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Abstract— We consider finite state channels, where the state of
the channel is its previous output. We refer to these as Previous
Output is the STate (POST) channels. We first focus on POST(a)
channels. These channels have binary inputs and outputs, where
the state determines if the channel behaves as a Z or an §
channel, both with parameter «. We show that the nonfeedback
capacity of the POST(«) channel equals its feedback capacity,
despite the memory of the channel. The proof of this surprising
result is based on showing that the induced output distribution,
when maximizing the directed information in the presence of
feedback, can also be achieved by an input distribution that does
not utilize the feedback. We show that this is a sufficient condition
for the feedback capacity to equal the nonfeedback capacity for
any finite state channel. We show that the result carries over
from the POST(«) channel to a binary POST channel, where the
previous output determines whether the current channel will be
binary with parameters (a, b) or (b, a). Finally, we show that, in
general, feedback may increase the capacity of a POST channel.

Index Terms— Causal conditioning, convex optimization,
channels with memory, directed information, feedback capacity,
finite state channel, KKT conditions, POST channel.

I. INTRODUCTION

HE capacity of a memoryless channel is very well

understood. There are many simple memoryless chan-
nels for which we know the capacity analytically. These
include the binary symmetric channel, the erasure channel, the
additive Gaussian channel and the Z Channel. Furthermore,
using convex optimization tools, such as the Blahut-Arimoto
algorithm [1], [2], we can efficiently compute the capacity of
any memoryless channel with a finite alphabet. However, in the
case of channels with memory, the exact capacities are known
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Fig. 1. POST(a): If y;_1 = O then the channel behaves as a Z channel
with parameter a and if y;_; = 1 then it behaves as an § channel with
parameter o.

for only a few channels, such as additive Gaussian channels
(water filling solution) [3], [4] and discrete additive channels
with memory [5]. In cases where feedback is allowed, there
are only a few more cases where the exact capacity is known,
such as the modulo-additive noise channel, the additive noise
channel where the noise is a first-order autoregressive moving-
average Gaussian process [6], the trapdoor channel [7], and the
Ising Channel [8]. If the state is known at the decoder, then
knowledge of the state at the encoder can be considered as
partial feedback, as considered and solved in [9] and [10].

In this paper we introduce and study a new family of
channels that we refer to as “POST channels”. These are
simple Finite State Channels (FSCs) where the state of the
channel is the previous output. In particular, we focus on a
family of POST channels that have binary inputs {X;};>; and
binary outputs {Y;};> related as follows:

if X; =Y;_1, thenY; = X;,
else Yi=X;®Z;, where Z; ~Bernnouli (a).

We call these channels POST(a) and their behavior is
depicted in Fig. 1. When y;_; = 0, the current channel
behaves as a Z channel with parameter o and when y;_1 =1,
it behaves as an S channel with parameter a. We refer to
POST(%) as the simple POST channel.

The simple POST channel is similar to the Ising channel
introduced by Berger and Bonomi [11], but rather than the
previous input being the state of the channel, here the state
of the channel is the previous output. This channel arose
in the investigation of controlled feedback in the setting of
“to feed or not to feed back” [12]. The POST channel can
also be useful in modeling memory affected by past channel
outputs, as is the case in flash memory and other storage
devices.

In order to gain intuition for investigating the influence of
feedback on the simple POST channel, let us first consider a
channel with binary i.i.d. states S;, distributed Bernoulli(%),
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Fig. 2. A channel similar to the simple POST channel, except that the channel
state, {S;}i>1 is i.i.d. Bernoulli(lf) independent of the input.

where the channel behaves similarly to the simple POST
channel. When S;_; = 0, then the current channel behaves as
a Z channel and when S;_; = 1, it behaves as an S channel,
as shown in Fig. 2. Similar to the POST channel, we assume
that the state of the channel is known to the decoder; hence
the output of the channel is (Y;, S;) (or, equivalently from a
capacity standpoint, (¥;, S;—1)).

The non feedback capacity of this channel is simply
C = maxp(y) I (X; Y, S) and, because of symmetry, the input
that achieves the maximum is Bernoulli(%), resulting in a
capacity of H(3) — 4 = 0.3111, where Hj(p) is the binary
entropy function. However, if there is perfect feedback of
(Y;, S;) to the encoder, then the state of the channel is known
to the encoder and the capacity is simply the capacity of
the Z (or S) channel, which is Hy(1) — 2 = —log, 0.8 =
0.3219. Evidently, feedback increases the capacity of this
channel.

The similarity between the channels may seem to hint that
feedback increases the capacity of the POST(a) channel as
well. Indeed, our initial interest in this channel was due to
this belief, in our quest for a channel with memory that would
be amenable to analysis under the “to feed or not to feed”
framework of constrained feedback in [12], while exhibiting
non-trivial dependence of its capacity on the extent to which
the feedback is constrained. However, numerical results based
on the computational algorithm devised in [12] suggested that
feedback does not increase the capacity of the simple POST
channel. This paper stemmed from our attempts to make sense
of these observations.

In order to prove that feedback does not increase the
capacity of some families of POST channels, we look at
two convex optimization problems: maximizing the directed
information over regular input distributions (non feedback
case), i.e., P(x") and, secondly, over causal conditioning that
is influenced by the feedback i.e., P(x"||y"~!). We show that
a necessary condition for the solutions of the two optimization
problems to achieve the same value is that the induced output
distributions P(y") by the respective optimal values P*(x")
and P*(x"||y"~") are the same. This sufficient condition that
we establish, in the generality of any finite state channel,
follows from the KKT conditions [13, Ch. 5] for convex
optimization problems.
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The remainder of the paper is organized as follows.
In Section II, we briefly present the definitions of directed
information and causal conditioning pmfs that we use through-
out the paper. In Section III, we show that the optimization
problem of maximizing the directed information over causal
conditioning pmfs is convex. Additionally, using the KKT
conditions, we show that if the output distribution induced by
the conditional pmfs that achieve the maximum in the presence
of feedback can also be induced by an input distribution that
does not use feedback, then feedback does not increase the
capacity. In Section IV we compute the feedback capacity of
the POST(a) channel. Then we apply the result of Section III
to show that it equals the non feedback capacity by establish-
ing the existence of an input distribution without feedback that
induces the same output distribution as the capacity achieving
one for the feedback case. In Section V we consider a binary
POST(a, b) channel with two states; in each state there is a
binary channel and the channels have opposite parameters. The
binary POST(a, b) channel generalizes the POST(a) channel
and we show that feedback does not increase capacity for this
considerably larger class of channels as well. In Section VI,
we show that, unlike the POST(a, b), feedback may increase
the capacity of POST channels in general. In Section VII, we
conclude and suggest some directions for further research on
the family of POST channels.

II. DIRECTED INFORMATION, CAUSAL
CONDITIONING AND NOTATIONS

Throughout this paper, we denote random variables by
capital letters such as X. The probability Pr{X = x} is denoted
by p(x). We denote the whole vector of probabilities by
capital P, i.e., P(x) is the probability vector of the random
variable X.

We use the causal conditioning notation (-||-) developed by
Kramer [14]. We denote by p(x”||y"~%) the probability mass
function of X" = (X1, ..., X,), causally conditioned on yn—d
for some integer d > 0, which is defined as

n
peMly" ™ = plrlx™", ). 8]
i=1
By convention, ifli < d, then yi_d is set to null, i.e., if i < d
then p(x;|x'~", yi=9) is just p(x;|x'~"). In particular, we use
extensively the cases d = 0, 1:

peMly™) =[] pllx™", ¥, 2)
i=1
pay" ™ = [ k™", ¥ h. 3)

i=1
The directed information was defined by Massey [15],

inspired by Marko’s work [16] on bidirectional communica-
tion, as

I(X" = ¥") = > I(X; |y, 4)

i=1
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The directed information can also be rewritten as

I(Xn — Yll)
- pOY"1x")
=> p&" Iy Hp (" lIx") log .
x" yn Zx" p(xn“yn_l)p(yn”xn)

(&)

This is due to the definition of causal conditioning and the
chain rule

p&",y") = pG Iy pOrIx"). (©6)

We will make use the fact that directed information
I(X" — Y™")is concave in P(x"||y"~!) for a fixed P(y"||x"),
which is proved in Lemma 15 in Appendix A.

Directed information characterizes the capacity of point-to-
point channels with feedback [10], [17]-[19]. For channels
where the state is a function of the output, of which the
POST channel is a special case, it was shown [7], [10] that
the feedback capacity is given by

1
Crp= lim — max [(X"—>7Y"). @)

n—-oon P(x”||y"_l)

On the other hand, without feedback the capacity is given by

C = lim 1 max [ (X" — Y"), 8)
n—00 n P(x")
since the channel is indecomposablel [20]. In the case
where there is no feedback, namely, the Markov form
X; — X! — yi=1 holds, I(X" — Y™ = I[(X";Y"), as
shown in [15].

