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Abstract— The input-constrained binary erasure
channel (BEC) with strictly causal feedback is studied.
The channel input sequence must satisfy the (0, k)-
runlength limited (RLL) constraint, i.e., no more than
k consecutive ‘0’s are allowed. The feedback capacity of
this channel is derived for all k ≥ 1, and is given by

Cfb
(0,k)

(ε) = max
εH2(δ0)+∑k−1

i=1

(
εi+1 H2(δi )

∏i−1
m=0 δm

)

1+∑k−1
i=0

(
εi+1 ∏i

m=0 δm

) , where ε

is the erasure probability, ε = 1 − ε and H2(·) is the binary
entropy function. The maximization is only over δk−1, while
the parameters δi for i ≤ k − 2 are straightforward functions
of δk−1. The lower bound is obtained by constructing a simple
coding for all k ≥ 1. It is shown that the feedback capacity can
be achieved using zero-error, variable length coding. For the
converse, an upper bound on the non-causal setting, where the
erasure is available to the encoder just prior to the transmission,
is derived. This upper bound coincides with the lower bound
and concludes the search for both the feedback capacity and the
non-causal capacity. As a result, non-causal knowledge of the
erasures at the encoder does not increase the feedback capacity
for the (0, k)-RLL input-constrained BEC. This property does
not hold in general: the (2, ∞)-RLL input-constrained BEC,
where every ‘1’ is followed by at least two ‘0’s, is used to show
that the feedback capacity can be strictly smaller than the
non-causal capacity.

Index Terms— Constrained coding, feedback capacity, finite-
state machine, Markov decision process, posterior matching,
runlength limited (RLL) constraints.

I. INTRODUCTION

THE physical limitations of the hardware used in record-
ing and communication systems cause some digital

sequences to be more prone to errors than others. This elicits
the need to ensure that such sequences will not be recorded or
transmitted. Constrained coding is a method that enables such
systems to encode arbitrary data sequences into sequences
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Fig. 1. Input constrained BEC with strictly causal feedback. The channel
input Xi is a function of the message M and of the channel output history
Y i−1.

that abide by the imposed restrictions [2]. In the classical
constrained coding setting, it is assumed that the transmission
is noiseless if the transmitted sequence satisfies the imposed
constraint. In this paper, however, we consider a transmission
of constrained sequences where the transmission is over a
noisy channel, the binary erasure channel (BEC) (Fig. 2).
Run-length limited (RLL) constraints are common in mag-

netic and optical recording standards, where the run length of
consecutive ‘0’s should be limited between d and k (d < k).
A (d, k)-RLL constrained binary sequence must satisfy two
restrictions:

1) at least d ‘0’s must follow each ‘1’.
2) no more than k consecutive ‘0’s are allowed.

The first restriction ensures that the frequency of transitions,
i.e., 1 → 0 or 0 → 1, will not be too high. This is
necessary in systems where the sequence is conveyed over
band-limited channels. Timing is commonly recovered with a
phase-locked loop (PLL) that adjusts the phase of the detection
instant according to the observed transition of the received
waveform. The second restriction guarantees that the PLL does
not fall out of synchronization with the waveform [2], [3].
RLL constraints are also present in the field of flash memory
for various other reasons [4].
Two important families of the RLL constraint are the

(d,∞)-RLL and (0, k)-RLL. These constraints might seem
symmetric in some sense, but indeed, may greatly differ
in their behavior, see e.g., [5], [6]. Therefore, when dealing
with RLL constraints, it is common to tackle each of these
families separately before approaching the general (d, k)-RLL.
In this paper, we adopt this approach and show that the (0, k)-
RLL problem is solvable, while the same problem with a
(d,∞)-RLL constraint is a great deal more challenging.
The model studied in this paper is a BEC (Fig. 2), in which

the input sequences must satisfy the (0, k)-RLL constraint.
Two cases of this model are investigated, based on the
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Fig. 2. Binary erasure channel with erasure parameter ε.

information that is available to the encoder. In the first case,
described in Fig. 1, the encoder has access to all past outputs
via a noiseless feedback link. In the second case, described
in Fig. 3, the encoder has non-causal access to the erasure
that is about to occur, that is, the encoder knows in advance
whether the BEC behaves like a clean channel or not. From an
operational point of view, the capacity of the non-causal case
must be greater than the feedback case due to the additional
information that the encoder has.
As RLL constraints are common in storage devices,

the investigated model can be thought of as a model for
writing data to flash memory with the following mechanism:
when failing to write a particular cell, the cell is considered
to contain an erasure. The feedback is a read operation that
follows each write and indicates whether or not the write
attempt was successful.
We show that the feedback capacity of the (0, k)-RLL input-

constrained BEC is:

