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The Feedback Capacity of Noisy Output
Is the STate (NOST) Channels
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Abstract— We consider finite-state channels (FSCs) where the
channel state is stochastically dependent on the previous channel
output. We refer to these as Noisy Output is the STate (NOST)
channels. We derive the feedback capacity of NOST channels in
two scenarios: with and without causal state information (CSI)
available at the encoder. If CSI is unavailable, the feedback
capacity is CFB = maxP (x|y′) I(X ; Y |Y �), while if it is
available at the encoder, the feedback capacity is CFB-CSI =
maxP (u|y′),x(u,s′) I(U ; Y |Y �), where U is an auxiliary RV
with finite cardinality. In both formulas, the output process
is a Markov process with stationary distribution. The derived
formulas generalize special known instances from the literature,
such as where the state is i.i.d. and where it is a deterministic
function of the output. CFB and CFB-CSI are also shown to
be computable via convex optimization problem formulations.
Finally, we present an example of an interesting NOST channel
for which CSI available at the encoder does not increase the
feedback capacity.

Index Terms— Channel capacity, channels with memory, con-
vex optimization, feedback capacity, finite state channels.

I. INTRODUCTION

THE popular model of finite-state channels (FSCs)
[1]–[6] has been motivated by channels or systems with

memory, common in wireless communication [7]–[13], mole-
cular communication [14], [15] and magnetic recordings [16].
The memory of a channel or a system is encapsulated in a
finite set of states in the FSC model. Although feedback does
not increase the capacity of memoryless channels [17], [18],
it can generally increase the capacity of channels with memory.
Nonetheless, in the general case, both the capacity and the
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feedback capacity of FSCs are characterized by multi-letter
expressions that are non-computable, and they still have no
simple closed-form formulas. That is, a general capacity
formula for channels with memory is given as the limit of the
n-fold mutual information sequence [2], [19]–[21], whereas
the feedback capacity is commonly expressed by the limit of
the n-fold directed information [22]–[29].

The explicit capacity of channels with memory is known
only in a few instances of channels where feedback does
not increase the capacity, such as the POST(α) channel [30]
and channels with certain symmetric properties [31]–[34].
Furthermore, a single-letter expression was derived in [35]
for the capacity of FSCs with channel state information
known at the receiver and delayed feedback in the absence
of inter-symbol interference (ISI), i.e., the channel state is
input-independent. There are some additional special cases
of FSCs where the feedback capacity is known explicitly.
One method to compute an explicit feedback capacity expres-
sion is by formulating it as a dynamic programming (DP)
optimization problem, as was first introduced in Tatikonda’s
thesis [36] and then in [25], [27], [37]–[40]. This is beneficial
in estimating the feedback capacity using efficient algorithms
such as the value iteration algorithm [41], which, in turn, can
help in generating a conjecture for the exact solution of the
corresponding Bellman equation [42]. Thus, for a family of
FSCs with ISI called unifilar FSCs, in which the new channel
state is a deterministic, time-invariant function of the current
state, the input and the output, the feedback capacity can be
computed via DP, as was formulated in [27], and closed-form
expressions or exact values for the feedback capacity of
particular unifilar FSCs were derived in [27], [43]–[49]. For
a sub-family of unifilar FSCs where the channel state is a
deterministic function of the channel output, a single-letter
feedback capacity expression was derived in [39]. Another
method to compute explicit feedback capacity expressions is
the Q-graph method that was introduced and utilized in [47],
[49]–[51] for unifilar FSCs.

Motivated by the absence of a single-letter, computable
feedback capacity formula for FSCs with ISI where the
channel state evolves stochastically, in this paper, we inves-
tigate FSCs where the state is stochastically dependent on
the output. This is a generalization of the unifilar FSCs
studied in [39]. We refer this generalization as Noisy Output
is the STate (NOST) channels. We study two settings of
NOST channels subject to the availability of causal state
information (CSI) at the encoder, as illustrated in Fig. 1. The
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Fig. 1. NOST channels in the presence of feedback. Setting I (open switch) – no CSI is available. Setting II (closed switch) – CSI available at the encoder.

first setting is where CSI is unavailable, while the second is
where it is available at the encoder. Our main contribution
in this paper is single-letter, computable feedback capacity
formulas. We show the computability of the feedback capacity
formulas by formulating them as convex optimization.

The achievability of the feedback capacity of the first
setting is based on rate-splitting and random coding, and a
similar proof was also given in [35]. A posterior matching
scheme [52], a principle that was also used in [46], can also be
used for the achievability from the work of [53]. The converse
of the feedback capacity is based on a recently developed tech-
nique to derive upper bounds with stationary distributions [54].
In fact, the first setting can be shown to be equivalent to
the setting mentioned in [39], and our formula is identical to
theirs; however, our result generalizes their capacity result in
two ways. Firstly, the feedback capacity formula in [39] is
subject to a restricting irreducibility assumption that we are
able to relax due to our converse technique. This allows us to
determine the feedback capacity of additional channels such
as the POST(α) channel [30]. Secondly, as aforementioned,
our convex optimization formulation of the formula enables
us to compute the feedback capacity.

The second setting in this paper, where CSI is available at
the encoder, is somewhat more challenging, and it reveals an
interesting interface between the utilization of CSI and the
memory of the channel. This side information may generally
be beneficial for increasing the feedback capacity of channels
with memory. The capacity problem of discrete memoryless
channels (DMCs) with states known at the encoder dates back
to Shannon’s early work [55], followed by works of Kusnetsov
and Tsybakov [56], Gel’fand and Pinsker [57], and Heegard
and El Gamal [58], which paved the way to various recent
works such as [40], [59]–[67]. Since Shannon showed in [17]
that feedback does not increase the capacity of a DMC, his
setting in [55], where the state process is i.i.d. and known
causally at the encoder, is covered by our second setting by
assuming, in particular, that the state is independent of the
output. Furthermore, we show that the capacity expression of
this Shannon’s setting is covered by ours.

The remainder of the paper is organized as follows.
Section II defines the notation and the settings. Section III
presents the main results regarding the single-letter feed-
back capacity expressions and their convex optimization

formulations. Section IV shows how the capacity expression
of each setting covers the capacity characterization of several
special cases from the literature, and provides an interesting
example of a NOST channel for which CSI available at
the encoder does not increase its feedback capacity; this
example is referred to as the noisy-POST(α, η) channel, and
is a generalization of the POST(α) channel [30]. Section V
provides proofs and derivations of the main results. Finally,
Section VI concludes this work.

II. PROBLEM DEFINITION

In this section, we introduce the notation and the
communication setup.

A. Notation

Lowercase letters denote sample values (e.g. x, y), and
uppercase letters denote discrete random variables (RVs)
(e.g. X, Y ). Subscripts and superscripts denote vectors in
the following way: xj

i = (xi, xi+1, . . . , xj) and Xj
i =

(Xi, Xi+1, . . . , Xj) for 1 ≤ i ≤ j. xn and Xn are shorthand
for xn

1 and Xn
1 , respectively. We use calligraphic letters (e.g.

X ,Y) to denote alphabets, and | · | (e.g. |X |) to denote the
cardinality of an alphabet. For two RVs X, Y the probabil-
ity mass function (PMF) of X is denoted by PX(x), the
conditional PMF of X = x given Y = y is denoted by
PX|Y (x|y), and the joint PMF is denoted by PX,Y (x, y);
the shorthand P (x), P (x|y), P (x, y) are used for the above,
respectively, when the RVs are clear from the context. The
indicator function is denoted by �{·}. We define ā � 1 − a
for some a ∈ [0, 1]. For a pair of integers n ≤ m, we define
the discrete interval [n : m] � {n, n + 1, . . . , m}.

B. The Communication Setup

We consider FSCs as shown in Fig. 1. An FSC [2] consists
of finite input, output and channel state alphabets X ,Y,S,
respectively. It is defined by the model (X ×S, Q(y, s|x, s′),
Y) where s′, s are the channel state at the beginning and at the
end of a transmission, respectively. The channel is stationary
in the sense that when it is used n times with message M
and inputs Xn, at time i ∈ [1 : n] given the past, it has the
Markov property

Q(yi, si|xi, si−1
0 , yi−1, m)
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= QY,S|X,S′(yi, si|xi, si−1) (1)

= QY |X,S′(yi|xi, si−1)QS|Y (si|yi), (2)

where (1) holds for any general FSC and (2) is particularized
for NOST channels. We also use the averaged channel defined
by

QY |X,Y ′(y|x, y′) =
∑
s′∈S

QS|Y (s′|y′)QY |X,S′(y|x, s′), (3)

where y′, y ∈ Y are interpreted as the channel outputs before
and after a transmission, respectively. The initial channel
state is assumed to be distributed according to Q(s0) and
will be shown to have no effect on the feedback capacity
solution subject to a connectivity assumption. We consider two
communication scenarios of NOST channels: without and with
CSI available at the encoder.