III. MAXIMIZATION OF THE DIRECTED INFORMATION
AS A CONVEX OPTIMIZATION PROBLEM

In order to show that feedback does not increase the capacity
of POST channels, we consider the two optimization problems:

max (X" —Y") )

P(x"|[y=1)
and

max I (X" — Y").

1
max (10)

In this section, we show that both problems are convex
optimization problems, and use the KKT condition to state
a sufficient condition for the two optimization problems to
obtain the same value.

A convex optimization problem, as defined in [13, Ch. 4],
is a problem of the form

11

minimize fo(x)
subject to fi(x) <b; i=1,...,k
gix)y=0 j=1,...,1

'An indecomposible FSC is a FSC for which the influence of the initial state
on the conditional probability dies away with time [20, Ch. 4]. A sufficient
and necessary condition [20, Th. 4.6.3] that the channel is indecomposable
is that for a fixed n, and for each x”, there exists an s, that may depend
on x™ such that P(s,|x",sg) > O for all sg. Trivially, for the channels that
are investigated in this paper (the POST(a) where oo > 0 or POST(a, b)
where a > 0 and b > 0), if we choose n = 1 and 5| = x| we obtain that the
condition holds for all sq.
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where fo(x) and {fi(x)}f.‘:1 are convex functions, {g; (x)}lj:1
are affine, and the minimization is over x.

In order to convert the optimization problem in (9) into a
convex optimization problem, as presented in (11), we need
to show that the set of conditional pmfs P (x"||y"~!) can
be expressed using inequalities that contains only convex
functions and equalities that contains affine functions.

Lemma 1 (Causal Conditioning is a Polyhedron): The set
of all causal conditioning distributions of the form
P(x™||y""Y) is a polyhedron in RIXVI and is given by
a set of linear equalities and inequalities of the form:

n—1

pG"lly"™h =0, var, yn ol

lefl_'_l p(-xn“yn_l): yx[,yi_l’ in’ yn_lai = 1’

S Gy =1, vyl
Note that the two equalities in (12) may be unified into
one if we add i = 0 to the equality cases and we restrict
the corresponding y to be unity. Furthermore, for n = 1 we
obtain the regular vector probability, i.e., p(x) > 0, Vx and
>, Px)=1

Proof: 1Tt is straightforward to see that every causal con-
ditioning P (x"||y™) satisfies these equalities and inequalities.
Now, we need to show that if an element in RIX"Y"™" call
it P(x"||y""1), satisfies (12), then P(x"||y"~") is a causal
conditioning pmf, namely, there exists a sequence of regular
conditioning {P (x; |x"_1,y"_1)}?=1 such that p(x"||y"~!) =
[T pCrilx™=t yi=h.

Let us define for all x’, y

12)

i—1

a Do pO1Y"H
ni p |yt
i yi—l1
_ Taiy 13)

ci—1 yi=2
XY

Pl yih

when Pxi-l,yi-2 > 0 and zero otherwise. Now, note that the
vector probability P(x;|x'~!, yi~!) defined in (13) satisfies
pxi)xi=1, yi=1y > 0, and I p(xi|x=1, yi=1) = 1. Further-
more, observe that

n

n
; . i yi—1
Hp(xi|xl_l’ yl_l) = 73}" 24
i=1 im1 yxi—l’y[—Z
o yxn’yn—l
1
= yxn,ynfl
= pE"|ly"™", (14)
when y,i -1 > 0 for i = 1,...,n, and if for some i,
Vxiyi-t = 0, it implies that plxi|xi=1 yi=1y = 0 and
pGlly"=t) =o. -

Note that the optimization problem given in (9) is a convex
optimization one since the set of causal conditioning pmfs is a
polyhedron (Lemma 1) and the directed information is concave
in P(x"||y"~") for a fixed P(y"||x") [21, Lemma 2]. There-
fore, the KKT conditions [13, Ch. 5.5.3] are necessary and
sufficient. The next theorem states these conditions explicitly
for our setting.

Theorem 2 (Conditions for Max. the Directed Information):
A set of necessary and sufficient conditions for an input
probability P(x"||y"~") to achieve the maximum in (9) is
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that for some numbers fyn-1, Vx", ynl

p(y"[|x")
z "1
p("Ix")log —— PO

pO™Ix™)
ep(y")

= By, if pG"ly"™) >0,

if p"|ly" =0

5)

where p(y") = > a p("|Ix)px"||y" ") and e ~ 2.718 is
Euler’s number. Furthermore, the maximum is given by

I(X" > Y") =D Bu+1.
yn—l
For n = 1 we obtain a known result proved by Gallager
[20, Th. 4.5.1] that states that a sufficient and neces-
sary condition for P*(x) to achieve maxp(y) I(X;Y) is
that

> p(" ") log

Vn

S ﬁy”*l’

(16)

max
P(xn|yn=h

S poioe 28 _ e veit w0, an)
S r()

and
> pomios 22 <o vrit i =0, a8)
> 6))

for some C. Furthermore, C = maxp(y) [ (X;Y).

Proof: Using the fact that a causal conditioning pmf is
a polyhedron (Lemma 1), we can write the maximization of
the directed information as a standard convex optimization
problem:

minimize
_ pOY"[x")
- pIy" (1K) log
xnzv:n 2o PGy =D p (X
(19)
subject to
—p("|ly"") <0, v,y (20)
D pEMYT) =y =0, vl yThi= 1 @D
Xy
> pG Iy =1, vyl (22)
Xn
The Lagrangian is defined as
L= | PG 1"
=D "Iy p(y k") log
Z‘ 2 PGy =D p(yn1xm)
= D i pPy"Y
xn }n 1
+Z Z Vi ynl Zp(x Y"1 =y, yinl
i= 1xl =l 1+1
D vy [ 2 PGy = 1), (23)
yn—l xn
where /‘an’yn—l > 0. The KKT conditions for this problem
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are
9o =0, Vx" y"!
op(xnlyn=hy 7 ’ ’
o ey,
Oy i, yi-1
ixn,ynfl 2 O,

lxn’y"ilp(xn”yn—l) — O, Vxn’ yn—l

V' yn—l

(24)

and that P(x"||y""'") is a valid causal conditioning pmf,
namely, satisfies the constraint of (19). Now, we need to
show that the KKT conditions described above are equivalent
to (15). Let us compute the derivatives in order to write the
conditions in (24) more explicitly:

oL
op(xm|ly"=1h
= — > p("|Ix") log P(y"||x")
Yn
=S PO IIx") log 1
» 2o POy P (™)

pOy"|x")
> DE YD p(ym1XM)

+ > pE"y" PG ™)

/)
XM, yn

n
—ixn’ynfl + z in’ynfl + \)ynfl
i=0
pO"Ix™)
=—> p("IIx")log
Yn

> Iy p (" |x™)

n
+ Zp(y"llxn) - /lxn’yn—l + zvxi’),nfl + V-t

Yn i=0
pOY"Ix™)
= - Zp(y ||xn) log lxn,yn—l
- ep(y")
+ zvxi,yn—l =+ Vynfl (25)
var yt (26)

8yxz i—1

Hence, the KKT conditions given in (24) become Vx", yn=l
pO"I1x")

> p("lIx") log ———— e if P(:"[1y"~") >0,
Yn

" " | .
S 07" log 2 S iy =0,

Yn

27)

which is exactly (15). Now, to obtain (16) we use (27) and
observe that

PIpWCLTER I WL ”(y(“x))

xn Y= 1
—ZZp(x Iy~ vyt

xn n 1

(28)
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Indeed, the LHS of (28) equals to I(X" — Y") — 1. The
RHS equals to Zyn—l Vyn-1, since D p"[Iy*™") =1 for
all y”_1 and, therefore, (28) implies that (16) holds. [ |

The next corollary is the main tool we use in this paper to
prove that the feedback capacity and the non feedback capacity
of a channel are equal.

Corollary 3: Let P*(x"||y"™") be a pmf that all its
elements are nonnegative and that achieves the maximum of
max p () yn-1y [(X" — Y"), and let P*(y") be the output
probability induced by P*(x"||y"~"). If for any n there exists
an input probability distribution P(x") such that

PrO") =D PO I pE™), (29)
o
then the feedback capacity and the nonfeedback capacity are
the same.