C fb(0,k)(ε) = max
0≤δk−1≤ 1

2

εH2(δ0) +
k−1∑
i=1

(
εi+1H2(δi )

i−1∏
m=0

δm

)

1+
k−1∑
i=0

(
εi+1

i∏
m=0

δm

) ,

(1)

for all ε ∈ [0, 1] and k ≥ 1, where δ0, . . . , δk−2 are simple
functions of δk−1, given in Eq. (6), below. Surprisingly, we are
also able to show that the non-causal knowledge of the channel
erasure does not increase the feedback capacity, so that (1) is
the non-causal capacity as well.
This work generalizes the results in [7], where the feedback

capacity of the (1,∞)-RLL input-constrained BEC was cal-
culated.1 In [7] and other works, [8]–[15], the capacity was
derived by formulating it as a dynamic programming (DP)
problem and then solving the corresponding Bellman equation.
In all past works, the DP state was an element of the 1-simplex,
an essential property in the solution of the Bellman equation.
However, the DP state in our case is an element of the
k-simplex. This makes the approach of solving the Bellman
equation intractable and different methods are required.
To circumvent this difficulty, we use alternative techniques

to solve the capacity of our problems. The upper bound
follows from standard converse techniques for the non-causal
model, where the encoder knows the erasure ahead of time.
This upper bound is trivially an upper bound also for the
feedback model, since non causal knowledge might increase

1The (1,∞)-RLL constraint is equivalent to the (0, 1)-RLL constraint by
swapping ‘0’s and ‘1’s

Fig. 3. Input-constrained BEC with non-causal knowledge of the erasures.
The encoder has access both to the message M and to θ i which model the
erasure.

the capacity only. Then, we construct a simple coding scheme
for the feedback setting, inspired by the posterior match-
ing principle [16]–[19]. The coding scheme enables both the
encoder and the decoder to systematically reduce the size of
the set of possible messages to a single message, which is then
declared by the decoder as the correct message. An analysis
of the achieved rate reveals an expression that is similar to
the upper bound. The equivalence of these bounds is finally
derived, and this concludes both the feedback capacity and the
non-causal capacity for our setting.
The remainder of the paper is organized as follows:

Section II includes the notations we use and the problem
definition. Section III contains the main results of this paper.
In Section IV we present the coding scheme and its rate
analysis. Section V includes an upper bound of the capacity.
In Section VI we discuss the (2,∞)-RLL input constraint,
as an example where the non-causal capacity is strictly greater
than the feedback capacity. Section VII presents the feedback
capacity of the (1, 2)-RLL BEC, as an example for possible
future avenues of research. Finally, the appendices contain
proofs of several lemmas used throughout the paper.

II. NOTATIONS AND PROBLEM DEFINITION

A. Notations

Random variables are denoted using a capital letter X .
Lower-case letters x are used to denote realizations of random
variables. Calligraphic letters X denote sets. The notation Xn

means the n-tuple (X1, . . . , Xn) and xn is a realization of such
a vector of random variables. For a real number α ∈ [0, 1],
we define α := 1− α. The binary entropy function is denoted
by H2(α) = −α log2 α − α log2 α for α ∈ [0, 1].

B. Problem Definition

The BEC (Fig. 2) is memoryless, that is p(yi | xi , yi−1) =
p(yi | xi ) ∀i , and can be represented by:

yi =
{

xi , if θi = �
?, if θi = ✗

,

where θn is an i.i.d. process with θi ∼ Ber(ε). A message
M is drawn uniformly from {1, 2, . . . , 2nR} and is available
to the encoder. We define two models, based on the additional
information that is available to the encoder: in the first model,
at time i , the encoder has knowledge of past channel outputs
yi−1 via a noiseless feedback link (Fig. 1); in the second
model, at time i , the encoder has non-causal access to θi

(Fig. 3). In both cases, the transmission is over a BEC.
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Fig. 4. State diagram describing all sequences that can be generated while satisfying the (0, k)-RLL constraint. Note that after k consecutive ‘0’s the node
S = k is reached, which implies that the next bit is necessarily ‘1’.

The encoder must produce sequences that comply with the
(0, k)-RLL input constraint. This constraint can be described
graphically (Fig. 4), where all walks along the directed edges
of the graph do not contain the forbidden string. Note that the
node S = k has only one outgoing edge, labeled ‘1’, which
implies that after k consecutive ‘0’s, the next bit must be a
‘1’. The constrained encoder and the decoder operations are
made precise by the following code definitions.