1) Setting I—No CSI: At time i, the encoder has access to
the message m ∈ M and the outputs’ feedback, where the
message set is M = [1 : �2nR�] and M is assumed to be
uniformly distributed over M. The encoder’s mapping at time
i is denoted by

xi : M×Yi−1 → X , (4)

and the decoder’s mapping is

m̂ : Yn → M. (5)

A (2nR, n) code is a pair of encoding and decoding mappings
(4)-(5). A rate R is achievable if there exists a sequence of
(2nR, n) codes such that the average probability of error,
P

(n)
e = Pr(M̂ �= M), tends to zero as n → ∞. The feedback

capacity is the supremum over all achievable rates, and is
denoted by CFB.

2) Setting II—CSI Available at the Encoder: Setting II is
defined similarly to Setting I, except that at time i the encoder
has also causal access to the channel states, that is,

xi : M×Si−1
0 × Yi−1 → X . (6)

A (2nR, n) code is a pair of encoding and decoding mappings
given by (6) and (5), respectively. The feedback capacity of
Setting II is denoted by CFB-CSI.

For the sake of simplicity when defining a property called
connectivity as follows and writing proofs throughout the
paper, without loss of generality, we can assume the existence
of an initial output, Y0. That is, except for the case where
the state is the output, Y0 is fictitious with some arbitrary
distribution Q(y0) and is independent of S0.

Now, for both Setting I and Setting II, we assume that the
NOST channels are connected.

Definition 1 (Connectivity): A NOST channel (2) is con-
nected if for any pair of outputs, y′, y ∈ Y , there exist T
(shorthand for T (y′, y)) and a sequence of channel inputs xT

(shorthand for xT (y′, y)) such that QYT |XT ,Y0(y|xT , y′) > 0.

By Definition 1, we want to avoid scenarios where the
initial state determines the set of accessible outputs for the
entire transmission procedure. Alternatively, we may formulate
Definition 1 as follows. Assume, without loss of generality,

that Y = [1 : |Y|], and denote by Q the |Y| × |Y| matrix
[Qij ], i, j ∈ Y , where

Qij � max
x∈X

QYk|Xk,Yk−1(j|x, i). (7)

A NOST channel (2) is connected if for all i, j ∈ Y there
exists an integer T (i, j) such that Q satisfies

(

T (i,j) times︷ ︸︸ ︷
Q · · ·Q )ij > 0. (8)

This definition is equivalent to Definition 1 since both of them
imply that for any initial output y′ (or i) and any desired output
y (or j), there exists a sequence of channel inputs such that
there is a positive probability of reaching y from y′.

III. MAIN RESULTS

In this section we present our main results pertaining to
Setting I and Setting II.

A. Setting I—No CSI

The following theorem characterizes the capacity of
Setting I, CFB, as a single-letter expression.

Theorem 1 (Feedback Capacity of Setting I): The feedback
capacity of a connected NOST channel without CSI is given
by

CFB = max
P (x|y′)

I(X ; Y |Y ′), (9)

where the joint distribution is P (y′, x, y) = π(y′)P (x|y′)
Q(y|x, y′), Q(y|x, y′) is defined in (3), and π(y′) is a sta-
tionary distribution induced by the Markov kernel P (y|y′) =∑

x P (x|y′)Q(y|x, y′).

We note that the averaged channel Q(y|x, y′) (3), given as a
part of the joint distribution, implies that S′−Y ′−X forms a
Markov chain. By definition, π(y′) is a stationary distribution
if it is a solution of πP = π, where π is a probability
vector on Y , and P denotes the probability transition matrix
P (y|y′), whose rows and columns represent the previous
and next outputs y′, y ∈ Y , respectively; thus PY ′(y′) =
π(y′) = PY (y′), ∀y′ ∈ Y . From the assumption that Y is
a finite set, there is always at least one stationary distribution
(see, e.g., [68, Chapter 5.5]) for any input distribution. If the
stationary distribution is not unique, there are infinitely many
stationary output distributions.1 However, the following lemma
states that the maximum in (9) can always be attained by
an input distribution that induces a unique stationary output
distribution.

Lemma 1: For a connected NOST channel without CSI,

max
P (x|y′)

I(X ; Y |Y ′) = max
P (x|y′)∈Pπ

I(X ; Y |Y ′), (10)

where Pπ is defined as the set of input distributions that induce
a unique stationary output distribution π(y′), and this set is
non-empty.

1For instance, if |Y| = 2 and P (x|y′) induces a transition matrix P (y|y′)
given by the identity matrix of size 2, I2, all output distributions are stationary,
i.e., any π � [p p̄], p ∈ [0, 1] is a distribution solving πI2 = π.
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Given an optimal distribution P (x|y′) ∈ Pπ, the stationary
output distribution π(y′) is well-defined regardless of Q(s0),
and therefore CFB is independent of Q(s0).

A special case of Setting I is where the channel state is
the output, i.e., si = yi. Conversely, by Theorem 1, it can be
seen that CFB depends on the averaged channel Q(y|x, y′) (3);
hence, Setting I and this special case are operationally equiv-
alent. In other words, we may define a fictitious state y′

and obtain a channel which is operationally equivalent to
the special case si = yi. We note for this special case, the
upper bound on the feedback capacity in [47] coincide with
CFB (9). Furthermore, the special case si = yi has been
studied in [39], and the feedback capacity was derived under
some assumptions on the channel; nevertheless, our result
generalizes upon their result in two ways. First, we relax the
assumptions in [39] to a connectivity condition (Definition 1),
which allows us to determine the feedback capacity of a wide
family of channels, e.g., the POST(α) channel, whose feed-
back capacity was derived in [30]. We discuss the relaxation
issue and demonstrate the connectivity condition in Section IV.
Second, another contribution of our work regarding Setting I
is a novel convex optimization formulation of CFB, given in
the following theorem.

From (9) it is not clear if I(X ; Y |Y ′) is a concave function
of P (x|y′); however, Theorem 2 clarifies that it is a concave
function of the joint distribution, P (y′, x).

Theorem 2 (Convex Optimization for CFB): The feedback
capacity of a connected NOST channel without CSI, CFB, can
be formulated as the following convex optimization problem:

maximize
P (y′,x)∈P(Y×X )

I(X ; Y |Y ′) (11a)

subject to
∑
x,y

PY ′,X(ỹ, x)QY |X,Y ′(y|x, ỹ)

−
∑
y′,x

PY ′,X(y′, x)QY |X,Y ′(ỹ|x, y′) = 0, ∀ỹ ∈ Y. (11b)

The benefit in formulating the feedback capacity as a convex
optimization problem is the ability thus afforded to compute
it via implementing known convex optimization algorithms.
The main idea in this formulation is to view the stationary
distribution as the set of linear constraints on the joint distribu-
tion, as presented in Constraints (11b), which are equivalent to
PY ′(ỹ) = PY (ỹ). A similar approach for stationary constraints
also appears in [50].

B. Setting II—CSI Available at the Encoder

The following theorem characterizes the capacity of
Setting II, CFB-CSI.

Theorem 3 (Feedback Capacity of Setting II): The feedback
capacity of a connected NOST channel with CSI available at
the encoder is

CFB-CSI = max
P (u|y′),x=f(u,s′)

I(U ; Y |Y ′), (12)

where the joint distribution is P (y′, u, y) =
π(y′)P (u|y′)Pf (y|u, y′), in which

Pf (y|u, y′) =
∑
s′,x

Q(s′|y′)�{x = f(u, s′)}Q(y|x, s′), (13)

π(y′) is a stationary distribution induced by the Markov kernel
P (y|y′) =

∑
u P (u|y′)Pf (y|u, y′), and U is an auxiliary

RV with |U| ≤ L � min{(|X ||S|, (|X | − 1)|S||Y| + 1,
(|Y| − 1)|Y| + 1}.

We note that (13) implies that S′ − Y ′ − U forms a
Markov chain. The feedback capacity expression in (12) is
interesting, as it combines the idea of an auxiliary RV and
stationary distributions. This is the first appearance in the
literature of such an expression that results in a single-
letter capacity expression. Any realization of the auxiliary
RV u ∈ U represents a deterministic mapping from S to X .
Such mappings are called strategies, and were introduced in
Shannon’s work [55]. Furthermore, although there is generally
a total of |X ||S| strategies, CFB-CSI can be achieved with at
most L of them. Hence, the maximization on x = f(u, s′)
in (12) is to choose a subset of L maximizing strategies from
the set of all strategies (that is,

(|X ||S|
L

)
ways to choose in

total). We note that in the case where the state sequence is
i.i.d., CFB-CSI recovers the capacity derived by Shannon [55]
(feedback cannot increase the capacity of DMCs [17]) with
the cardinality bound |U| ≤ min{(|X | − 1)|S| + 1, |Y|} (see,
e.g., [69]). In comparison, our general cardinality bound, L,
has a multiplication by |Y| because of the memory preserved
by the previous output, but both cardinality bounds coincide
in the case of i.i.d. states.

Analogically to Lemma 1 for the case without CSI, the
following Lemma declares that the maximum in (12) can
particularly be attained by an input distribution and a function
f : U × S → X that induce a uniqueness of the stationary
output distribution.