Proof: Note that the sufficient and necessary condition
given in (15) depends only on the channel causal conditioning
pmf P(y"||x") and the output pmf P(y"). Furthermore, note
that if (15) is satisfied then

Zp(y 1) 10g 27D “,1))—Zﬁvn LoV (G0)

and since for the non-feedback case p(y"||x") = p(y"|x"),
vV (x", y™"), we obtain

p(y"Ix")
> pO M log == = > B, WaT. (B)
= ep(y") o

This means that the KKT conditions of maxp(n I(X"; Y")
are satisfied. Furthermore, the maximum value for both opti-
mization problems is Zy,,_| ﬂynq + 1 and, therefore, they are
equal. [ |

IV. CAPACITY OF THE POST(a) CHANNEL WITH
AND WITHOUT FEEDBACK

Lemma 4 (Feedback Capacity): The feedback capacity of
the POST(a) channel is the same as of the memoryless Z
channel with parameter a, which is C = —log, ¢ where

c=+aai), (32)

and & £ 1 —a.

The behavior of the capacity as a function of « is depicted
in Fig. 3. Proof of the achievability and the capacity of Z
channel with parameter o: the achievability proof is trivial
since both the encoder and the decoder know if the channel
behaves as a Z or an S channel. The input probability that
maximizes the mutual information, i.e. argmaxp, I (X; Y), for
the memoryless Z channels with parameter a is

P(x:l):ca% P(x:O)ZC(l—a%), (33)

where ¢ is a normalization coefficient and is given in (32).
The output probability for the Z channel with parameter o is
Py=1)=aPkx= 1) = caad

Py=0)=1 — can =c. (34)
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Fig. 3. The capacity of the POST(a) channel with and without feedback.
This is also the capacity of the Z channel with parameter a.

The capacity of the Z channel with parameter o is

C = rr})ax I(X;Y)=—log,c, (35)
X

which is also an achievable rate for the POST(a) channel with

feedback. [ |

Proof of Converse: The upper bound is given in the follow-

ing set of equalities and inequalities:
Crp

1
9 Jim  max —I(X" - Y"
n=>00 p(anyi=l) 1

D lim  max —I(X” — YY)
n—o0 P(x"||y"— 1) n

= lim max ZH(YlY‘ Y Hy; )Y, XY

n—o0 P(xnllyn ]) n

A=

< lim  max ZH(Y|Y, ) — HYilYi1, Xi)

n—=>00 p(xn||y"~1) n
= lim max ZP(yl = 0)1(X;; Yilyi-1 = 0)
n—o0o P(xnllvn ]) n

+P(yi = DI(X;; Y |Yl 1=1)

@
li — P(yi=0)I1(X;; Y =0
0 5, 2 PO =D =0
+P(yi = DI(X;; Yl|yl—1 =1)

= POy =0)I1(X;;Yilyi-1 =0
o (i =0)1(Xi; Yilyi-1 = 0)
4+ max P(y; = DI(X;; Yi|lyi—1 = 1), for some i

P(xilyi-1=1)
9 _ P =0)logyc— P(yi = 1) log, c,
= —logyec, (36)

where (a) follows from the capacity formula given in [10]
and [19], (b) from the inequality /(X" — Y") — I(X" —
Y"S)| < H(S) [19, Lemma 4], (c) from the fact that
conditioning reduces entropy and from the Markov chain
Yi — (X, Yi—1) — (X7, YI=2), (d) from the fact that the set
of causal conditioning P(x"||y"~!) is equivalent to the set
of {P(x;|x'~!,y"~1)} and in this particular case it’s enough
to maximize only over {P(x;|y;—1)} because of the objective.
Finally, Step (e) follows from the capacity of the memoryless
Z-channel with parameter a. [ |
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TABLE I
CONDITIONAL PROBABILITIES P (Y1|X{, sop = 0) (ON LEFT) AND
P(Y{|X1,s9 = 1) (ON THE RIGHT) OF THE

POST(a) CHANNEL
X1
Y, 0 1
0 1 a
1 0 a
X1
Y 0 1
0 a 0
1 « 1
TABLE II
CONDITIONAL PROBABILITIES P(Y2[|X2, sg = 0)
X1X5
Y1V, 00 01 10 11
00 1 « « o?
01 0 a 0 ad
10 0 0 a? 0
11 0 0 aq Q

Note that the induced Y; is a Markov chain with transition
probability caai (as X; depends on the past X'~ ¥~! only
through Y;_1). Now, we are interested in expressing the condi-
tional pmf of the POST(a) channel recursively. This recursive
formula will be used later to find an input distribution that
does not utilize the feedback for the case of a POST Channel
without feedback and achieves the same output distribution,
namely, a Markov chain with transition probability caat.

Table I presents the conditional pmf of a POST(a) channel
when n = 1. Let us denote by P, o and P, 1 the conditional
matrices of the channel given the respective initial state, i.e.,
5o is 0 and 1, respectively. Namely,

P("[|x", 50 = 0)
P(y"|Ix", so = 1).

Pn,O
Pn,l

(> 1>

(37

The columns of the matrices P, and P, are indexed by
x" = (x1,x2,...,x,) and the rows by y" = (y1, 2, ..., Yn)
arranged via lexicographical order, where x; and y; are the
most significant bits and x,, and y, are the least significant bits.
For instance, the conditional probabilities P(yi|x1,so = 0)
and P(y1|x1,s0 = 1) are given in Table I. Hence, P, and
Py,1, for n =1, are given by

1 o 0
S I

Table 11 presents P(y?||x2, so = 0) and the corresponding
matrix P, is given in eq. (39).

(38)

1 2

(¢4 (04 o
0 a 0 oaa«a
Pro=109 0 a o (39)
0 0 aa «a
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From the channel definition, the following recursive relation

holds
{1 Picro a-Pai1po
Puo = [0~ Pi_11 a- Pn—l,l] (40
and
0_!'Pn_[() O'Pn—]()
P, = ’ > 41
n1 [a‘Pn—l,l 1- P11 | “1

where Ppo = Pp,1 = 1 (i.e., the one by one unit matrix).
Recall that the output process {Y;};>1 induced by the input
that achieves the feedback capacity, is a binary symmetric
Markov chain with transition probability c&a%, see (34). Let
po(y™) and pi(y") denote the probability of y" given the
initial state O and 1, respectively. Hence, for n = 1 we have

poy1=0=pin=1)=c

po(yi =1) = pi(y1 = 0) = caas. 42)

Forn > 2,

PoGnly"™H) = p1Only"™") = py,_ ) (43)

Now, we present this Markov process in a recursive way.
Recall that P(y") is represented as a (column) probability
vector of dimension 2"

Lemma 5 (pmf Vector Representation of Markov Processes):
Let Y" be binary symmetric Markov with transition
probability 0. Let Py(y") and P1(y") be the vector pmf when
the intial state is O and 1, respectively. One can describe the
vector pmf using the following recursive relation

SPy(y"! SPy(y"!
PO(yn):[éP?gn—I;] and Pl(yn):[EP?Ein_I;} (44)

where Py(y?) = P1(y%) = 1, and [lbj] denotes the column

vector obtained by concatenating the two column vectors
u and v.
Proof: We prove this claim by induction. Note that, for
n =1 (44) implies
poy1=0) = piy1=1) =0
poly1=1) = pi(y1 =0) =24. (45)

Now, we need to show that, regardless of the initial state, (43)
holds. Assume y; = 1 and the initial state is 0, then for any yj

Po(y")
po(y" 1
_po(1,y3)

po(ynly"™") =

po(L,y5™h

_ opi(yy

S onOsTh
_ ny;
Cposh

= p1Oulys™h. (46)
In a similar way we obtain for any y; and any initial state

Ponly" ™ = pr(aly™™") = py, (anyZ_l)- 47)
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By repeating the procedure in (46) i times, we obtain that for
1 <i <n and Vyj

Poaly"™) = prOuly"™) = py GulyiTH. (@8)

Now, note that choosing i = n — 1 we obtain (43), which
means that the process is indeed Markov with transition
probability J. u

The following is our first main result:

Theorem 6: Feedback does not increase the capacity of the
POST(a) channel.

Proof: According to Corollary 3, in order to show that
the nonfeedback capacity equals the feedback capacity, it
suffices to show that there exists an input pmf P(x")
that induces the optimal P*(y") of the feedback case,
which is the binary symmetric Markov chain with transition
probability caa .

We will now find such a pmf by calculating Py(x") =
Pn_,llPl*(y") and Py(x") = P,;(%Pg(y") and verifying that
Po(x™) and P;(x") are indeed a valid pmf. Recall that when
A and D are invertible,

-1 -1 -1 -1
A B A —A'BD
[0 D] _[ 0 D1 } (49)
Hence,
- ~1
p-l 1- P10 a-Pi1p
00 Poot @ Py
oo Capt T
— n61,0 locP_nl—],l (50)
L a n—1,1 ]
- _ —1
p-l_ | P10 O0-Pi1p
nl 7 la Pocin 1- Py
- 2
o 0
=| S o (51)
altn-10 Ta-11 |

Now we compute Pj(x") and Py(x").