Definition 1. A (n, 2nR , (0, k)) code for an input-constrained
BEC is composed of encoding and decoding functions. The
encoding functions for the first model (with feedback) are:

fi : {1, . . . , 2nR} × Y i−1 → Xi , i = 1, . . . , n, (2)

satisfying fi
(
m, yi−1) = 1 if(

fi−1
(
m, yi−2) , . . . , fi−k

(
m, yi−k−1)) = (0, . . . , 0) for

all
(
m, yi−1). For the non-causal model the encoding

functions are defined by:

gi : {1, . . . , 2nR} × {�, ✗}i → Xi , i = 1, . . . , n, (3)

satisfying gi
(
m, θ i

) = 1 if(
gi−1

(
m, θ i−1) , . . . , gi−k

(
m, θ i−k

)) = (0, . . . , 0) for
all

(
m, θ i

)
. The decoding function for both models is defined

by:

� : Yn → {1, . . . , 2nR}.
Without loss of generality, we assume that x0 = 1, so that the
initial state is s0 = 0.

The average probability of error for a code is defined as
P(n)

e = Pr (M 	= �(Y n)). A rate R is said to be (0, k)-
achievable if there exists a sequence of (n, 2nR, (0, k)) codes
such that limn→∞ P(n)

e = 0. The capacity is defined to be the
supremum over all (0, k)-achievable rates and is a function
of k and the erasure probability ε. Denote by C fb(0,k)(ε) the
capacity of the feedback model and Cnc(0,k)(ε) that of the non-
causal model. Since yi−1 is computable from θ i−1 and M,
we have the relation Cnc(0,k)(ε) ≥ C fb(0,k)(ε), for all k ≥ 1,
ε ∈ [0, 1].

III. MAIN RESULTS

In this section we present the main results, including
the feedback capacity and the non-causal capacity for the
BEC with (0, k)-RLL input constraints. We then explain the
methodology used to prove the results. The following theorem
constitutes our main results regarding the feedback capacity

and the capacity achieving coding scheme. Define the function:

Rε (δ0, . . . , δk−1) =
εH2(δ0) +

k−1∑
i=1

(
εi+1H2(δi )

i−1∏
m=0

δm

)

1+
k−1∑
i=0

(
εi+1

i∏
m=0

δm

) ,

(4)
where δi takes values in [0, 1] for i = 0, . . . , k − 1.
Theorem 1. The feedback capacity of the (0, k)-RLL input-
constrained BEC with feedback is:

C fb(0,k)(ε) = max
0≤δk−1≤ 1

2

Rε (δ0, . . . , δk−1) , (5)

where δ0, . . . , δk−2 are functions of δk−1 and can be calculated
recursively using:

δ j = δ j+1

δ j+1 + δ j+1
(

δ j+1
δ j+2

)ε
j = 0, 1, . . . , k − 2, (6)

with δk := 1. In addition, there exists a simple coding scheme
that achieves the capacity given in (5).

Fig. 5 presents graphs of the feedback capacity as a function
of ε for several values of k. The capacity is a decreasing
function of ε, and an increasing function of k. For ε = 0,
the channel is noiseless and so the capacity is that of the
corresponding constraint. For example, C fb(0,1)(0) = log2(φ),

where φ = 1+√
5

2 is the golden ratio, which is known to be
the capacity of sequences that do not contain two consecutive
‘0’s. For ε = 1, the output is constant so we have C fb(0,k)(1) = 0
for all k. As k increases the constraint becomes more lenient
and the capacity approaches 1−ε, which is the capacity of the
unconstrained BEC. Since the constrained capacity is always
upper bounded by its unconstrained counterpart, we have
C fb(0,k)(ε) ≤ 1−ε. When k → ∞ this upper bound is achievable
by choosing δ j = 1

2 , ∀ j ∈ N. A straightforward calculation
yields Rε(

1
2 ,
1
2 , . . .) = 1 − ε. It is also pleasing to note that

such a choice of δ’s is compatible with the recursive relation
defined in (6), ∀ j ∈ N. Additionally, numerical evaluations
indicate that the capacity is a concave function of ε. This is
a surprising observation since the capacity of a memoryless
channel is known to be a convex function of the channel
parameters. While it may be challenging to prove its concavity,
the fact that it is non-convex can be shown by noting that the
capacity is a monotone decreasing function of ε, linear and
that the line between C fb(0,k)(0) and C fb(0,k)(1) is achievable. The



4100 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 7, JULY 2019

Fig. 5. Feedback capacity as a function of ε for several values of k and the
unconstrained capacity. As k increases, the performance approaches that of
the unconstrained channel.