Lemma 2: For a connected NOST channel with CSI avail-
able at the encoder,

max
P (u|y′),x=f(u,s′)

I(U ; Y |Y ′)

= max
P (u|y′),x=f(u,s′)∈Pπ

I(U ; Y |Y ′), (14)

where Pπ is defined as the set of (P (u|y′), f) pairs that induce
a unique stationary output distribution π(y′), and this set is
non-empty.

The following theorem enables us to compute CFB-CSI,
since for any choice of f(·) the feedback capacity expres-
sion, maxP (u|y′) I(U ; Y |Y ′), can be formulated as a convex
optimization problem similar to that of Theorem 2, yet with
input U instead of X .

Theorem 4 (Convex Optimization for CFB-CSI): For any f :
U × S → X with |U| = L, the expression for the feedback
capacity of a connected NOST channel with CSI available at
the encoder, CFB-CSI, given in (12), can be formulated as the
following convex optimization problem:

maximize
P (y′,u)∈P(Y×U)

I(U ; Y |Y ′) (15a)
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subject to
∑
u,y

PY ′,U (ỹ, u)Pf (y|u, ỹ)

−
∑
y′,u

PY ′,U (y′, u)Pf (ỹ|u, y′) = 0, ∀ỹ ∈ Y. (15b)

where Pf (y|u, y′), given in (13), is determined by f and the
NOST channel model.

As a consequence of Theorem 4, the feedback capacity
CFB-CSI given in (12) can be readily computed, because the
maximum over functions f that map x = f(u, s′) is equivalent
to taking the maximum of the solutions of all

(|X ||S|
L

)
convex

optimization problems with |U| = L.
In Section IV, we provide an example of a connected NOST

channel whose CFB and CFB-CSI given in the previous theorems
are equal, and derive these capacity expressions there explicitly
as detailed in Theorem 5.

IV. EXAMPLES

This section covers special cases of Setting I and Setting II,
and shows how the feedback capacity expressions of each
setting, CFB and CFB-CSI, subsume the corresponding capacity
characterizations from the literature. Furthermore, we demon-
strate the connectivity property (Definition 1) on the POST(α)
channel [30]. Finally, we generalize this channel to one having
a state that is stochastically dependent on the output, a noisy
version we thus call “the noisy-POST(α, η) channel”, and
show that CSI available at the encoder does not increase its
feedback capacity.

A. Special Cases of Setting I—No CSI

1) The State Is a Deterministic Function of the Output:
The case where si = yi is trivially a special case of Setting I.
As explained after Theorem 1, Setting I can also be formulated
with the channel state y′ and therefore, operationally, both
settings are equivalent. In [39], the special case si = yi was
studied, but Theorem 1 generalizes their result by relaxing
the assumption in [39]. In particular, [39] shows that the
capacity expression is the one in Theorem 1 but subject to
strong irreducibility and strong aperiodicity [39, Defs. 2,4].2

Our derivations do not require any aperiodicity assumption,
and the strong irreducibility is particularly relaxed: recall that
by (7), our connectivity condition holds if and only if

∀i, j ∈ Y, ∃T (i, j) : (

T (i,j)times︷ ︸︸ ︷
Q · · ·Q )ij > 0. (16)

The strong irreducibility in [39, Def. 2] can be written
similarly by changing the maximum in (7) to a minimum.
In words, strong irreducibility requires irreducibility (in the
usual sense) of the output Markov process {Yi|i = 0, 1, . . . }
with respect to all input distributions, while Definition 1 only
requires the existence of an input distribution that induces a
path (a positive probability) between any two channel outputs.
We proceed to show the significance of this relaxation via

2More accurately, [39] also assumed an additional, unnecessary condition
([39, Def. 6]) just for simplifying the proof, as it was remarked there that it
was not crucial for the feedback capacity theorem.

Fig. 2. The ZS-channel model characterizing the probability of
Q(yi|xi, si−1), where α ∈ [0, 1]. For si−1 = 1 we have the Z topology,
and for si−1 = 2 we have the S topology.

the following Example a), then we provide Example b) of a
periodic, connected NOST channel.

a) The POST(α) channel: The POST(α) channel studied
in [30] is a simple, yet representative, example of an FSC.
The alphabets X ,Y,S are all binary, and the channel output
depends on the input and the channel state as shown on Fig. 2.
Specifically, if the input and the channel state are equal, the
channel output is equal to them, while otherwise it is a random
instance due to parameter α ∈ [0, 1]. The state evolution of the
POST(α) channel is implied by its name, “Previous Output is
the STate (POST)” [30], i.e., si = yi. The POST(α) channel is
not strongly irreducible under the definition of [39, Def. 2], but
is a connected NOST channel under Definition 1, demonstrated
as follows. For the POST(α) channel, Matrix Q defined in (7),
and Matrix Q̃ defined by replacing the maximum in (7) with
a minimum are, respectively,

Q =
[

1 1 − α
1 − α 1

]
, Q̃ =

[
α 0
0 α

]
.

On the one hand, for any power of n = 1, 2, . . . , entries
(Q̃n)12 = (Q̃n)21 = 0, i.e., there is no path from output y′ = 1
to output y = 2 (and from y′ = 2 to y = 1); and therefore,
the POST(α) is not strongly irreducible. On the other hand,
Qij > 0 for all i, j ∈ Y and α ∈ [0, 1), and thus the POST(α)
channel is connected (except for α = 1, in which case the
feedback capacity is trivially 0). Consequently, Theorem 1
recovers its known feedback capacity, which is the closed-form
capacity expression of a simple Z channel, as was derived
in [30].

It is compelling that many channel instances like the trap-
door [27], Ising [45] and POST(α) share the same channel
characterization Q(y|x, s′). However, their feedback capacity
is fundamentally different due to the channel state evolution.
In Section IV-C, we generalize the POST(α) channel to have a
stochastic state evolution, and study its feedback capacity with
and without CSI available at the encoder. We now proceed to
Example b) of a periodic connected NOST channel that does
not satisfy strong aperiodicity [39, Def. 4].

b) A periodic NOST channel: Let X = S = {0, 1},
Y = [0 : 3], where for both states a general binary-input
binary-output channel (BIBO) is obtained, yet with different
outputs, as given on the LHS of Fig. 3. The state si is
a deterministic function of the output yi, as given on the
RHS of Fig. 3, and it induces a periodic Markov output
process with period 2. Although the output Markov chain is
periodic, Theorem 1 can determine the feedback capacity of
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Fig. 3. An example of a periodic connected NOST channel. On the LHS: the
conditional probabilities Q(yi|xi, si−1), i.e., for both si−1 = 0, 1, general
BIBO channels are obtained with some parameters 0 ≤ α, β, γ, δ ≤ 1. On the
RHS: the state evolution Q(si|yi), i.e., si is a deterministic function of yi.

this channel, because it is clearly a connected NOST channel.
Denote the DMC capacities of the BIBOs in si−1 = 0, 1 by
C1, C2, respectively. Applying Theorem 1 gives that CFB

of this periodic channel example is the average of C1 and
C2, because any stationary output distribution π(y′), y′ ∈ Y
satisfies πY ′(0) + πY ′(1) = πY ′(2) + πY ′(3) = 0.5; thus the
feedback capacity is

CPer.
FB =

∑
y′∈Y

π(y′)I(X ; Y |Y ′ = y′)

= (πY ′(0) + πY ′(1))C2 + (πY ′(2) + πY ′(3))C1

=
C1 + C2

2
. (17)

2) The State Is Independent of the Output: In this special
case, the channel state evolution satisfies Q(si|yi) = Q(si).
Consequently, for this case, the averaged DMC Q(y|x, y′)
in (3) does not depend on the previous channel input y′,
and can be written as Q(y|x) �

∑
s′ Q(s′)Q(y|x, s′) (which

implies that X is independent of S′). The term for Q(y|x)
averages the DMCs Q(y|x, s′) over the state; the capacity is
C = maxP (x) I(X ; Y ), and is not increased by feedback [17].
We show that CFB is equal to C as follows. On the one hand,
Q(y|x, y′) = Q(y|x) implies that I(X ; Y |Y ′) ≤ I(X ; Y ),
and on the other hand we have I(X ; Y |Y ′) ≥ I(X ; Y ),
which follows by considering P (x|y′) = P (x) as this
implies that Y and Y ′ are independent due to P (y|y′) =∑

x P (x|y′)Q(y|y′, x) =
∑

x P (x)Q(y|x) = P (y).

B. Special Cases of Setting II—CSI Available at the Encoder

We previously showed that Setting I (without CSI) was
operationally equivalent to the setting where si = yi with
feedback, by arguing that each one of them can be considered
as a special case of the other. However, Setting II (CSI
available at the encoder) cannot be considered a special case
of the setting si = yi with feedback and CSI available at the
encoder due to the following explanation. There is already a
real state with a physical meaning, s′, known at the encoder,
and we cannot introduce a new fictitious state. When CSI is
not available, it follows from Theorem 1 that the probability
of Yi given (Xi, Yi−1) is determined by Q(y|x, y′) (3), i.e.,
it is fixed by the NOST channel model because of the Markov
chain S′ −Y ′ −X , which follows since the encoder does not
have access to the states. However, this Markov chain does
not necessarily hold when CSI is available at the encoder,
and, therefore, the probability of Yi given (Xi, Yi−1) is given
by P (y|x, y′) which is not fixed only by the NOST channel
model, but also by the choice of an auxiliary RV U that

Fig. 4. The noisy-POST(α, η) channel. On the LHS: the ZS-channel model
characterizing the probability of Q(yi|xi, si−1), where α ∈ [0, 1]. On the
RHS: the state evolution Q(si|yi) as the Z topology, where η ∈ [0, 1].

maps the real state S′ to a channel input X by some function
f : U × S → X , as shown in Theorem 3.