Po(x") = P,y Po(y")
—¢p! cPF(y™h }

-1
Pn—l,O a’ n—1,1
0 éPn__ll’l co'caaT'Pl*(y”_l)
_. [ Po(x"1) — a7 P, (x"_l)j|

ai Py(x"h

Pi(x") = P, PF(Y")

_ P10 0 caai Py(y"")
_%Pn_—ll,() Pn_—ll,l cPi(y")

a%Po(x"_l)
= C 5
Pi(x"") —a# Py(x" )

where Py(x?) = P;(x0) = 1.

Now, we need to show that the probability expressions are
valid, namely, nonnegative and sum to 1. The fact that they
sum to 1 can be seen from the recursion immediately by
verifying that clai +1— a%) =1

(52)

(53)
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In order to show the nonnegativity we need to show that

Pox"™™) = ai Py (x") >0

P — a7 Py(x" 1) > 0. (54)

For n = 1 this is true since a% < 1lfor0 <a <1
(see Lemma 16 in the appendix). The following lemma
(Lemma 7) states that if (54) holds for n — 1 it also holds
for n and, by induction, we conclude that (54) holds for
all n. 1 [ |

Lemma 7: There exists a 1 < B < a~ @, for which the
condition

BRI = py(x™ Y, vl

BPo(x"Y = Pi(x" ), vatTl (55)
implies
BPI(x") = Py(x™), Vx",
BPy(x") = P (x"), Vx". (56)

Proof: Let’s assume that (55) holds and we need to show
that (56) holds, which is equivalent to showing the following
four inequalities:

B (cPo(x"_l) - ca%Pl (x”_l)) > ca%Pg(x”_l), (57)
peat Pi(x""") = ePy(x" ") — cat Py(x" ), (58)
peat Pyx") = cPo" ) —cat PN, (59)
B (CP] (" — ca%Po(x"_l)) > cai Py "N, (60)

Because of the symmetry it suffices to show that (57) and (58)
hold. We start by showing that (57) holds. The inequality (57)
is equivalent to

i (Po(x"—l) —at Py (x"—l)) >af Px" Y, (61)
which can be further written as
P (B — af) = pat Px" ), (62)
and as
P YA S ey, (63)
oa
This is true using the induction assumption in (55) if
—as
Footoy (64)
pai
Equivalently
ai B —p+at <0. (65)
a+l a+l
1—y/1—4a"% 1+1—4a"7
— <, (66)
200% 200

a+1

where the condition 4o @ < 1 can be verified to hold for all
0 <a <1, as shown in Lemma 17 in the appendix.
Now let’s consider inequality (58). We need to show that

Bai Py(x""1) = Py(x"71) — af Poy(x" 1), (67)
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Yi-1 =0 Yi-1 =1
a
0 v 0 0 L 0
i . Yi Ti "
1 ; 1 1 . 1
Fig. 4. POST(a, b) channel. If y;_1 = O then the channel behaves as DMC
with parameters (a,b) and if y;_; = 1 then the channel behaves as DMC
with parameters (b, a).
or, equivalently,
1— Bai
PonYy = L84 py e, (68)
o
This is true using the induction assumption in (55) if
1 1—pfa
S (69)
ﬁ oa
and equivalently
afp?—p+ai >0. (70)
This holds if
a+l
14+4y1—4aa
Bz ——m—. (71)

20
Combining (66) with (71) we obtain that there exists a £ in

the interval
1+\/1—4a‘%1<ﬁ<1+\/1—4a“7“ )
— <

20!% 200
that satisfies the lemma. Note that the interval is nonempty
. a 1 . .
since for 0 < a < 1, a@ > aa. Finally, note that since
a+1
Vi—da @ . _1 ..
% < | we obtain that f < a~ #. Furthermore, it is
/ atl
shown in Lemma 18 in the appendix that yl—da &
207
for any 0 < a < 1, and, therefore, also § > 1. “ |

> 1

V. BINARY POST(a, b) CHANNEL

In this section, we extend the scope and study the capacity
of what we refer to as the POST(a, b), which is a gen-
eralization of POST(a) channel. The POST(a, b) channel
has two states and in each state there is a binary channel
with respective parameters (a, b). We develop, using similar
analyses as for the POST(a) channel, simple conditions on
a, b for which, if satisfied, feedback does not increase capacity.
We then show that the conditions are satisfied for all parameter
values (a, b) € [0, 1] x [0, 1].

A. Definition of the POST(a, b) Channel
Consider the POST channel depicted in Fig. 4 with the

following behavior. When y;_; = 0, then the channel behaves
as a binary channel with transition matrix

i ¢]

(73)
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Capacity of POST(a, b)

b 00 a

Fig. 5. The capacity of the POST(a, b) channel with and without feedback.
This is also the capacity of the binary DMC with parameters (a, b).

and when y;_; = 1 then it behaves as a binary channel with
the transition matrix

b a

b al

We refer to this channel as the POST(a, b) channel. POST(a)
is a special case of POST(a, b), where a = 1 and b = a.

Without loss of generality, we assume throughout that
a+b—1 > 0.1t is easy to see that in the case where
a+ b —1 =0 or, equivalently, where a = b, the capacity is
simply 0. Additionally, if a+b—1 < 0 then @+b > 1; hence
by relabeling the inputs (0 <> 1) we obtain a new channel
(with parameter a’, b’ rather than a,b) where ¢’ = a and
b’ =b and we have @’ +b' — 1> 0.

(74)

B. Capacity of the POST(a, b) Channel With
and Without Feedback

Before considering the POST(a, b) let us first consider
the binary DMC with parameters (a, b). The capacity of the
binary DMC with parameters (a, b) was derived by Ash in
[22, Example 3.7] by applying [22, Th. 3.3.3] and is given by

a - (a bHpy,(a)—aH(
e
The capacity achieving input distribution is
H(b) -  H()
P =0) = co (b20h1 — b2t ),
H(b) H(a)
P(x = 1) = Cp (—a2u+b—l + a2a+b71) s (76)

where cp is a normalizing coefficient so that the sum
P(x = 0) + P(x = 1) is equal to 1. The induced output
distribution is

P(y = 0) = colab — ab)2at= a7
P(y = 1) = colab — ab)2a#-T. (78)
Lemma 8 (Feedback Capacity of POST(a,b)): The feed-

back capacity of the POST(a, b) channel is the same as of
the memoryless DMC with parameters (a, b), which is given
in (75).

The proof follows the same arguments as the proof of the
feedback capacity of POST(a) in Lemma 4 and is, therefore,
omitted. The behavior of the capacity as a function of (a, b)
is depicted in Fig. 5.
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We now present sufficient conditions on a, b implying that
feedback does not increase the capacity of the POST(a, b)
channel. That these conditions are indeed sufficient we estab-
lish in the next subsection. Define the following intervals:

G i +b)—/y2(a+ b)? — dab
L Z[max(%y’y(a+ ) Vzg(a+ ) aby _ g
y(@+b)+/y2(@a+b)? —4ab
- 2b
(a+b)+/(a+b)? —4aby? _a
L2 = [ 2by =F E ]
- = _\/ﬁ
£3=[/)’§mn(2y,(a+b) (;zb—fy—b) 4aby )
. B I vy vy
L4 = [ﬁ < mln(b%, 7@ +5) yzza(a s 4ab)
oo [y(a+b)+\/y2(a+b)2 4al;§ﬂ§b_y]
2a a
= _\/——__
Ls = max(b—y, @+?) (a_+b)2 4aby2)§ﬂ
a 2ay

S(a+b)+¢(;z;b)2——4aw2}, 79)
where y is defined as
y = 2" (80)
In addition, let
Lo = l<ﬂ<mm(— _)] (81)

Lemma 9 (When Doesn’TFeedback Increase Capacity): If
the intersections of the intervals £1U Ly U L3 with L4 U Ls U
Le and Lo is nonempty then feedback does not increase the
capacity of the POST(a, b) channel.

Lemma 10: The condition in Lemma 9 holds for all POST
channel parameters (a, b). Thus, feedback does not increase
capacity of POST(a, b).

Proof: 1t suffices to show that the either the interval (£ N
L5 N Ly) or the interval (L2 N Lg N Lo) is non empty. First
we claim that the expression in the square roots of (79) are
nonnegative, i.e.,

y2(@@ +b)> —4ab > 0

(a+b)> —4aby? = 0 (82)

as shown in Appendix D-B (Note that the second inequality
follows from the first by switching between a and b).