Fig. 6. Graphs of R0.5(δ0, . . . , δk−1) as a function of δk−1 for k = 1, 2, 3,
the horizontal axis is δ0, δ1, δ2, respectively. The relations in (6) are applied
to express δ0, . . . , δk−2 in terms of δk−1.

achievability of this linear line follows from the concatenation
of a standard constrained code with a capacity-achieving code
for the unconstrained erasure channel.
Fig. 6 shows numerical evaluations of R0.5(δ0, . . . , δk−1)

as a function of δk−1 for k = 1, 2, 3. The graphs indicate
that once the relations in (6) are applied, R0.5(δ0, . . . , δk−1)
is concave in δk−1. An analytical proof of concavity for any
ε ∈ [0, 1] and k ∈ N has eluded us so far.
Theorem 1 guarantees that even though the function we

aim to maximize is a function of k variables, to calculate the
capacity, one needs only to perform a maximization over δk−1.
For any δk−1 ∈ [0, 1], the values of all other variables can be
calculated by utilizing the set of equations given in (6).
Our proposed coding scheme has k degrees of freedom,

represented by δ0, . . . , δk−1. For this reason, it is rather

surprising that the feedback capacity is a simple optimization
problem of one variable for all k ≥ 1. Indeed, the relaxation
of the optimization domain shows that optimizing over the
k-tuple and the optimization in (5) and (6) are equivalent.
In addition we also prove the following:

Theorem 2. Non-causal knowledge of the erasures does not
increase the feedback capacity, that is ∀k ≥ 1, ε ∈ [0, 1]:

C fb(0,k)(ε) = Cnc(0,k)(ε).

It is tempting to conjecture that this property holds for
the general (d, k)-RLL constrained BEC, but we will provide
a counterexample in Section VI. Theorems 1 and 2 both
generalize parallel results shown in [7], where the special
case of k = 1 was calculated using different techniques. The
following inequalities are the main steps required to prove
Theorems 1 and 2:

max0≤δ0,...,δk−1≤ 1
2

Rε

(
δk−1
0

) (a)≤ C fb(0,k)(ε)

(b)≤ Cnc(0,k)(ε)

(c)≤ max
0≤δ0,...,δk−1≤1

Rε

(
δk−1
0

)
, (7)

where δk−1
0 := δ0, . . . , δk−1 and,

• Inequality (a) follows from the coding scheme that is
presented in Algorithm 1. Specifically, it is shown that
Rε(δ0, . . . , δk−1) is achievable for any choice of δi ≤
0.5, i = 0, . . . , k − 1.

• Inequality (b) follows from the operational definitions of
the code in Section II.

• Inequality (c) follows from standard converse techniques
for the non-causal setting.

The next lemma shows that the maximal value of
Rε(δ0, . . . , δk−1) remains the same whether the maximization
domain is 0 ≤ δ0, . . . , δk−1 ≤ 1

2 or 0 ≤ δ0, . . . , δk−1 ≤ 1.
Thus, the chain of inequalities is actually a chain of equalities.

Lemma 1. For all ε ∈ [0, 1] and k ≥ 1,

max
0≤δ0,...,δk−1≤ 1

2

Rε (δ0, . . . , δk−1)

= max
0≤δ0,...,δk−1≤1

Rε (δ0, . . . , δk−1) .

Moreover, the k-tuple argmax0≤δ0,...,δk−1≤ 1
2

Rε (δ0, . . . , δk−1)
satisfies Eq. (6).

Theorems 1 and 2 are concluded from the inequalities chain
(7) and Lemma 1, which is proved in Appendix A

IV. OPTIMAL CODING SCHEME FOR THE
INPUT-CONSTRAINED BEC WITH FEEDBACK

In this section, we introduce the idea behind the optimal
coding scheme, as well as the coding itself, which is presented
in Algorithm 1. We then prove that the scheme is feasible,
meaning that the generated input sequence does not violate
the input constraint, and, finally, calculate its rate.
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Fig. 7. Labelings used in the coding scheme, with j = 1, . . . , k. Each
subsection of [0, 1] is labeled with ‘0’ or ‘1’.