Another special case of Setting II is where the state is
independent of the output, i.e., Q(si|yi) = Q(si). In this case,
we obtain a new DMC, Pf (y|u, y′) =

∑
s′,x Q(s′)�{x =

f(u, s′)}Q(y|x, s′) = Pf (y|u), with input u and output
y, as can be seen from (13). This implies that U and S′

become independent. The capacity in this case was derived by
Shannon [55] as maxP (u),x(u,s′) I(U ; Y ), where U is, indeed,
an auxiliary RV independent of S′. Feedback does not increase
the capacity of DMCs, and it can be shown that CFB-CSI

recovers Shannon’s capacity expression by using the fact that
Pf (y|u, y′) = Pf (y|u) and repeating the same arguments
presented in Section IV-A.2 with U instead of X .

C. The Noisy-POST(α, η) Channel—Special Example for
Which CFB and CFB-CSI Are Equal

In this section, we introduce an interesting example of a
NOST channel for which CFB and CFB-CSI are equal, i.e.,
CSI available at the encoder does not increase its feedback
capacity. This example is a generalization of the POST(α)
channel, i.e., the channel output depends on the input and
the channel state identically to the POST(α) channel, while
the state evolution is generalized, as illustrated in Fig. 4.
We emphasize that in all previous channel instances studied
in the literature, such as the trapdoor, Ising and POST(α), the
state evolves according to a deterministic rule and, thus, can be
determined at the encoder, while here we focus on a noisy, new
version of the POST(α) channel, in which the state evolves
stochastically according to parameter η ∈ [0, 1]. In particular,
the channel state depends on the output via a Z-channel,
i.e., if the output is zero, the next state equals the channel
output, and otherwise, the next state equals the output with
probability 1−η. We call this generalized channel “the noisy-
POST(α, η)”; note that when η = 0 we obtain the original
“Previous Output is the STate (POST)” [30] channel. Similarly
to the demonstration of the connectivity on the POST(α) in
Section IV-A, it can be verified that the noisy-POST(α, η)
channel is also connected under Definition 1.

In the remainder of this section, we study the feedback
capacity of this noisy-POST(α, η) channel with or without
CSI available at the encoder, denoted by CN-POST

FB-CSI (α, η) and
CN-POST

FB (α, η), respectively. For simplicity, we arbitrarily focus
on the case of α = 0.5, η ∈ [0, 1] as summarized in the
following theorem, and analyze it.

Theorem 5: For the noisy-POST(α, η) channel with any
α, η ∈ [0, 1], CSI available at the encoder does not increase
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Fig. 5. The feedback capacity of the noisy-POST(0.5, η) channel with or
without CSI available at the encoder.

Fig. 6. The objective function of (18) evaluated for all values of a, b ∈ [0, 1]
and arbitrary η = 0.5.

the feedback capacity, and

CN-POST
FB (0.5, η) = max

a,b∈[0,1]

b+η
a+b+η

(
H

(
a
2

) − a
)

+ a
a+b+η

(
H

(
b+η
2

)
− bH

(
η
2

)
− bH

(
η
2

))
. (18)

The first result of Theorem 5, i.e., CN-POST
FB-CSI (α, η) =

CN-POST
FB (α, η), is proved at the end of this section. The second

result of Theorem 5, i.e., Eq. (18), follows straightforwardly
from applying Theorem 1 on the noisy-POST(0.5, η) channel
where a � PX|Y ′(1|0) and b � PX|Y ′(0|1) are the optimiza-
tion variables; its derivation is tedious and thus is omitted.

In Fig. 5, CN-POST
FB (α, η) is evaluated for η ∈ [0, 1] using

the convex optimization problem in Theorem 2. It can be seen
that it is a convex function of η. In particular, for η = 0, the
POST(0.5) channel is obtained, and for η = 1 the Z-channel
with parameter 0.5 is obtained; in both cases, the feedback
capacity is − log2(0.8) ≈ 0.3219. In the case where η ∈ (0, 1),
it can be seen that the feedback capacity is less than the
capacity of the Z-channel. This reflects the rate-loss due to the
fact that state is known at the encoder, but not at the decoder.

For the special case η = 0, the feedback capacity is
achieved with a = b = 0.4, and for η = 1 it is achieves
with a = 0.4, b = 0.6. For general η �= 0, 1, deriving a
simpler capacity expression than (18) is challenging. In Fig. 6,

TABLE I

ALL THE STRATEGIES OF BINARY INPUT AND BINARY
STATE ALPHABETS,S = X = {0, 1}

we evaluate the objective function of (18) as a function
of the optimization variables a and b, and η = 0.5. It is
interesting to note that although we prove the concavity of the
feedback capacity in P (y′, x) in Theorem 2, Fig. 6 suggests
that the feedback capacity of the noisy-POST(0.5, 0.5) is also
a concave function of P (x|y′). A similar phenomenon is
observed for other values of η ∈ (0, 1) as well.

Next, we prove Theorem 5.
Proof of Theorem 5: We prove here that CSI at the

encoder does not increase the feedback capacity of the noisy-
POST(α, η) channel, i.e., CN-POST

FB (α, η) = CN-POST
FB-CSI (α, η).

Consider |U| = |X ||S| = 4 with all possible strategies as
detailed in Table I. By Theorem 3, assume that IP1(U ; Y |Y ′)
is the feedback capacity of the noisy-POST(α, η) channel
with CSI available at the encoder, induced by some input
distribution P1(u|y′) with the corresponding joint distribution

P1(y′, u, x, y)

= π1(y′)
∑
s′

Q(s′|y′)P1(u|y′)�{x = f(u, s′)}Q(y|x, s′),

where π1(y′) is a stationary output distribution induced from
the conditional output distribution P1(y|y′). We construct an
input distribution P2(x|y′) with the corresponding conditional
mutual information satisfying IP2(X ; Y |Y ′) = IP1(U ; Y |Y ′)
induced by the joint distribution

P2(y′, x, y) = π2(y′)P (x|y′)Q(y|x, y′),

where π2(y′) is a stationary output distribution induced from
the conditional output distribution P2(y|y′) (see Theorem 1).
Clearly, IP1(U ; Y |Y ′) ≥ IP2 (X ; Y |Y ′); thus, our goal is to
show that IP1 (U ; Y |Y ′) ≤ IP2 (X ; Y |Y ′). In the construction
of P2(x|y′), we only demand that it satisfies

P2(x|y′) = P1(x|y′) ∀x ∈ X , y′ ∈ Y, (19)

where P1(x|y′) is the input distribution induced by P1(u|y′),
and given by

P1(x|y′) =
∑
u,s′

P1(u, s′, x|y′)

=
∑
u,s′

P1(u|y′)Q(s′|y′)�{x = f(u, s′)}.

Hence, for the noisy-POST(α, η) we obtain

P2(X = 1|Y ′ = 0) � P1(u2|Y ′ = 0) + P1(u3|Y ′ = 0),
(20)

P2(X = 0|Y ′ = 1) � P1(u0|Y ′ = 1) + ηP1(u1|Y ′ = 1)
+ (1 − η)P1(u2|Y ′ = 1). (21)
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From the construction in (19), it follows that the conditional
output distributions are also equal, i.e.,

P2(y|y′) =
∑

x

P2(x|y′)Q(y|x, y′)

=
∑

x

P1(x|y′)Q(y|x, y′)

= P1(y|y′),

for all y′, y ∈ Y . Consequently, π2(y′) = π1(y′), ∀y′ ∈ Y
and HP2(Y |Y ′) = HP1(Y |Y ′) hold; thus,

IP1(U ; Y |Y ′) = HP2(Y |Y ′) − HP1(Y |Y ′, U)
(a)

≤ HP2(Y |Y ′) − HP2(Y |Y ′, X)
= IP2(X ; Y |Y ′),

where (a) follows from defining q � HP1(Y |Y ′, U) −
HP2(Y |Y ′, X) ≥ 0. We show that q ≥ 0 by applying the
noisy-POST(α, η) channel model on

HP1(Y |Y ′, U) =
∑
y′

π1(y′)HP1(Y |Y ′ = y′, U),

HP2(Y |Y ′, X) =
∑
y′

π2(y′)HP2(Y |Y ′ = y′, X)

=
∑
y′

π1(y′)HP2(Y |Y ′ = y′, X),

Pf (y|u, y′) =
∑
s′,x

Q(s′|y′)�{x = f(u, s′)}Q(y|x, s′),

giving the following identities:

HP1(Y |y′ = 0, U)
= P1(X = 0|Y ′ = 0)
(a)
= P2(X = 0|Y ′ = 0)
= HP2(Y |y′ = 0, X),
HP1(Y |y′ = 1, U)

