result of
Lemma 4 is immediate). Since α

(nk )
i K(nk )

i  K and α
(nk )
i > 0,

we obtain

K(nk )
i  1

α
(nk )
i

K, ∀k ∈ N. (106)

We thus conclude that

α
(nk )
i ṽq

λ0,α,η

(
K(nk )

i

)

(a)≤ α
(nk )
i

(
λ2

2
log

∣
∣I + G2K(nk)

i G	
2

∣
∣+ B̂λ0,α,η

)

(b)≤ α
(nk )
i

(
λ2

2
log

∣
∣
∣
∣∣
I + G2

K

α
(nk )
i

G	
2

∣
∣
∣
∣∣
+ B̂λ0,α,η

)

(c)= α
(nk )
i

⎛

⎝λ2

2

t∑

j=1

log

(

1 + μ j

α
(nk )
i

)

+ B̂λ0,α,η

⎞

⎠ −−−→
n→∞ 0,

(107)

where (a) and (b) follow from (105) and (106), respectively,
while (c) follows by denoting the eigenvalues of G2KG	

2 by
{μ j }t

j=1.

APPENDIX D
PROOF OF PROPOSITION 9

The proof relies on a result from [27, Corollary 2], which
we reproduce in the following.

Proposition 11 (Min-Max Interchange): Let 
d �{
λ ∈ R

d+
∣
∣
∣
∑d

i=1 λi = 1
}

be the d-dimensional simplex. Let P
be a set of distribution PU over a set U . Let

{
gi : P → R

}
i∈[d]

be a set of functionals such that

A �
{

a ∈ R
d
∣∣
∣∀i ∈ [d], ∃PU ∈ P, ai ≤ gi (PU )

}
(108)

is a convex set. Then

sup
PU ∈P

min
λ∈
d

d∑

i=1

λi gi(PU ) = min
λ∈
d

sup
PU ∈P

d∑

i=1

λi gi(PU ). (109)

Let d = 2 and P be the set of PDFs PW,V ,U,X that satisfy
E
[
XX	]  K. Set

g1
(
PW,V ,U,X

)

= λ0 I (W ; Y1) + λ2 I (V ; Y2|W )

+ λ1

[
I (U ; Y1|W ) − I (U ; V |W ) − I (U ; Y2|W, V )

]

(110a)

g2
(
PW,V ,U,X

)

= λ0 I (W ; Y2) + λ2 I (V ; Y2|W )

+ λ1

[
I (U ; Y1|W ) − I (U ; V |W ) − I (U ; Y2|W, V )

]
,

(110b)

and consider the corresponding set A from (108). To show
that A is convex, let (a1, a2), (b1, b2) ∈ A and Pa, Pb ∈ P be
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two distributions, such that ai ≤ gi (Pa) and bi ≤ gi(Pb), for
i = 1, 2. Fix α ∈ [0, 1] and consider a distribution P given by

P(w, v, u, x) = αPa(w, v, u, x) + ᾱPb(w, v, u, x), (111)

for all (w, v, u, x) ∈ W × V × U × X n . Equivalently, P can
be represented by setting W̃ = (Q, W ), where Q ∼ Ber(α),
and denoting P � PW̃ ,V ,U,X = P(Q,W ),V ,U,X, for which

P(Q,W ),V ,U,X
(
(0, w), v, u, x

) = αPa(w, v, u, x) (112a)

P(Q,W ),V ,U,X
(
(1, w), v, u, x

) = ᾱPb(w, v, u, x), (112b)

for all (w, v, u, x) ∈ W × V × U × X n . First note that

EP
[
XXT ] = αEPa

[
XXT ]+ ᾱEPb

[
XXT ]  K, (113)

where EQ denotes that an expectation is taken with respect
to Q. This implies that P ∈ P .

Next, by evaluating gi , i = 1, 2, with respect to P , we have

gi (P) = λ0 IP (W̃ ; Yi ) + λ1

[
IP (U ; Y1|W̃ ) − IP (U ; V |W̃ )

− IP (U ; Y2|W̃ , V )
]

+ λ2 IP (V ; Y2|W̃ )

= λ0 IP (Q; Yi ) + αgi (Pa) + ᾱgi (Pb)

≥ αai + ᾱbi , (114)

implying that α(a1, a2) + ᾱ(b1, b2) ∈ A, which establishes
the convexity of A. In the above, IP indicates that a mutual
information term is taken with respect to an underlying distri-
bution P . The proof of Proposition 9 is completed by invoking
Proposition 11, while noting that for every tuple of random
variables (W, V , U, X), with (W, V , U) − X − (Y1, Y2) and
E
[
XX	]  K, the minimum

min
α∈[0,1]

{
λ0

[
α I (W ; Y1) + ᾱ I (W ; Y2)

]

+ λ1

[
I (U ; Y1|W ) − I (U ; V |W ) − I (U ; Y2|W, V )

]

+ λ2 I (V ; Y2|W )
}

is attained by either α = 0 or α = 1.
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