A. Coding Scheme

Before presenting the coding scheme itself, we discuss the
basic ideas in accordance with which the scheme operates.
The coding scheme is a mechanism that allows the encoder to
transmit a message m ∈ M = {1, 2, . . . , 2nR} to the decoder
without violating the channel’s input constraint. The main
feature of the scheme is a dynamic set of possible messages
that is known both to the encoder and to the decoder at all
times. Both parties will systematically reduce the size of the
set of possible messages from 2nR in the beginning of the
transmission process to a single message that will then be
announced as the correct message.
Initially, the messages are mapped uniformly to message

points in the unit interval by applying m �→ m−1
2nR . As long

as transmission proceeds, the set of possible messages is
represented by uniform points on the unit interval with proper
scaling.
Channel inputs are determined by k + 2 labeling functions,

which map the unit interval into X . Given a labelling, l j , with
a corresponding parameter δ j the encoder assigns the label ‘0’
to a subsection of [0, 1] of length δ j and the label ‘1’ to the
rest of [0, 1]. Recall that δk := 0, so the label lk assigns the
label ′1′ to the entire unit interval. Fig. 7 depicts the various
labelings. Define the following function:

X (m, L) =

⎧⎪⎨
⎪⎩
0, (L = l̃0 and m > δ0) or

(L = l j and m < δ j , j = 0, . . . , k)

1, otherwise.

(8)

The channel input is Xi = X (m, Li ), where m is the correct
message point and Li is the labeling being used at time i .
The labelling at each time is a function of all channel

outputs and can be computed recursively from the previ-
ous channel output and the previous labelling. Therefore,
the instantaneous labelling is available both to the encoder
and the decoder. Transition between the various labelings is
controlled by a finite-state machine (FSM), which is illustrated
in Fig. 8. Define the following function:

G(L, Y ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l0, (L = lk) or (Y = 1) or

(Y =? and L = l̃0)
l̃0, Y =? and L 	= l̃0
l j+1, Y = 0 and (L = l̃0 or

L = l j , j = 0, . . . , k − 1)

, (9)

and thus, Li+1 = G(Li , Yi ). The chronological order of a
single channel use is as follows: Li = l j → Xi = X (m, l j ) =
xi → Yi = B EC(ε, xi) = yi → Li+1 = G(l j , yi ).

A transmission at time i is said to be successful if Yi 	=?.
Due to the nature of the BEC, whenever Yi 	=? the decoder
can know with certainty the value of Xi . Denote by M̂(0)

i and
M̂(1)

i the subsets of messages which are labeled at time i with
‘0’ and ‘1’, respectively. Define M̂0 = M and for i ≥ 1:

M̂i =

⎧⎪⎨
⎪⎩

M̂i−1, Yi =?
M̂(0)

i−1, Yi = 0

M̂(1)
i−1, Yi = 1.

(10)

Thus, a successful transmission reduces the size of the
set of possible messages. Following a successful transmis-
sion, the remaining messages in the set of possible mes-
sages are uniformly mapped again to [0, 1). Fig. 9 depicts
a successful transmission and the subsequent reduction of
the number of possible messages. The process continues
until such a time that the set of possible messages con-
tains only one message, at which point the decoder declares
it to be m̂. The proposed scheme relies on the posterior
matching principle which essentially imitates the optimal
inputs distribution [17] in each step. This principle has been
shown to result in capacity-achieving coding schemes for
all memoryless channels [17], [18], [20]. Capacity-achieving
matching schemes for channels with memory appeared in
several instances. For example, in channels where the state
is computed at the encoder and the decoder [21] and in input
constrained memoryless channels [7], [15].
Algorithm 1 presents the coding scheme in pseudo code

form. The functions X (·, ·) and G(·, ·) mentioned in the
algorithm are defined in Eq. (8) and Eq. (9), respectively.

Algorithm 1 Coding Scheme
Inputs: m - correct message
M̂ = M
Label = l0
while |M̂| > 1 do
Transmit X (m,Label) %% Encoder operation
if Y = 0 then

M̂ = M̂(0)

else if Y = 1 then
M̂ = M̂(1)

end if
Label = G(Label, Y )

end while
m̂ = M̂ %% Decoder operation

B. Feasibility of the Proposed Scheme

First, we show that the coding scheme satisfies the
(0, k)-RLL constraint, that is, no message is mapped by the
scheme into a sequence with more than k consecutive ‘0’s. The
following lemma shows that the constraint is satisfied when
restricting the scheme parameters δ j .

Lemma 2. If δ j ≤ 1
2 for j = 0, . . . , k − 1, then any channel

input sequence generated by the proposed coding scheme
satisfies the (0, k)-RLL constraint.
Proof. We show that if δ j ≤ 1

2 for j = 0, . . . , k − 1,
then no message is labeled ‘0’ more than k times in a row.
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Fig. 8. Finite state machine for the labelings transition. The nodes describe the instantaneous labelling that is used by the encoder. Edges correspond to
channel outputs. Each node in the diagram corresponds to a labelling that can be calculated both at the encoder and at the decoder, since edges are a function
of the outputs.