= P1(u0|y′ = 1)H(1−η
2 ) + P1(u1|y′ = 1)H(η)

+ P1(u2|y′ = 1) + P1(u3|y′ = 1)H(η
2 )

(b)
= P1(u0|y′ = 1)

(
H(1−η

2 ) − H(η
2 )

)
+ P1(u1|y′ = 1)

(
H(η) − H(η

2 )
)

+ P1(u2|y′ = 1)
(
1 − H(η

2 )
)

+ H(η
2 ),

HP2(Y |y′ = 1, U)

= P2(X = 0|Y ′ = 1)H(1−η
2 )

+ P2(X = 1|Y ′ = 1)H(η
2 )

(c)
= P2(X = 0|Y ′ = 1)H(1−η

2 )
+ (1 − P2(X = 0|Y ′ = 1))H(η

2 )
(d)
= P1(u0|y′ = 1)

(
H(1−η

2 ) − H(η
2 )

)
+ P1(u1|y′ = 1)η

(
H(1−η

2 ) − H(η
2 )

)
+ P1(u2|y′ = 1)(1 − η)

(
H(1−η

2 ) − H(η
2 )

)
+ H(η

2 ),

where (a) and (d) follow from the construction of P2(x|y′)
in (20)-(21); and (b) and (c) follow from substituting

P1(u3|y′ = 1) and P2(X = 1|Y ′ = 1), respectively, with
their complementary distribution to 1. Hence, we deduce that

q = P1(Y ′ = 1)
× (HP1(Y |y′ = 1, U) − HP2(Y |y′ = 1, X)) ≥ 0,

because

HP1(Y |y′ = 1, U) − HP2(Y |y′ = 1, X)

= P1(u1|y′ = 1)
(
H(η) − (1 − η)H(η

2 ) − ηH(1−η
2 )

)
+ P1(u2|y′ = 1)(1 − ηH(η

2 ) − (1 − η)H(1−η
2 ))

≥ P1(u1|y′ = 1)
(
H(η) − (1 − η)H(η

2 ) − ηH(1−η
2 )

)
(a)

≥ P1(u1|y′ = 1) (H(η) − H(η(1 − η)))
(b)

≥ 0,

where (a) follows from the concavity of the binary entropy,
and (b) is due to H(η) ≥ H(η(1 − η)), which is trivial for
η ∈ [0, 0.5], and for η ∈ [0.5, 1] it is also trivial after using
H(η) = H(1 − η).

To conclude, IP2(X ; Y |Y ′) = IP1 (U ; Y |Y ′), which implies
that CSI available at the encoder does not increase the feed-
back capacity of the noisy-POST(α, η) channel.

V. PROOFS

In this section, we prove our main results given in
Section III. In particular, the proofs of the feedback capacity
expression, i.e., Theorems 1 and 3, are given in Sections V-A
and V-B, respectively. We note that Lemmas 1 and 2 are
used to establish the achievability proofs of the mentioned
Theorems 1 and 3, respectively. As Lemma 2 generalizes
Lemma 1, we only prove the former in Section V-C. The
proof of the cardinality bound of Theorem 3 is provided in
Section V-D. Finally, Section V-E proves the convex opti-
mization formulations of the feedback capacity expressions,
i.e., Theorems 2 and 4. Before all these proofs are given,
we introduce the following useful lemma, whose proof is given
in Appendix A.

Lemma 3: For any NOST channel (2) in Setting I (without
CSI),

Q(yi|xi, yi−1, m) =
∑

si−1∈S
Q(si−1|yi−1)Q(yi|xi, si−1)

= Q(yi|xi, yi−1). (22)

A. Proof of Theorem 1

1) Proof of Converse: Throughout the proof, the initial
output, y0, is assumed to be available at both the encoder
and the decoder.

For a fixed sequence of (2nR, n) codes, where R is an
achievable rate, we bound R as

R − �n

(a)

≤ 1
n

I(M ; Y n)

(b)
=

1
n

n∑
i=1

I(M, Xi; Yi|Y i−1)
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(c)

≤ 1
n

n∑
i=1

H(Yi|Yi−1) − H(Yi|Yi−1, Xi)

(d)

≤ max
{P (xi|yi−1)}n

i=1

1
n

n∑
i=1

I(Xi; Yi|Yi−1), (23)

where �n tends to zero as n → ∞, and

(a) follows from Fano’s inequality;
(b) follows from the fact that xi is a deterministic function

of (m, yi−1); and
(c) follows from the fact that conditioning reduces entropy

and from Lemma 3;
(d) follows from the fact that for any k, the joint distribution

P (yk−1, xk, yk) = P (yk−1)P (xk|yk−1)Q(yk|xk, yk−1)
is determined by {P (xi|yi−1)}k

i=1, which can be shown
by induction.

In Section V-B, we show a fundamental result on the optimal-
ity of time-invariant input distributions in Lemma 4. To avoid
repetition, we refer the reader to follow the proof of Lemma 4
with x instead of u, the joint distribution P (y′, x, y) =
P (y′, x)Q(y|x, y′) and the modified set

Dε � {P (y′, x) ∈ PY×X :

|PY ′(y) −
∑
y′,x

PY ′,X(y′, x)Q(y|x, y′)| ≤ �, ∀y}, (24)

in order to deduce that any achievable rate R must satisfy
R ≤ maxP (x|y′) I(X ; Y |Y ′).

2) Proof of Achievability: We need to prove that rates
satisfying R < maxP (x|y′) I(X ; Y |Y ′) are achievable. Never-
theless, by recalling Lemma 1, which states that it is sufficient
to maximize over input distributions that induce a unique
stationary output distribution, we prove, for simplicity, that
rates satisfying R < maxP (x|y′)∈Pπ

I(X ; Y |Y ′) are achiev-
able. The proof uses rate-splitting where Y n is treated as
a time-sharing sequence, and the previous channel output,
Yi−1 = y′ ∈ Y , determines one of |Y| DMCs that are
multiplexed at the encoder and demultiplexed at the decoder.

Proof: At time i = 1, the encoder transmits an arbitrary
input symbol X1, and afterwards Y1 is known both at the
decoder and at the encoder by the feedback. More generally,
from time i = 2 on, the previous channel output Yi−1 is
known at both parties before each transmission. According
to the known Yi−1 = y′, a DMC characterized by QY |X =
QY |X,Y ′=y′ with message My′ is treated in the current channel
use.

a) Rate-splitting and code construction: Fix an input
distribution P (x|y′) ∈ Pπ that achieves CFB in (9), i.e.,
a collection of conditional PMFs P (x|y′) on X for every
y′ ∈ Y is to be determined such that a unique stationary
distribution on the outputs, π(y′), is induced. By Lemma 1,
such P (x|y′) always exists on account of the connectivity
assumption (Definition 1) and the assumption that |Y| is finite.
Each message M consists of |Y| independent sub-messages
My′ ∈ [1 : 2nRy′ ], y′ ∈ Y . This implies that R =

∑
y′ Ry′ .

From the achievability of the channel coding theorem for
DMCs, in each DMC QY |X,Y ′=y′ , y′ ∈ Y , every rate Ry′ <
I(X ; Y |Y ′ = y′) is achievable, where the joint distribution
is determined by the fixed conditional input distribution given

y′, i.e., P (x, y|y′) = P (x|y′)Q(y|x, y′). That is, there exists
a sequence of (2nRy′ , n) codes with an average probability of
error P (M̂y′ �= My′) that tends to zero as n → ∞. For a
block length n and y′ ∈ Y , denote the codebook of the nth
code of such a sequence by Cn,y′ . Each Cn,y′ consists of 2nRy′

codewords xn(my′).
Returning to our connected NOST channel: to send message

m = {my′ |y′ ∈ Y}, at time i ∈ [2, n + 1], with known
previous output Yi−1 = y′, the encoder transmits the next
unsent symbol of codeword xn(my′) ∈ Cn,y′ . Upon receiving
the entire output sequence yn+1, the decoder demultiplexes
it into |Y| sub-sequences of outputs yny′ (y′) whose previous
output is y′ ∈ Y , where ny′ is the number of times that output
y′ was “visited” during times i ∈ [1 : n], i.e.,

ny′ =
n+1∑
i=2

�{Yi−1 = y′}, (25)

thus
∑

y′ ny′ = n. For each sub-sequence yny′ (y′), y′ ∈ Y of
DMC QY |X,Y =y′ , the receiver decodes my′ as in the afore-
mentioned direct coding theorem for DMCs (joint typicality
decoding).

b) Analysis of the probability of error: Using this theo-
rem, it follows that the probability of error in decoding each
my′ tends to zero as n → ∞ if

Ry′ ≤ lim
n→∞

ny′

n
I(X ; Y |Y ′ = y′) − δ(�),

(a)
= π(y′)I(X ; Y |Y ′ = y′) − δ(�), (26)

where δ(�) tends to zero as � → 0. Step (a) follows from
Birkhoff’s ergodic theorem on Markov chains with a unique
stationary distribution (see, e.g., [68]), since the fixed P (x|y′)
induces a homogeneous Markov chain {Yi|i = 0, 1, . . . } with
a unique stationary output distribution, π(y′). Now, the total
probability of error in decoding the message m = {my′ |y′ ∈
Y} tends to zero as n → ∞ if

R =
∑
y′

Ry′

≤
∑
y′

π(y′)I(X ; Y |Y ′ = y′) − δ̃(�)

= I(X ; Y |Y ′) − δ̃(�), (27)

where δ̃(�) tends to zero as � → 0. This completes the proof
of achievability.