Recall that a + b — 1 > 0 which implies a > b and
a < b. In addition, assume that aa < bb, and we show in
Appendix D-A that together with ¢ > b it implies that
a > b. We now prove that if aa < bb, then (£; N L5 N Lo)
is nonempty. (Similarly, one can show that if aa > bb,
(L2 N Le N L) is non empty.) We first want to claim that the
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intersection (L1 N Ls) is nonempty. Indeed, the lower bound

of L5 is smaller than the upper bound of £ since ﬁ < 2%

The upper bound of L5 is larger than the lower bound of £
since bTY > % because aa < b};, and because,

—yG T by —dab _by
2b ~oa’
where the inequality follows the fact that the LHS is less or
equal to 1, as shown in Appendix D-C, and the RHS is great
or equal to 1, as show in Appendix D-D.
Now we need to show that the intersection (L£1NLs) with Lo
is still non empty. We will first show that min{%, bTy} > %y.
Recall that ¢ > b hence by > b%. In addition y2 < % as
shown in Appendix D-E. Now we want to show that the lower
bound of Ly which is 1 is not larger than the upper bound of
the intersection (L1 N Ls). First we claim that the upper bound
of L5 is larger than 1, i.e., %V > 1 for a > b, as shown in
Appendix D-D. Finally, we need to show that the upper bound
of £ is larger than 1, i.e.,

y(a + b) (83)

a+b
y(a——_i—) > 1, (84)
2b
as shown in Appendix D-F. ]

C. Deriving the Sufficient Conditions of Lemma 9

Proof of Lemma 9: Let P, and P, 1 be defined as in (37).
Following the channel definition we have

a-Py_1o b-Pu_ip
Po=|" ° ’
0 [a'Pn—],l b'Pn—l,li| 85)
and
b'Pn—]O ‘_I'Pn—IO
Poy=|7 on : 86
! [b'Pn—l,l a'Pn—l,l] (86)
where Py o = Po,1 = 1. Using the identity
A B]' [A'+A"'BZ'CA™! -A-'BZ!
C p| ~ Z7'cA™! z! &7
where Z 2 (D — CA™'B), we obtain
b =Py - b - P!
Pn_,é = | ba —aé_lb baa— ab (88)
- _p-! p!
ba—ab ° ba —aa
i 4 p-l a -1
—= 1y - =1
Pn—,ll — ba —Bab bab— ab (89)
_ _p-1 _p-!
ba —ab ° ba — ab

Now we compute Pp(x™) and Py(x")

Po(x") =P, Po(y")
1

C(a+b— )i 4o
(a + )( + )

—1 | _H®)_ n—1
X[bPO —bP| ] 2a-T Py (y" ™)
—apy! apr' || 2% p
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1

H(b)

= ¢ (a)
(a+b—-1)QRaT 4 2/1?)
H(b) — H(a
27T Po(x ) — B2@ T Py (xn Y
_ D) 1 H(a) BN
—a2at=T Py(x"~") + a2a =T Py (x" ")
P PI(Y")

Pr(x")

1
H(® H(a
(a+b— (a7 4 2a5T)
H(a) 1 __H® -1
32u+h—1 PO(X” ) — a2a+h—l Pl (xn )
x| - Ha@ | _H®) b oD
—b2ar1 Py(x" 1) 4 b2arb-1 Py (x )

where Py(x) = P;(x%) = 1. We can rewrite Py(x") and
P1(x™) as follows:

ny _ 1 bVPO(x”_l)_l;Pl(xn_l) i|
Py = (a+b—1)(y + 1) [—&y Pyx"" N +ap (x|’
(92)

ny _ 1 aPy(x"~1y —ay Py (x"~1) ]
Py = (a+b—1)(y + 1) [—EPo(x”"Hby Pix" N |

93)

We need to show that indeed the probability expressions
are valid, namely nonnegative and sum to 1. Showing the
non-negativity of each of the terms in the above expression
is equivalent to showing Vn > 1 and for all x=1

b
min{——, 2L} Po(x"1) = Py (x" )
ay b

min(-2, )P = R, o4
ay b

For n = 1 this follows from the fact that min{ai, %y} > 1

which is proved in Appendix D-G. To prove ‘rl/or n > 1

we use the following lemma, whose proof appears in

Appendix C. [ ]
Lemma 11: If the condition in Lemma 9 holds then there

exists, 1 < f < min{%, %y} such that ¥n, the inequalities

BRI > Py, wanTl,

BPo(x"h = Pi(x" Y, vatTl, 95)
imply
BPI(x") = Py(x™), Vx",
BPy(x") = Pi(x"), Vx". (96)

VI. DOES THERE EXIST A POST CHANNEL FOR WHICH
FEEDBACK INCREASES THE CAPACITY?

For the nonfeedback capacity we do not have an analytical
expression, but only the infinite letter expression given in (8).
In general, for any finite state channel we have the following
upper bounds [20, Th. 4.6.1] [19, Th. 15]

C < lmax max I(X"; Y"|so) + log |S|,

n so P(xm") n
for any integer n > 1. The notation, I(X";Y"|sg) is
conditional mutual information, which is defined in the same
way as regular mutual information, but as a function of the
joint P(x", y"|so) rather then as a function of P(x",y").

o7
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Yie1 = 1,2,...,m Yi—1=m+1
1 1 1
2 2 2 2
Ti o Yi Ty Yi
L] L]
m m. m
m+ 1 m+1 m + m+1

Fig. 6. A POST channel where feedback increases capacity when m is large.
The probability associated with each edge is either % or 1 when y;_1 =

1,2,...,m and either 1 or r}—l when yj_1 =m + 1.

The notation |S| refers to the number of channel states.
However, for the POST channel we have a tighter upper bound
given in the following corollary which is obtained directly
from [23, Th. 3.11].

Corollary 12 (Upper Bound on the Capacity): For any
POST channel the following upper bound holds
1
C < —max max I(X"; Y"|so) (98)

n so P@™)

for any integer n > 1.

Given the results that feedback does not increase the
capacity of a POST(a, b), the question naturally arises: does
there exist a specific POST channel where feedback strictly
increases the capacity? The answer is affirmative. The idea
is to find a POST channel that consists of two states such that
when there is feedback, the optimal input distributions given
the states differ significantly among the different states. For the
binary DMC it was shown in [24] and independently in [25]
that the input probability that achieves the capacities is in
[%, 1— %] for each of the two alphabet symbols. Hence, in
the case of a binary post channel with feedback the optimal
input probability as a function of the state will not vary too
much. But as we increase the alphabet size we can construct
a POST channel where the optimal input probabilities as a
function of the state would vary significantly. Such a channel
is presented in Fig. 6.

We can determine the feedback capacity analytically using
the following lemma, which is proved in Appendix E.

Lemma 13: The feedback capacity of the channel in Fig. 6,
is given by,

26 (7 14y
Crp= —=  (£1 hy(—=)—(1—
b y,gé?éfu[zaﬂﬂ(z 0g, (m) +ha(—=) = ( y))

I+
—— (7 (0 99
+25+1+y(2())] (99)
_ Corollary 14: Note that as m approaches infinity,

Flogy(m) + ha(F52) = (1 = ) = L logy(m) >> ha(), thus

- 1
Cfp ~ max, e[o,1] [;.Ti logz(m)} = ngT(m)

This gives us the intuition to suggest the following
simple scheme approximately capacity-achieving for large m.
If yi.1 < m, then transmit log,(m) bits via input
X; = 1,2,...,m. The probability that these bits would be
received at the decoder is % If yi_1 =m+1, then X; = m+1.
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TABLE III
CAPACITY WITH AND WITHOUT FEEDBACK OF THE POST CHANNEL IN FIG. 6 AS THE ALPHABET GROWS.
EVIDENTLY, FEEDBACK INCREASES CAPACITY FOR SOME VALUES OF m

upper bound on capacity lower bound on feedback capacity | feedback capacity

m % max, Maxp(y6) I(X5;Y5sq) R= b%m (99)

20 0.7918 0 0.7595
2! 0.8568 0.3333 0.8325
22 0.9803 0.6667 1.0000
23 1.1711 1.0000 1.2599
21 1.3865 1.3333 1.5366
2° 1.6098 1.6667 1.8260
26 1.8374 2.0000 2.1252
27 2.0683 2.3333 24319
28 2.3019 2.6667 2.7444
29 2.5376 3.0000 3.06140
210 2.7751 3.3333 3.3818

Thus, the rate transmitted error free for this scheme is

average bit transmitted % log, m + %0 _logym
1 1 = ‘
1452 3
(100)

R = =
average usage of channels

It is possible to calculate the term maxp .y 1 (X"; Y"|s0)
using the Blahut-Arimoto (BA) Algorithm [1], [2] and hence
to obtain an upper.. The BA algorithm consists of iterations
where each iteration has two steps in which Q(x"|y") and
P(x") are computed as follows

1
Qx"|y") = aP(x”)P(y”lx”), (101)

Pe™) = — [[ oGy, (102)
c -
y
where ¢; and ¢ are normalization factors that yields
> Q(xy") =1Vy", and >, P(x") = 1. The initializa-
tion of the algorithm is done by choosing P (x") uniform over
all x™. In general, (101) and (102) need to be calculated for any
x™ and y". However, we note that for the channel presented
in Fig. 6 there is symmetry and hence P(x") depends only
on the condition if x; € {1,...,m} (and not on the value
itself) or if x; = m + 1. Therefore, it suffices to calculate
only 2" values of P(x"). Furthermore, Q(x"|y") = 0 if for
some i € {1,2,...,n}, x; # y; and y; # m + 1. Therefore,
it suffices to calculate only values where x; = y; or y; = m+1.
Finally, as in the case of P(x"), Q(x"|y") depends only
on the condition if x; € {1,...,m} or if x; = m + 1.
Hence, for Q(x"|y") it suffices to calculate only 2" x 2"
values.