Fig. 9. Example of a successful transmission. The black dot is the correct
message point. At time instance i = 1, the labeling is L = l0 and the message
point is labeled with ‘0’ since it lies within [0, δ0); thus, the encoder transmits
X1 = 0. Assume that Y1 = 0. Consequently, the messages that were labeled
with ‘1’ are discarded, and the remaining messages are repositioned uniformly
across [0, 1]. These messages are M̂1. In accordance with the FSM in Fig. 8,
the next label is L = l1. At i = 2, the message point is labeled with ‘1’ since
it now lies within [δ1, 1); thus, the encoder will transmit X2 = 1.

From Eqs. (8) and (9), the channel input, Xi is a function
of m and yi−1

i−k−1. Therefore, we divide the proof into three
disjoint cases based on the k last outputs yi−1

i−k−1. For each
case, we show that the subsequent sequence of channel inputs
cannot contain more than k consecutive ‘0’s. Assume that
transmission begins at the node associated with labeling l0.
1) Any output sequence (of length k) that contains a ‘1’
cannot cause a violation.

2) An output sequence of k consecutive ‘0’s ends at lk

(Fig. 8). Thus, the next channel input is X = 1 (Fig. 7).
3) Lastly, consider a sequence of k outputs that contains
both ‘0’s and erasures. Assume the first erasure occurred
at time instance i , meaning that the erasure took place
while the encoder was using labeling li . This means that
all messages between 0 and δi in [0, 1) were labeled
with ‘0’ i +1 times in a row. The next labeling that will
be used is l̃0. In this labeling, all messages between 0
and δ0 are labeled with ‘1’. Since δ0 ≤ 1

2 , we have that
δ0 ≥ 1

2 , so all messages that were labeled ‘0’ i +1 times
in a row will be labeled ‘1’ in l̃0. This analysis holds
for any i = 0, . . . , k − 1.

In summary, setting δi ≤ 1
2 , i = 0, . . . , k − 1 ensures that the

scheme does not violate the (0, k)-RLL constraint.

C. Rate Analysis

The achieved rate R is measured by
expected number of information bits
expected number of channel uses . Define Q as the number of

information bits gained in a single channel use, i.e., the
quotient of the size of the set of possible messages before
and after the transmission. Additionally, let L be the random
variable which corresponds to the labeling and takes values
in L = {l̃0, l0, . . . , lk}.
In the following lemma we calculate the expectation of Q |

L = l.

Lemma 3. For all l ∈ L, we have that E[Q | L = l] =
εH2(δl), where δl is the δ relevant to the labeling l.

Proof. Consider:

E[Q | L = l] = εE[Q | L = l, θ =✗]+εE[Q | L = l, θ =�]
(a)= εE[Q | L = l, θ = �], (11)

where (a) holds since if θ = ✗, then the transmitted symbol
is erased by the channel and the set of possible messages is
unchanged.
In the proposed coding scheme, labeling l j assigns a portion

of [0, 1] of size δ j to the label ‘0’ and the rest to label ‘1’ for
all j = 0, . . . , k. The labeling l̃0 also assigns δ0 of the unit
interval to ‘0’. If the labeling l j is employed, then the channel
input is distributed according to Ber(δ j )

2

Assume that |M̂| = a. If the successfully received bit was
‘1’, then the new set of possible messages has size δla, and if
it was ‘0’, then the new set of possible messages has size
δla. The expected number of bits required to describe the
new set of possible messages is δl log2(δla) + δl log2(δla) =
log2(a)− H2(δl). Thus, given that L = l, following a success-
ful transmission the decoder gains H2(δl) bits of information.
Substituting into (11) we get:

E[Q | L = l] = εH2(δl).

2For labelings l̃0, l0, l1, . . . , lk−1 , the encoder transmits X = 1 if
the correct message falls within a sub-interval of [0, 1) that has length
δ0, δ0, δ1, . . . , δk−1, respectively. Note that the messages are discrete points
in [0, 1) and it is possible for the partition to occur between two messages.
This implies that the transmitted bit is distributed Ber(δi + ei ), where ei is a
correction factor. From the continuity of the entropy function, the contribution
of this correction factor can be bounded with arbitrary constant by taking the
block length n be large enough. The precise details are omitted and follow
parallel argument to [7, Appendix C].
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The next lemma calculates the rate achieved by the proposed
coding scheme.