We note that Theorem 1 can be derived by another approach
based on the directed information, which generally charac-
terizes the capacity of channels with feedback, as given in
Appendix B.

B. Proof of Theorem 3

1) Proof of Converse: Here, we prove that an achievable
rate R must satisfy R ≤ maxP (u|y′) I(U ; Y |Y ′), where,
without loss of generality, U is the set of all strategies. In this
proof, the initial output, y0, is assumed to be available at both
the encoder and the decoder, and the proof consists of two
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parts. In the first part, we show that for achievable rates

R ≤ max
{P (ui|yi−1)}n

i=1

1
n

n∑
i=1

I(Ui; Yi|Yi−1) + �n, (28)

where Ui ∈ U enumerates all possible strategies and maps
Si−1 to Xi, and �n → 0 as n → ∞. The second part of
the proof, stated by the following Lemma 4, is to show that
it is sufficient to maximize over time-invariant conditional
distributions, P (u|y′).

Lemma 4: For a connected NOST channel with CSI avail-
able at the encoder,

lim
n→∞ max

{P (ui|yi−1)}n
i=1

1
n

n∑
i=1

I(Ui; Yi|Yi−1)

≤ max
P (u|y′)

I(U ; Y |Y ′), (29)

where Ui ∈ U enumerates all possible mappings from S
to X , the joint distribution on the RHS is P (y′, u, y) =
π(y′)P (u|y′)Pf (y|u, y′), and Pf (y|u, y′) is given in (13).

The proof of Lemma 4 is based on a method developed
in [54], and it is given next in the second part of Section V-B.
The first part of the converse, i.e., Inequality (28), is now
shown.

For a fixed sequence of (2nR, n) codes such that the
probability of error P

(n)
e → 0 as n → ∞, we bound

R − �n

(a)

≤ 1
n

n∑
i=1

H(Yi|Y i−1) − H(Yi|Y i−1, M)

≤ 1
n

n∑
i=1

H(Yi|Yi−1) − H(Yi|Y i−1, M)

(b)
=

1
n

n∑
i=1

I(Ui; Yi|Yi−1)

(c)

≤ max
{P (ui|yi−1),P (xi|ui,si−1)}n

i=1

1
n

n∑
i=1

I(Ui; Yi|Yi−1)

(d)
= max

{P (ui|yi−1),P (vi),xi=fi(ui,vi,si−1)}n
i=1

1
n

n∑
i=1

I(Ui; Yi|Yi−1)

(e)

≤ max
{P (ũi|yi−1),xi=fi(ũi,si−1)}n

i=1

1
n

n∑
i=1

I(Ũi; Yi|Yi−1)

(f)
= max

{P (ũi|yi−1),xi=f(si−1,ũi,i)}n
i=1

1
n

n∑
i=1

I(Ũi; Yi|Yi−1)

(g)

≤ max
{P (

≈
ui|yi−1),xi=f(

≈
ui,si−1)}n

i=1

1
n

n∑
i=1

I(
≈
Ui; Yi|Yi−1) (30)

where �n → 0 as n → ∞, and

(a) follows from Fano’s inequality;
(b) follows from defining Ui � (M, Y i−1) for every i ∈

[1 : n]; this definition also satisfies the Markov chain
(Yi, Si)− (Xi, Si−1)−Ui due to the assumption that the
channel is an FSC;

(c) follows from the following lemma, whose proof is given
in the next part of Section V-B:

Lemma 5: For any k, the joint distribution
P (yk−1, uk, yk) is determined by

{P (ui|yi−1)P (xi|ui, si−1)}k
i=1;

(d) follows from the Functional Representation Lemma [69],
i.e., for every i ∈ [1 : n] there exists a RV Vi, such that Xi

can be represented as a function of (Ui, Si−1, Vi), where
Vi is independent of (Ui, Si−1), and the Markov chain
(Yi, Si) − (Ui, Si−1, Xi) − Vi holds (hence (Yi, Si) −
(Xi, Si−1) − (Vi, Ui) holds as well), and from the fol-
lowing lemma, whose proof uses the aforementioned
properties of Vi and is similar to that of Lemma 5, and
therefore it is omitted:

Lemma 6: For any k, the joint distribution
P (yk−1, uk, yk) is determined by

{P (ui|yi−1)P (vi)xi(vi, ui, si−1)}k
i=1;

(e) follows from defining Ũi � (Ui, Vi); hence,

P (ũi|yi−1) = P (vi|yi−1)P (ui|vi, yi−1),

as P (ui|yi−1) and P (vi) are sub-domains of
P (ui|vi, yi−1) and P (vi|yi−1), respectively;

(f) follows since there exists a time-invariant function f such
that f(ũ, s, i) = fi(ũi, si−1); and

(g) follows from defining
≈
U = (Ũi, T = i), where T

represents the time index.

For simplicity of appearance, we replace
≈
Ui with Ui and obtain

from (30) that any achievable rate must satisfy (28), where U
is the aforementioned set of all strategies, i.e., |U| = |X ||S|

(increasing the cardinality of U beyond |X ||S| cannot increase
the objective function further). Finally, the proof is completed
by Lemma 4.

2) Proofs of Technical Lemmas 4-5:
Proof of Lemma 4: The proof is divided into two parts.

In the first part, 1
n

∑n
i=1 I(Ui; Yi|Yi−1) is upper bounded for

any n and joint distribution on (Un, Y n). Subsequently, in the
second part of the proof we take the limit of this bound when
n tends to infinity in order to obtain (29).

The first part of the proof is as follows. For any n and
{P (yi−1, ui)}n

i=1,

1
n

n∑
i=1

I(Ui; Yi|Yi−1)
(a)

≤ I(U ; Y |Y ′)

(b)

≤ max
P∈D 1

n

I(U ; Y |Y ′), (31)

where for Steps

(a) the joint distribution on the RHS is P̃ (y′, u, y) =
P̃ (y′, u)

∑
s′,x Q(s′|y′)�{x = f(u, s′)}Q(y|x, s′),

in which

P̃ (y′, u) � 1
n

n∑
i=1

PYi−1,Ui(y
′, u), (32)

U is defined identically to all Ui, i.e., it is the set
of all strategies mapping s′ to x by the deterministic
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function f , and this step follows from the fact that
I(U ; Y |Y ′) is concave in the joint distribution P (y′, u)
as is explained in particular in the proof of Theorem 4
given in Section V-E;

(b) the notation Dε denotes the set

Dε � {P (y′, u) ∈ PY×U :

|PY ′(y) −
∑
y′,u

PY ′,U (y′, u)Q(y|u, y′)| ≤ �, ∀y}, (33)

where

Q(y|u, y′) �
∑
s′,x

Q(s′|y′)�{x = f(u, s′)}Q(y|x, s′),

and for any codebook of length n, its induced
probability, P̃ (y′, u), lies in D 1

n
, i.e., |P̃Y ′(y) −∑

y′,u P̃Y ′,U (y′, u)Q(y|u, y′)| ≤ 1
n for all y, because by

using the definition of P̃ (y′, u) given in (32) we obtain

|P̃Y ′(y) −
∑
y′,u

P̃Y ′,U (y′, u)Q(y|u, y′)|

=
1
n
|
∑
y′,u

n∑
i=1

PYi−1(y) − PYi−1,Ui(y
′, u)Q(y|u, y′)|

=
1
n
|

n∑
i=1

∑
y′,u

PYi−1(y) − PYi−1,Ui(y
′, u)Q(y|u, y′)|

=
1
n
|

n∑
i=2

∑
y′,u

PYi−1(y) − PYi−2,Ui−1(y
′, u)Q(y|u, y′)

+ PY0(y) − PYn−1,Un(y′, u)Q(y|u, y′)|
=

1
n
|PY0(y) − PYn(y)|

≤ 1
n

, (34)

which follows from
∑

y′,u PYi−1,Ui(y′, u)Q(y|u, y′) =
PYi(y) for any i ∈ [1 : n].

This completes the first part of the proof. In the second part
of the proof, we obtain from (31)

lim
n→∞ max

{P (ui|yi−1)}n
i=1

1
n

n∑
i=1

I(Ui; Yi|Yi−1)

≤ lim
n→∞ max

P∈D 1
n

I(U ; Y |Y ′)

(a)
= max

P∈D0
I(U ; Y |Y ′)

(b)
= max

P (u|y′)
I(U ; Y |Y ′), (35)

where

(a) follows since any P ∈ D0 satisfies P ∈ ∩∞
n=1D 1

n
due to

the fact that 1
n is positive for all n, and vice versa, i.e., any

P ∈ ∩∞
n=1D 1

n
satisfies P ∈ D0 because 1

n monotonically
decreases in n; hence, limn→∞ D 1

n
= D0;

(b) follows since D0 implies the set of all P (y′, u) that have
a stationary output distribution, i.e., PY ′(y′) = PY (y′);
recall that since the output set Y is assumed to be finite,
there always exists a stationary output distribution (not

necessarily unique) with regard to any P (u|y′), thus D0

is non-empty.