The simple observations above make it feasible to apply the
BA algorithm in order to calculate max pny I (X 6.y 6|so) for
the channel in Fig. 6 for large m, as presented in Table III.
We clearly see from Table III that for m > 22 the feedback
capacity is strictly larger than the non feedback capacity. The
difference increases with m.

VII. CONCLUSION AND FURTHER RESEARCH

We have introduced and studied the family of POST chan-
nels and showed, somewhat surprisingly, that feedback does
not increase the capacity of the general POST (a, b) channel.
The proof is based on finding the output probability that is
induced by the input causal conditioning pmf that optimizes
the directed information when feedback is allowed, and then
proving that this output pmf can also be induced by an input
distribution without feedback. There may be a more direct
way, that has thus far eluded us, for proving that feedback
does not increase the capacity of the Simple POST channel.
We hope that the POST channel introduced in this paper will
enhance our understanding of capacity of finite state channels
with and without feedback, and help us to find implementable
capacity-achieving codes.

APPENDIX A
CONCAVITY OF DIRECTED INFORMATION
IN P(x"[[y"")

Lemma 15 (Concavity of Directed Information in
P(x"||y""Y)): Directed information I(X" — Y") is
concave in P(x"||y"™) for a fixed P(y"||x").

Proof: We need to show that for 0 <6 <1
D OpiG " + 021y p (O 1™
Xll’yl’l
log p(Y"11x")
22 @p1(x™[y"=1) + O pa (x| [y"=1) p(y™|Ix™)
> D> Opi "Iy p (" l1x")

X”,y”

X

p(y"1x")
> pr Y p(y*]1xm)

+O0pa ("IN p (" 1x"™) logz

x log

p(y"1x")

o P2 [y p(yn][x™)
(103)
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This inequality may be written as

> opi"lly" " p (™)

X, yn
. D pl(x"lly_”‘l)p(y”llx")
2 @1y =) + O pa(x"|]y"=1)) p(y™]1x™)
+0p2 "1y " Hp (" Ix™)
D P2 YD) p (o |x")

og — >0
> @prx™||y"=1) 4+ O p2 x|y~ 1) p(y"||x™)
(104)

x lo

x 1

Furthermore,

>0 {Zpl(x"||y"—1)p<y"||x")]
yn Xn

os >0 PG IO
D @11y + O pa (x| ]y 1) p (3" 1x™)

+>°0 [Zpz(x"||y"—1)p(y"||x")}
yn Xn

0e 2o P21y PG 11" 0
2 OprGenfly"=h) + 91!)2(%”IIy”“))p(y”lIX”)(I_O5

x 1

x 1

Finally, note that the RHS is a sum of two divergences between
pmf’s of y" and therefore it is nonnegative. [ |

APPENDIX B
SUPPORTING INEQUALITIES

Lemma 16: The inequality

at <1 (106)
holds for 0 < a < 1.
Proof: For0<a <1
loga <0, 107)
which implies
1
—loga <0, (108)
a
and equivalently
ploga < 20, (109)
Note that the last inequality is actually (106) for
nonnegative a. ]
Lemma 17: The inequality
a+1
4o = <1 (110)

holds for 0 < a < 1.
Proof: By taking In of both sides, we need to show

1
% e+ 4 <0, (111)
which is equivalent to
(I+a)lna+aln4 <0. (112)
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In order to prove (112) we claim that the LHS increases in
o for 0 < a < 1 and, therefore, the maximum value is
obtained at « = 1 and is 0. In order to show that the LHS
of (112) is increasing we need to show that its derivative is
nonnegative, i.e.,

1
—+1+Iha—-Imn4>0, (113)
o

or equivalently

l+4a+alna —alnd > 0. (114)

The LHS of (114) is a convex function and the minimum is
obtained when the derivative is zero, i.e.,

l+Ina+1—-In4=0, (115)

which implies that Ina = In ;12. Hence, the minimum value of

the LHS of (114)is 1+ %+ % 1In % — % In4 = 1— %, which

is positive. Therefore (114) holds, which implies that (112)

holds, which implies that (111) holds. |
Lemma 18: The following inequality holds

a+1

1—4a @
20

1
* > 1 (116)

AR

forany 0 <o < 1.
Proof: Since o is nonnegative we need to show

\/1_40[[1%1 220!%—1.

(117)
This would be true if
| — 40t > 4028 — 40 +1, (118)
which can be simplified to
1> a¥ +at, (119)
which can be written as
1>ai(l+a). (120)

When o — 07 we have equality, hence it suffices to show
that the equality holds after taking the derivative with respect
to a. We use the equality f'(a) = f(a)(In f(a))’ to find

‘ . (1 1
(a5) =ax (—nf + 7>.
a a

Hence, applying the derivative on (120) it remains to show that

(121)

a Ina 1 [3
aa(_—2+?)(1+a)—|—a& <0. (122)
a o
or more simply
0—(2
Ina+a+ <0. (123)
l14+a

Note that if @ = 1 there is equality. Hence it suffices to show
that the derivative of the LHS is non-negative for 0 < a < 1.
Le.,

1 2a a’

Y sy 124
a l+a (A+a)? ~ (124)
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which is equivalent to
a aB+a) -

e Uror > (125)
and this is true if
(1+a)’ —aB+a)=0 (126)
which is equivalent to
l—a=>0, 127)
which is true. ]
APPENDIX C

PROOF OF LEMMA 11
Proof: Suppose Eq. (95) holds; for Eq. (96) to hold,

we need to have Vx" !,

Bby Po(x" "N —bP (x" 7)) > aPo(x" ™) —ay P (x"71)

) (128)
B(=ay Po(x" V) +aP (x"~ 1)) = —bPy(x" "1 +by P (x" ")
(129)
BaPo(x"~"y —ay Pi(x"~ 1)) > by Po(x" 1) —bP (x"71)
} (130)
B(=bPo(x""N+by Pi(x" 1)) > —ay Po(x" "N +a P (x" 7,
(131)
or equivalently, (128) and (129) become
(byp —a)Po(x""") = (BB —ay)P (x""h),  (132)
(b—ayp)Po(x""") = (by —ap)P1(x"" "),  (133)
and (130) and (131) become
(b—ayB)Pi(x""") > (by —ap)Po(x""")  (134)
(byp —a)Pi(x""") > (B —ay)Po(x""").  (135)

Because of the similarity of the equations its enough to
consider only (132) and (133). Now we will consider a few

cases.
The Region of S That Satisfies (132) and (135): we will

divide the treatment of (132) (or equivalently (135)) into two
cases.

Case 1: pb —ay > 0 or equivalently § > %y; Eq. (132)
becomes

byp —

Po(x"~ 1). > Pi(x"7"). (136)
bp —ay

By the assumption of the induction this would be true for all
xn=lif
by B —
Dz, (137)
bp —ay
or equvalently

bp*—y@+b)p+a<0. (138)
This implies
7@+b) = Vy2@+b)?* —4dab
2b -
<p< y(&+b)+\/y2_(&+b)2—4ab’ (139)

2b
which is the interval £ defined in (79).
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Case 2: fb —ay < 0 or equivalently f < %y; Eq. (132)
becomes
by B —
Po(xn_l)-yﬁi_a < Pi(x"h, (140)
bp —ay
which is true based on the induction assumption if
byp — 1
byp—a L (141)
bp—ay ~ P
This is equivalent to
byp* —(a+b)p+ay >0, (142)
and this is true if
b) + /(a + b)? — 4aby?
ﬂZ(a+ )+ (a+b) ay, (143)
2by
which is the interval £;, or
B) —/(a+ by — 4aby?
p<@EDZVOEOT 2R g

2by
which is the interval L3.
The Region of § That Satisfies (133) and (134): we will
divide the treatment of (133) (or equivalently (134)) into two
cases.