Lemma 4. For any ε ∈ [0, 1], k ≥ 1 and 0 ≤ δ0, . . . , δk−1 ≤
1
2 , the proposed coding scheme achieves the following rate R:

R =
εH2(δ0) +

k−1∑
i=1

(
εi+1H2(δi )

i−1∏
m=0

δm

)

1+
k−1∑
i=0

(
εi+1

i∏
m=0

δm

) . (12)

Proof. Consider the averaged gain of information divided by
the amount of time:

R = lim
n→∞

1

n

n∑
j=1

E[Q j ]

(a)= lim
n→∞

1

n

n∑
j=1

∑
l∈L

P(L j = l)E[Q j | L j = l]

(b)=
∑
l∈L

εH2(δl) lim
n→∞

1

n

n∑
j=1

P(L j = l)

(c)=
∑
l∈L

εH2(δl)π(l)

= εH2(δ0)
(
π(l̃0) + π(l0)

)
+

k−1∑
i=1

εH2(δi )π(li )

(d)=
εH2(δ0) +

k−1∑
i=1

(
εi+1H2(δi )

i−1∏
m=0

δm

)

1+
k−1∑
i=0

(
εi+1

i∏
m=0

δm

) ,

where

(a) Follows from the law of total expectation.
(b) Follows from Lemma 3 and exchanging the finite sums’

order.
(c) Follows from the definition of stationary probability and

Cesaro mean. π(li ) is the stationary probability of label-
ing li . There exists a stationary probability because the
random process {L j } is a positive recurrent, irreducible
and aperiodic Markov chain, as can be seen from Fig. 8.

(d) Follows from calculation of the stationary probability of
the Markov chain described in Fig. 8 and is parameterized
with δ j , j = 0, . . . , k − 1. Calculating the conditional
probability of each edge is simple, using the law of total
probability. For example, the conditional distribution of
the edge beginning node l0 and culminating in node l1 is
εδ0.

From Lemma 2, we conclude that
max0≤δ0,...,δk−1≤ 1

2
Rε(δ0, . . . , δk−1) is an achievable rate.

Remark 1. The presented scheme appears as variable-length
coding with a slightly loose rate analysis. A precise analysis
for the current scheme in the fixed-block regime can be
directly deduced from [15]. Specifically, it can be converted
into a fixed block coding that has two transmission stages.

The first stage is based on the current scheme and is used to
transmit most of the message bits with rate that is arbitrarily
close to the capacity. The second stage serves as a zero-rate
refinement of a “small” set of suspected messages. We refer
the reader to an exhaustive study of such schemes done
in [15], where an input-constrained binary symmetric channel
is investigated in the presence of feedback. Indeed, it covers
a larger family of channels with memory including the setting
discussed in the current paper.

V. NON-CAUSAL UPPER BOUND

In this section, we present an upper bound of the non-causal
capacity for the (0, k)-RLL input-constrained BEC (given in
Eq. (7)). We begin with an observation: it is sufficient to look
at a smaller family of codes, called restricted codes. We then
proceed to calculate an upper bound on the achievable rate of
such codes, using standard converse arguments, as well as the
method of types and Markov theory results.
A code is said to be restricted if

gi(m, θ i−1, θi = ✗) = 1, ∀m, θ i−1, i = 1, . . . , n. (13)

Condition (13) states that if an erasure is about to occur,
the encoder transmits X = 1. The following lemma formalizes
the fact that restricted codes can achieve the capacity.

Lemma 5. For the (0, k)-RLL constrained non-causal BEC,
if a rate R is achievable, then R can be achieved using a
sequence of restricted codes. Proof. Assume the rate R is
achieved using a sequence of codes: Cn. Define for each n a
new code C ′

n that is exactly the same as Cn except that in C ′
n,

whenever θi = ✗ the encoder transmits xi = 1.
The code C ′

n does not violate the input constraint since the
original Cn did not violate the constraint and transmitting
xi = 1 is always permitted by the (0, k)-RLL input constraint.
In addition, the channel outputs remain the same whether the
code is Cn or C ′

n. This means that P(n)
e (C ′

n) = P(n)
e (Cn), and

so the rate R is also achieved by the sequence of C ′
n.

A. Upper Bound Calculation

The following technical lemma is needed for the converse
proof:

Lemma 6. For any n-tuple constrained distribution
P̃Y n (yn) = �{y1=1}

∏n
i=2 P̃(i)

Yi |Yi−1(yi | yi−1), where

P̃(i)
Yi |Yi−1(yi = 0 | yi−1 = 0) = 0 ∀i = 2, . . . , n, there

exists a time invariant constrained Markov distribution
Q̃Y n (yn) = ∏n

i=1 P̃Yi |Yi−1 (yi | yi−1) such that:

HP̃(Y n) ≤ HQ̃(Y n) + ζn, (14)

where limn→∞ ζn = 0.