This concludes the proof.
Proof of Lemma 5: We prove by induction that

the joint distribution P (yk−1, uk, yk) is determined by
{P (ui|yi−1)P (xi|ui, si−1)}k

i=1, where Ui � (M, Y i−1, y0)
and y0 is assumed to be known at both the encoder and the
decoder. For k = 1,

P (u1, y1|y0)

=
∑
s0,x1

P (s0, u1, x1, y1|y0)

=
∑
s0,x1

Q(s0)P (u1|y0)P (x1|u1, s0)Q(y1|x1, s0),

which follows from the facts that: U1 = (M, y0), where M
and S0 are independent and Y1 − (X1, S0) − M forms a
Markov chain due to the FSC Markov property (1). Suppose
that the lemma is true for k − 1, i.e., P (yk−2, uk−1, yk−1) is
determined by {P (ui|yi−1), P (xi|ui, si−1)}k−1

i=1 . Then, for k
we have

P (yk−1, uk, yk)

=
∑

sk−1,xk

P (yk−1, sk−1, uk, xk, yk)

=
∑

sk−1,xk

P (yk−1)Q(sk−1|yk−1)

× P (uk|yk−1)P (xk|uk, sk−1)Q(yk|xk, sk−1), (36)

which follows from the NOST channel Markov property (2)
and the definition of Uk. From the induction hypothesis,
P (yk−1) is determined by {P (ui|yi−1), P (xi|ui, si−1)}k−1

i=1 .
Hence, from (36) it can be seen that P (yk−1, uk, yk) is deter-
mined by {P (ui|yi−1), P (xi|ui, si−1)}k

i=1, which completes
the proof.

3) Proof of Achievability: We prove that every rate R <
maxP (u|y′) I(U ; Y |Y ′), where U is the set of all strategies,
is achievable. This is shown by converting Setting II into a
setting of type I, i.e., where no CSI is available, as is shown
in Fig. 7. In particular, at time i ∈ [2 : n] (the communication
setting starts at time i = 2 for the same reason given in the
proof of achievability of Setting I), the channel input is Ui,
which is a function of the message and feedback only, without
the state, i.e., Ui(M, Y i−1). Then, given the current state
Si−1, the strategy Ui maps Si−1 to input Xi, thus inducing a
new NOST channel, Q(y|u, s′)Q(s|y), with input Ui (rather
than Xi), in the presence of feedback. The new NOST channel
is also connected, because U specifically includes all |X |
strategies that map all states to an input x ∈ X . This allows
us to use the achievability of Theorem 1 (in which Lemma 2
should be used instead of Lemma 1) and deduce that rates that
satisfy R < maxP (u|y′) I(U ; Y |Y ′) are achievable.

C. Proofs of Lemma 1 and Lemma 2

Here, we prove Lemma 2 which also generalizes Lemma 1.
Proof of Lemma 2: Without loss of generality, we assume

that U is the set of all strategies, thus all strategies are chosen
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Fig. 7. An equivalent setting for the lower bound formulation with a new NOST channel Q(y|u, s′)Q(s|y) where CSI is unavailable.

and |U| = |X ||S|. We need to prove that

max
P (u|y′)

I(U ; Y |Y ′) = max
P (u|y′)∈Pπ

I(U ; Y |Y ′), (37)

where Pπ denotes the non-empty set of input distributions
P (u|y′) that induce a unique stationary output distribution.
We prove it by constructing some P (u|y′) ∈ Pπ that achieves
the maximum on the LHS of (37).

Since Y is assumed to be a finite set, any input dis-
tribution induces at least one stationary output distribution
(see, e.g., [70, p. 239]). Let P ∗(u|y′) be an optimal input
distribution that achieves the maximum on the LHS of (37),
denoted by I∗(U ; Y |Y ′), and induces at least one station-
ary output distribution, i.e., P ∗

Y ′(y′) = P ∗
Y (y′), ∀y′ ∈ Y .

If P ∗(u|y′) induces a probability transition matrix P ∗(y|y′)
whose stationary output distribution is unique, the proof is
concluded. Hence, we assume, otherwise, that P ∗(y|y′) has
infinitely many stationary output distributions. We show that
there always exists

≈
P (u|y′) ∈ Pπ, i.e., an input distribution

that induces a unique stationary output distribution
≈
π(y′) =

≈
PY ′(y′) =

≈
PY (y′), ∀y′ ∈ Y with the corresponding condi-

tional mutual information
≈
I(U ; Y |Y ′), such that

≈
I(U ; Y |Y ′) =

I∗(U ; Y |Y ′).
From Markov theory (see, e.g., [68, Th. 5.3.3 and

Th. 5.5.12]), since Y is finite, if P ∗(y|y′) induces only
one irreducible subset of Y , there is a unique stationary
output distribution on Y; this contradicts our assumption.
Therefore, P ∗(y|y′) decomposes Y into at least two disjoint
irreducible closed sets. Assume that P ∗(u|y′) induces exactly
two irreducible closed subsets of Y , denoted by Ci, i ∈
{1, 2}, with the corresponding probability transition matrices
P ∗
Ci

(y|y′), ∀y′, y ∈ Ci which are derived from P ∗(y|y′). Let
π∗
Ci

(y′), ∀y′ ∈ Ci, where
∑

y′∈Ci
π∗
Ci

(y′) = 1, be the unique
stationary distribution induced by P ∗

Ci
(y|y′), and denote the

corresponding maximal conditional mutual information of
each Ci by I∗Ci

(U ; Y |Y ′) �
∑

y′∈Ci
π∗
Ci

(y′)I∗(U ; Y |Y ′ = y′).
It follows that I∗(U ; Y |Y ′) = maxi∈{1,2} I∗Ci

(U ; Y |Y ′) since
if, without loss of generality, I∗C1

(U ; Y |Y ′) ≤ I∗C2
(U ; Y |Y ′),

then

P ∗
Y ′(y′) =

{
π∗
C2

(y′), y′ ∈ C2

0, otherwise
(38)

is a legitimate stationary distribution, i.e., it satisfies P ∗
Y ′(y′) =

P ∗
Y (y′), ∀y′ ∈ Y . Furthermore, we can construct

≈
P (u|y′) ∈

Pπ such that
≈
I(U ; Y |Y ′) = I∗C2

(U ; Y |Y ′) as follows. Con-

struct
≈
P (u|y′) exactly as P ∗(u|y′) for all y′ ∈ Y , but with

≈
P (u|y′

1), y′
1 ∈ C1 that induces a positive probability to reach

an arbitrary y2 ∈ C2 from an arbitrary initial y′
1 ∈ C1 with

some input sequence. This construction is legitimate because
the NOST channel is assumed to be connected, and the
|X | strategies that map all states to a specific input x are
also a part of the set of all strategies. This construction of
≈
P (u|y′) renders all outputs in C1 transient and C2 a unique
irreducible closed subset in Y . That is,

≈
P (u|y′) induces a

unique stationary output distribution on Y as given in (38),
and

≈
I(U ; Y |Y ′ = y′) = I∗C2

(U ; Y |Y ′ = y′) for any y′ ∈ C2.

Hence,
≈
I(U ; Y |Y ′) = I∗(U ; Y |Y ′) as desired.

The construction can be extended in the case of multiple
disjoint irreducible closed subsets of Y as there can be at
most |Y| subsets, which is a finite number. Hence, it can be
deduced that (37) holds.

Finally, using the cardinality bound of Theorem 3, whose
proof (given next in this section) shows that I∗(U ; Y |Y ′) can
be achieved with at most L ≤ |X ||S| strategies such that
P ∗(y|y′) is preserved, we conclude that I∗(U ; Y |Y ′) can
always be achieved with some P (u|y′), x(u, s′) ∈ Pπ where
|U| ≤ L. This concludes the proof.

D. Cardinality Bound

As the cardinality bound |U| ≤ |X ||S| is trivial (there
are |X ||S| strategies in total), here we prove the non-trivial
cardinality bounds on U in Theorem 3, i.e., |U| ≤ (|X |−1)|S|
|Y|+1 and |U| ≤ (|Y|−1)|Y|+1. If either of them is less than
|X ||S|, it implicitly means that not all strategies are required
in order to achieve the feedback capacity, but only L of them
at most.

Proof of Cardinality Bounds: We invoke the support
lemma [69, p. 631], which is a consequence of the Fenchel-
Eggle-ston-Caratheodory theorem [71], twice, for the aux-
iliary RV U . In each use, we show how the measures
of the feedback capacity, i.e., the conditional entropies in
I(U ; Y |Y ′) = H(Y |Y ′)−H(Y |Y ′, U), are preserved, thereby
implying both non-trivial cardinality bounds. In other words,
assuming U takes values in an arbitrary alphabet U , we prove
that given any (Y ′, S′, U, X), there exists (Y ′, S′, Ũ, X) with
|Ũ | ≤ min{(|X | − 1)|S||Y| + 1, (|Y| − 1)|Y| + 1} such that
I(U ; Y |Y ′) = I(Ũ ; Y |Y ′).