Case 1: by — fa > 0 or equivalently f < 7, Eq. (133)
becomes
Po(x"~ 1) Zf > Pi(x" ). (145)

By the assumption of the induction this would be true for all
it

E _ -
bl . g, (146)
by — Ba
or equivalently
ap?> —y(b+a)p+b=>0. (147)
This implies
a+b)—+/y2(a+b)? —4dab
g r@th) = pPar b
2a
which is the interval L4, or
G +b) ++/y2(a+b)* —4ab
ﬂzy(a+ )+ Vy(a+b)” —4a ’ (149)
2a
which is the interval Ls.
Case 2: by — fa < 0 or equivalently f > 7, Eq. (133)
becomes
Py 2= 8Py, (150)
by — pa

By the assumption of the induction this would be true for all
xn—l if

b—ayp 1
by —pa = b (b
pb—ayp* = by — pa (152)
ayp* — pla+b)+by <0. (153)
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This implies

(a +b) —/(a+b)? —4aby?

2ay
B+ @+ b2 —4aby?
Sﬁi(a+ )+ (a_—l— ) aby (154)
2ay
which is the interval Lg. [ |
APPENDIX D

INEQUALITIES NEEDED FOR THE PO ST (a, b) CHANNEL

In this appendix we prove inequalities that are needed
for proving that feedback does not increase the capacity of
POST (a, b) channel. All inequalities contains y which is
defined in (80) and obviously 0 <a <1land 0 <b < 1.

A. a > b and aa < bb Implies That a > b
Proof: Let p, = |% —al and pp = |% — b|. Hence,

_ 1 1
aa = (5 - Pa)(z + pa)

- 1 1
bb = (= — - 155
(2 Pb)(2 + pb) (155)
Since aa < bb it follows that Pa = pp. And since a > b it
follows that a = % + pq and this implies a > b. |
B. y*(@a+b)?> —4ab >0
Proof: Assume first that a > b
Hb)=H() 4ab
T (156)
2—a—b)2

Taking log on both sides we obtain

2H (b)—2H (a) > (a—b)(log 4b+log a—log(2—a —b)?)
(157)
Note that if @ = b we have equality, hence it suffices to

prove that the inequality holds after applying the derivative
with respect to a.

7 _ _ 1
2 >mdb+inag —2InQ—a—b)+(a—b)(~+ )
a a 2—a—b

(158)

If a = b we note that there is equality hence it suffices to
prove that the inequality holds after taking the derivative with
respect to a.

2 2 1 2 1 2
- >z -+ —+ -+t —
a l—-a " a 2—-a-b a 2—-a-b
Fa-Bsr—— ) (159
a— —— =
a>  (2—a—h)?
After simplifying we obtain
-b 2 2a+6b—38
a _ 2 a+ ° .0 (160)
a a (Q—a-—b)?
which after simple algebra yields
—b —b)(1-b
2 yla=hi=b (161)

a? a2 —a—0b)? ~
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and obviously the inequality holds since a > b
b<1.

Now, if we consider a < b, then the sign > in (157) should
be replaced by the sign <. In (158) the sign should be the
same, but in (161) the sign should be the opposite again, which
is true. |

C. y(a+b) —y2@+b)> —4ab < 2b, fora > b

and aa < bb

and

Proof: We need to show

y(@+b) —2b </y2(a+b)? — dab,

since the RHS is nonnegative it suffices to show that

y2(a+b)? — 4b(a-+b)y +4b> < y*(a + b)> — 4ab, (163)

(162)

which simplifies to

y(@+b)>a+b. (164)

After applying log on both sides, we need to show that

H(b) — H(a) > (a — b)(log(a + b) —log(a + b)). (165)

If a = b we have equality, hence it suffices to show that after
we take derivative with respect to a the inequality holds, i.e.,
a+b a-b a—b

= + =+ —

a+b a+b a+b

Again, if b = a we have equality, and we take the derivative
with respect to b, i.e.,

In = > log (166)

ST IRS

0<-— Loy 2 2 ey
T a+b a+b  (a+b)? (@+b)?
which after simplification equals to
—b a—b
< (168)
(a+by? (a+b)
and since a — b = b — a, we only need to show that
! < ! (169)
(a+b)? ~ (@+b)?
which is true since a +1—5b6 >1—a + b when a > b and
this follows as shown in Appendix D-A. ]
D.%2>1forazh

Proof: We need to show that

—blogh—blogh+aloga + aloga > (a—b)(loga—logh)
(170)

If a = b, then both sides equal to zero. Hence, its suffices
to show that the inequality holds after applying the derivative
with respect to a.

b
> (na—1logh)+1—-2. (171)
a a
We need to show that for b > a
b b
log—+—-—-1>0 (172)
a a
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If b = a, then equality holds, hence its enough to show that
the derivative with respect to b is nonnegative. Namely,

1 1

———=>0.

b a—
This is true since we also have aa < bb and it implies a > b
as shown in Appendix D-A. ]

(173)

E. yzf%forazl;
Proof: Taking log on both sides we need to show
2h(b) — 2h(a)
a—b
After simple algebra we obtain

<2loga —logh — loga. (174)

(=b —a)logh —2blogh +2bloga + (a + b)loga < 0
(175)

We need to show that the inequality holds for a > b. Note that
when a = b. we obtain equality. Therefore it’s enough to show
that the derivative of LHS with respect to a is nonpositive and
therefore decreasing from 0. At this point we transform all the
log to be natural base.

b _ b
Inb+2——Ina—1—-=<0
a a

(176)

Again if b = a we obtain equality. Now we take derivative
with respect to b and need to show that it is nompositive.

This is true since b > a. [ |

F %gb) Zlforazl;andaégbl;
Proof: We would like to show
a+b
ratb (177)
2b
Equivalently after taking log on both sides,
h(b) —h 2b
(b) — h(a) > log 22
a+b
—blogh — blogh + aloga + aloga
> (a — b)(log2 + logh — log(a + b)), (179)

(178)

a—>b

Note that if a = b we have equality, hence it suffices to show
that for » > a the inequality holds after taking the derivative
with respect to b, i.e.,

b _ - 1 1

Ifa =b we get 0 on both sides. Hence, it suffices to show
that in we take derivative with respect to a (180) holds.

1 1 1 a—b

> —_———— 181

“a+b b a+b (a+b)? (181)
and this trivially holds since the RHS is nonpositive while the
LHS is 0. ]
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Gy > % and y < %
H(()—H(a T
Proof: Recall y = 27«1 . We prove only y > % and

y < % follows from identical steps just replacing a with b.

We need to show that

H(b) - _H@)
b2ath—T > pRath-T, (182)
Equivalently,
H (b) - H (a)
logh + ———— >logh + —————. 183
R e
(a+b—1)logh —blogh —blogh
> (a+b—1)logh —aloga —aloga.
—alogh > alogh —aloga — aloga.
a a
alog — log= > 0. 184
a gb+a gb_ (184)

Note that the last equality is a divergence expression between
two Bernoulli distributions with parameters a and b and hence
it’s nonnegative. [ |

APPENDIX E
PROOF OF LEMMA 13
Proof: By symmetry, for any optimal distribution we will
have, P(X; = m + 1|Y;_1 = k) equal for all k € {1, ..., m]}.
Hence define

y 2 PX;=mA+1Yiei=k) Vkell,...,m) (185)
OS2 PXi=m+ 1Yoy =m+1). (186)
Also, by symmetry, P(X; = I|Yi-1 = k) = ryn;_‘v’ k,l €
{I,...,m} and P(X; = l|¥;i-y = m+1) = 2 VI e
{1,...,m}. Thus we have the following transition kernel for

the induced output Markov Chain,
PYi=m+1Yioi=m+1)=1-96
PYi=m+1|Yi-1 =k) = fracl+y2 Vke{l,2,...,m}
)
PlY;i=klYi-1=m+1)=— Vkefl,...,m}
m

4

PO =kYiy =0 =5- Vhle({l2,...om.  (187)

Define the stationary distribution by 7y X P(Y; = k), for all
k € {l,...,m+ 1}. To obtain the stationary distribution, we
have the following balance equations,

m—+1

Sn -
k=1
m
1+
Tmi10 = (Z ﬂk)Ty
k=1

el = 2) = g0+ (> )= Yk e(l,...,m).
2m 1T Tk 2m

We solve for the Case: m = 1, first, for which the equations
are,

(188)
(189)

T +mry=1
I+y
2 9

20 = 7|
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1+y
which yields, 7} = - 9 and 7, = —2+-. Now note, Now, as Cyp = max, sefo,111(Xi; YilYi—1), after some
ot A basic algebraic manipulation we obtain the following expres-
1(X;; YilYi-1) sion:
=7r1(H(YiIYi—1=1)—H(Yi|Xt,Yi—1=1)) 29 ( )
Crp= ma —(=1lo h 1—
s i P TR (=)
+7rz(H(Yi|Yi—1 =2) - H(YilX;, Yi—i =2)) 4y
. +7(h2(5)) ] (197)
= 1 (h(55) = (1= ) +72h200). (190) W+1+7y
|
Now, as Cyp = max, sefo,1] 1 (X;; Y;|Yi—1), we obtain
0 14y ACKNOWLEDGEMENT
Cro = [ 5y (=5 -1 =) T
2 VG 0.1 o+ The authors are grateful to Jiantao Jiao who suggested
H‘_V the proof of (82). The authors would like to thank the
—I—#Hy( 20 )) I (191)  associate editor and the anonymous reviewers for very helpful
J+ 2 comments.
20 +y
Cro = (n —1-y)
/= ay601[25+1+y 2( 2 )= (=7 REFERENCES
+ 1+ h ( J) (192) [1] R. E. Blahut, “Computation of channel capacity and rate-distortion
20+ 1+ y ' functions,” IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 460-473,
Jul. 1972.