We begin with proving |U| ≤ (|X | − 1)|S||Y| + 1. Ũ must
have (|X | − 1)|S||Y| letters to preserve P (x|s′, y′) for all
s′, y′ ∈ S×Y . If P (x|s′, y′) is preserved, P (y′, y) is preserved
as well, because P (y′, y) = π(y′)P (y|y′), where π(y′) is a
stationary distribution induced from the probability transition
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matrix P (y|y′) that can also be expressed by

P (y|y′) =
∑
s′,x

Q(s′|y′)P (x|s′, y′)Q(y|x, s′).

Additionally, if P (y′, y) is preserved, H(Y |Y ′) is preserved,
too. Finally, Ũ must have another letter to preserve
H(Y |Y ′, U). This concludes the the proof of the first
non-trivial cardinality bound.

Following so, we prove |U| ≤ (|Y|−1)|Y|+1. However, this
time, we aim to preserve P (y|y′) for all y′, y ∈ Y , directly.
To address this, Ũ must have (|Y| − 1)|Y| letters, thereby
preserving H(Y |Y ′). Finally, Ũ must have another letter to
preserve H(Y |Y ′, U), which concludes the proof.

E. Convex Optimization Formulations
Firstly, we prove Theorem 2, and subsequently Theorem 4

follows likewise.
Proof of Theorem 2: In this proof we show that

(11a)-(11b) is a convex optimization problem, i.e., the
maximization domain is convex, Constraints (11b) are linear
and the objective (11a) is concave. The maximization is
over the probability simplex PY×X , which is convex, and
Constraints (11b) are linear in PY×X because Q(y|x, y′) is the
averaged channel in (3). Finally, we show that the objective
function in (11a) is concave as follows. The conditional
mutual information characterizing the feedback capacity can
be written as I(X ; Y |Y ′) = H(Y |Y ′) − H(Y |Y ′, X).
The first conditional entropy can be expressed as
H(Y |Y ′) = log |Y| − D(P (y′, y)||P (y′)U(y)), where
U(y) = 1

|Y| is the uniform distribution over Y , because

D(P (y′, y)||P (y′)U(y)) =
∑
y′,y

P (y′, y) log
P (y|y′)
U(y)

= log |Y| − H(Y |Y ′).

(This conditional entropy identity is an extension of the
known entropy identity D(P (y)||U(y)) = log |Y|−H(Y ), see
[72, Eq. (2.93)]). The relative entropy above is convex in the
pair (P (y′, y), P (y′)U(y)), which are linear in P (y′, x) due to
P (y′, y) =

∑
x P (y′, x)Q(y|x, y′) and P (y′) =

∑
x P (y′, x),

and thus H(Y |Y ′) is concave in P (y′, x). On the other hand,
the second conditional entropy is

H(Y |Y ′, X) =
∑
y′,x

P (y′, x)HQ(Y |x, y′), (39)

where HQ(Y |x, y′) is a constant determined by Q(y|x, y′);
i.e., H(Y |Y ′, X) is linear in P (y′, x). Thus, the difference
between both conditional entropies is concave in P (y′, x),
which completes the proof.

The proof of Theorem 4 is similar to that of Theorem 2,
but with replacing all occurrences of x with u and referring to
Pf (y|u, y′) (13), which is determined by the NOST channel
model for a fixed f , instead of referring to the averaged
channel Q(y|x, y′).

VI. CONCLUSION AND FURTHER WORK

This work is part of an ongoing progress on the feedback
capacity of FSCs, which model channels with memory. It is

challenging to derive a computable formula for the feedback
capacity of FSCs with a stochastic channel state evolution and
ISI. And yet, for the introduced family of FSCs called NOST
channels, where the channel state is stochastically dependent
on the channel output, the feedback capacities were derived
as single-letter formulas under a connectivity condition in
two scenarios: without and with CSI available at the encoder.
These formulas were shown to be computable via convex
optimization formulations. Furthermore, it was demonstrated
via the noisy-POST(α, η) channel that CSI at the encoder may
not always increase the feedback capacity.

We remark here on several interesting research directions
that follow from the current work. It may be possible to
extend our capacity results to a countable channel output
alphabet Y . This is not straightforward from the current
derivation, as we explain. We previously mentioned, from
Markov theory, that for a finite Markov chain there always
exists at least one stationary distribution. However, for an
infinite Markov chain, there may be no stationary distributions
at all.3 Another interesting research direction is to study NOST
channels without feedback or in the regimes of noisy and
delayed feedback links.

APPENDIX A
PROOF OF LEMMA 3

Q(yi|xi, yi−1, m)

=
∑

si−1∈S

Q(si−1|xi, yi−1, m)Q(yi|xi, yi−1, si−1, m)

(a)
=

∑
si−1∈S

Q(si−1|yi−1, m)Q(yi|xi, yi−1, si−1, m)

(b)
=

∑
si−1∈S

Q(si−1|yi−1)Q(yi|xi, si−1)

(c)
= Q(yi|xi, yi−1), (40)

where
(a) follows from (4), i.e., for each time i, xi is a function of

(m, yi−1);
(b) follows from the NOST channel model (2);
(c) follows from the fact that (xi−1, yi−2, m) do not appear

in the summation.

APPENDIX B
PROOF OF THEOREM 1 BASED ON THE

DIRECTED INFORMATION

Before presenting the proof, we recall the definitions of the
directed information and the causally conditional distribution.

3A simple such known example is the symmetric random walk on the
integers: PY |Y ′(i − 1|i) = PY |Y ′(i + 1|i) = 0.5, ∀i ∈ Y � Z, which
has no solution π of πP = π that is a legitimate distribution. We note
that in this example, Y is irreducible. While for a finite Markov chain,
irreducibility induces the existence of a unique stationary distribution, a fact
we use throughout our derivations, this is not necessarily true for an infinite
set. In fact, an irreducible Markov chain has a stationary distribution if and
only if it is positive recurrent (see, e.g., [68, Th. 5.5.12]).
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The directed information from X to Y conditioned on S,
introduced by Massey [22] and employed with conditioning
in [26], is defined as

I(Xn → Y n|S) �
n∑

i=1

I(X i; Yi|Y i−1, S). (41)

The causally conditional distribution, introduced in [73], [74],
is defined as

P (xn||yn−1) �
n∏

i=1

P (xi|xi−1, yi−1). (42)

The feedback capacity of any FSC was shown in [26] to be
bounded by

lim
n→∞

1
n

max
P (xn||yn−1)

min
s0

I(Xn → Y n|s0)

≤ CFB ≤ lim
n→∞

1
n

max
P (xn||yn−1)

max
s0

I(Xn → Y n|s0). (43)

Alternative Proof of Theorem 1: For Setting I (connected
NOST channels without CSI), the LHS of (43) is

lim
n→∞

1
n

max
P (xn||yn−1)

min
s0

I(Xn → Y n|s0)

(a)
= lim

n→∞
1
n

max
P (xn||yn−1)

min
s0

[ n∑
i=1

H(Yi|Y i−1, s0)

− H(Yi|Yi−1, Xi)
]

(b)
= lim

n→∞ max
{P (xi|yi−1)}n

i=1

min
s0

1
n

n∑
i=1

I(Xi; Yi|Yi−1)

(c)
= max

P (x|y′)
I(X ; Y |Y ′), (44)

where,

(a) follows from Lemma 3;
(b) is explained by justifying the direct (≥) and the con-

verse (≤): the direct follows from maximizing over
{P (xi|yi−1)}n

i=1 for all i, which is a sub-domain of
P (xn||yn−1), hence, H(Yi|Y i−1, s0) = H(Yi|Yi−1) for
i > 1 due to the Markov chain

P (yi|yi−1, s0)

=
∑

si−1,xi

Q(si−1|yi−1)P (xi|yi−1)Q(yi|xi, si−1)

= P (yi|yi−1); (45)

the converse follows from H(Yi|Y i−1, s0) ≤
H(Yi|Yi−1), and then identifying that for all i,
the summand I(Xi; Yi|Yi−1) is induced by
P (yi−1, xi, yi) = P (yi−1)P (xi|yi−1)Q(yi|xi, yi−1);
for any i, this joint distribution is determined by
{P (xj |yj−1)}i

j=1, which can be shown by induction;
and

(c) is also explained by justifying the direct and the con-
verse as follows: the direct follows from maximiz-
ing over time-invariant input distributions that induce
a unique stationary output distribution, then applying
Lemma 1, which utilizes the connectivity assumption

(Definition 1); the converse follows from maximizing
over all time-invariant input distributions and applying
Lemma 4 with x instead of u.

Note that up to Step (b), the expression depends on s0 which
affects the distribution on Y1, which in turn affects the dis-
tribution on Y2, and so on, while in Step (c) the expression
is independent of s0. This chain of equalities can be repeated
also with maxs0 instead of mins0 , and hence we conclude
that maxP (x|y′) I(X ; Y |Y ′) is the feedback capacity of a
connected NOST channel, and it is not affected by Q(s0).
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