Now, we deal with general Case: m > 2, where from the  [2] S. Arimoto, “An algorithm for computing the capacity of arbitrary

. : , LN, , discrete memoryless channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1,
symmetry in balance equations, 7y are equal V k € {1, ..., m}, op. 1420, Jan. 1972.

and hence we obtain the following on solving the balance [3] C. E. Shannon, “Communication in the presence of noise,” Proc. IRE,

equations’ vol. 37, no. 1, pp. 10-21, Jan. 1949.
[4] M. S. Pinsker, Information and Information Stability of Random Vari-
4 ables and Processes. Hawkesbury Showground, Australia: Holden-Day,
T = P (193) o
mo +m [5] F. Alajaji and T. Fuja, “Effect of feedback on the capacity of discrete
mlﬂ additive channels with memory,” in Proc. IEEE ISIT, Jun./Jul. 1994.
T = 721 YVkell,...,m}, (194) [6] Y.-H. Kim, “Feedback capacity of stationary Gaussian channels,” IEEE
mo 4+ m3r +Y Trans. Inf. Theory, vol. 56, no. 1, pp. 57-85, Jan. 2010.
[7]1 H. Permuter, P. Cuff, B. Van Roy, and T. Weissman, “Capacity of the
o(1— trapdoor channel with feedback,” IEEE Trans. Inf. Theory, vol. 54, no. 7,
where constant A = 72m(5+m(y12ﬁ-y)' Note that pp.p3150—3l65, 5000, . Ty
1(X;: YilY, =k) [8] O. Elishco and H. Permuter, “Capacity and coding for the Ising channel
i Lilti=1 = with feedback,” IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5138-5149,
y y 14y Sep. 2014.
= ha( 2’ T) —(A=y)VYke{l,...,m}. [9] A.J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with

channel side information,” IEEE Trans. Inf. Theory, vol. 43, no. 6,

m times pp. 1986-1992, Nov. 1997.
[10] J. Chen and T. Berger, “The capacity of finite-state Markov channels
Also note that with feedback,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 780-789,
Mar. 2005.

I1(X;; YilYi-i=m+1) [11] T. Berger and F. Bonomi, “Capacity and zero-error capacity of Ising
5 5 channels,” IEEE Trans. Inf. Theory, vol. 36, no. 1, pp. 173-180,

= ha(=,...,—,38) — dlogy(m) = hy(5). Jan. 1990. _
m m [12] H. Asnani, H. H. Permuter, and T. Weissman, “To feed or not to feed
—_— back,” IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5150-5172, Sep. 2014.
m times [13] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,

USA: Cambridge Univ. Press, 2004.
[14] G. Kramer, “Directed information for channels with feedback,”
I( X:- Y | Y l) Ph.D. dissertation, ETH Zurich Univ., Ziirich, Switzerland, 1998.

b - [15] J. L. Massey, “Causality, feedback and directed information,” in Proc.

= Int. Symp. Inf. Theory Appl. (ISITA), Nov. 1990, pp. 303-305.
(z ”m) (hz( A - —) (1 —y )) +7Tm _th((S) [16] H. Marko, “The bidirectional communication theory—A generalization
of information theory,” IEEE Trans. Commun., vol. COM-21, no. 12,

pp. 1335-1351, Dec. 1973.

Thus we obtain

m times [17] Y.-H. Kim, “A coding theorem for a class of stationary channels with
(195) feedback,” IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 1488-1499,
— - Apr. 2008.
= L( 2(_ . L H—_V) —(1 =y )) [18] S. Tatikonda and S. Mitter, “The capacity of channels with feedback,”
204+ 1+y 2m’ 2m’ IEEE Trans. Inf. Theory, vol. 55, no. 1, pp. 323-349, Jan. 2009.

— : : I e

times [19] H. H. Permuter, T. Weissman, and A. J. Goldsmith, “Finite state channels
m S

with time-invariant deterministic feedback,” IEEE Trans. Inf. Theory,
I+ vol. 55, no. 2, pp. 644-662, Feb. 2009.

—(h (5)) (196) 1201 R. G. Gallager, Information Theory and Reliable Communication.

204+ 14y New York, NY, USA: Wiley, 1968.



PERMUTER et al.: CAPACITY OF A POST CHANNEL WITH AND WITHOUT FEEDBACK

[21] I. Naiss and H. H. Permuter, “Extension of the Blahut-Arimoto algo-
rithm for maximizing directed information,” IEEE Trans. Inf. Theory,
vol. 59, no. 1, pp. 204-222, Jan. 2013.

[22] R. Ash, Information Theory. New York, NY, USA: Wiley, 1965.

[23] H. Permuter J. Chen and T. Weissman, “Tighter bounds on the capacity
of finite-state channels via Markov set-chains,” IEEE Trans. Inf. Theory,
vol. 56, no. 8, pp. 3660-3691, Aug. 2010.

[24] N. Shulman and M. Feder, “The uniform distribution as a universal
prior,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1356—1362, Jun. 2004.

[25] G. Kumar and A. Manolakos, “No input symbol should occur
more frequently than 1-1/e,” Jan. 2012. [Online]. Available:
http://arxiv.org/abs/1201.6425

Haim Henri Permuter (M’08-SM’14) received his B.Sc. (summa cum
laude) and M.Sc. (summa cum laude) degrees in Electrical and Computer
Engineering from the Ben-Gurion University, Israel, in 1997 and 2003,
respectively, and the Ph.D. degree in Electrical Engineering from Stanford
University, California in 2008. Between 1997 and 2004, he was an officer at
a research and development unit of the Israeli Defense Forces. Since 2009
he is with the department of Electrical and Computer Engineering at Ben-
Gurion University where he is currently an associate professor. Prof. Permuter
is a recipient of several awards, among them the Fullbright Fellowship,
the Stanford Graduate Fellowship (SGF), Allon Fellowship, and the U.S.-
Israel Binational Science Foundation Bergmann Memorial Award. Haim is
currently serving on the editorial boards of the IEEE TRANSACTIONS ON
INFORMATION THEORY.

6057

Himanshu Asnani is currently System Architect in Ericsson R&D, San Jose,
CA (USA). He received his Ph.D. in Electrical Engineering Department in
2014 from Stanford University, working under Professor Tsachy Weissman,
where he was a Stanford Graduate Fellow. His research interests include
information theory, statistical learning and computer networks. He was the
recipient of 2014 Marconi Society Paul Baran Young Scholar Award, Best
Paper Award at MobiHoc 2009 and was also the finalist for Student Paper
Award in ISIT 2011, Saint Petersburg, Russia. Prior to that, he received his
B.Tech. from IIT Bombay in 2009 and M.S. from Stanford University in 2011,
both in Electrical Engineering.

Tsachy Weissman (S’99-M’02-SM’07-F’13) is on the faculty of the depart-
ment of Electrical Engineering at Stanford University, where he holds the
STMicroelectronics Chair in the School of Engineering. He received his BSc
and PhD from Technion in 1997 and 2001. He has published extensively
on Information Theory, Statistical Signal Processing, the interplay between
them, and their applications. He is inventor of several patents and involved
in a number of hi-tech companies as member of the technical board. Much
of his recent research has been dedicated to the theory and practice of
genomic data compression. His research has been recognized with numerous
awards, including best paper awards, a fellowships for Leaders in Science
and Technology, and prizes for excellence in research. He serves on the
editorial boards of the IEEE TRANSACTIONS ON INFORMATION THEORY
and Foundations and Trends in Communications and Information Theory.