The proof is available in Appendix B. This result can readily
be generalized to any (d, k)-RLL constraint imposed on the
n-tuple distribution.
In the constraint graph, Fig. 4, a node Si can be calculated

from an any-length tuple Xi−1 by walking along the edges
labelled with Xi−1, since we assume that the initial state is
s0 = 0. The notation P̃ will be used in various forms for
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distributions on Y to signify that the probability for ? is ε and
that the probability for a constrained word is 0.
Proof of the Upper Bound Let R be an achievable rate
using a restricted code, and consider the following chain of
inequalities:

n R = H (M)

(a)≤ I (Y n; M) + εn

(b)= H (Y n) −
n∑

i=1
H (Yi | M, Y i−1) + εn

(c)≤ H (Y n) − nH2(ε) + εn

(d)≤
n∑

i=1
H (Yi | Y i−1

i−k ) − nH2(ε) + εn

(e)≤ max
{P̃i (yi |yi−1)}n

i=1

n∑
i=1

H (Yi | Y i−1
i−k ) − nH2(ε) + εn

( f )= max
{P̃i (yi |yi−1

i−k )}n
i=1

n∑
i=1

H (Yi | Y i−1
i−k ) − nH2(ε) + εn

(g)≤ max
{P̃(yi |yi−1

i−k )}n
i=1

n∑
i=1

H (Yi | Y i−1
i−k ) − nH2(ε) + ε′

n

(h)= max
{P̃(yi |yi−1

i−k ,si−1)}n
i=1

n∑
i=1

H (Yi | Y i−1
i−k , Si−1) − nH2(ε)

+ ε′
n

(i)≤ max
{P̃(yi |yi−1

i−k ,si−1)}n
i=1

n∑
i=1

H (Yi | Si−1) − nH2(ε) + ε′
n

( j )= max
{P̃(yi |si−1)}n

i=1

n∑
i=1

H (Yi | Si−1) − nH2(ε) + ε′
n

(k)= max
0≤δ0,...,δk−1≤1

n∑
i=1

k−1∑
j=0
Pr(Si−1 = j)H3(εδ j , ε, εδ j )

− nH2(ε) + ε′
n

(l)= max
0≤δ0,...,δk−1≤1

n∑
i=1

k−1∑
j=0
Pr(Si−1 = j)

[
H2(ε) + εH2(δ j )

]
− nH2(ε) + ε′

n

= max
0≤δ0,...,δk−1≤1

ε

k−1∑
j=0

H2(δ j )

n∑
i=1
Pr(Si−1 = j) + ε′

n.

(15)

where

(a) Follows from Fano’s inequality.
(b) Follows from the chain rule.
(c) Follows from the fact that conditioning reduces entropy,

so: H (Yi | M, Y i−1) ≥ H (Yi | Xi , M, Y i−1) = H2(ε).
(d) Follows from the fact that conditioning reduces entropy.
(e) The maximization domain is the set of all n-tuple

distributions P̃(yn) which induce P̃(yi =? | yi−1) = ε
and P̃(yi = 0 | yi−1

i−k = 0k) = 0, for all i = 1, . . . , n
and i = k + 1, . . . , n, respectively.

(f) We want to show that it is possible to maximize over
a smaller domain and maintain an equality. It suffices
to prove by induction that if we have two distribu-
tions {P̃(1)(yi | yi−1)}i≥1 and {P̃(2)(yi | yi−1)}i≥1,
which induce the same marginal distributions {P̃(yi |
yi−1

i−k )}i≥1, then {P̃(1)(yi
i−k)}i≥1 and {P̃(2)(yi

i−k)}i≥1
coincide. For i = 1 the proof is trivial. Assume by
induction that P̃(1)(yi−1

i−1−k) = P̃(2)(yi−1
i−1−k) and we

need to prove that P̃(1)(yi
i−k) = P̃(2)(yi

i−k). Indeed we
have:

P̃(1)(yi
i−k) = P̃(1)(yi−1

i−k )P̃(yi | yi−1
i−k )

= P̃(2)(yi−1
i−k )P̃(yi | yi−1

i−k ) = P̃(2)(yi
i−k)

,

since P̃(yi | yi−1
i−k ) is the same for both distributions

by assumption, and the induction assumption tells us
that P̃(1)(yi−1

i−1−k) = P̃(2)(yi−1
i−1−k), and thus we have

P̃(1)(yi−1
i−k ) = P̃(2)(yi−1

i−k ) as well. Additionally, it can
easily be shown that P̃(yi =? | yi−1

i−k ) = ε and P̃(yi =
0 | yi−1

i−k = 0k) = 0, for all i = 1, . . . , n and i =
k + 1, . . . , n, respectively.

(g) Follows from Lemma 6. Notice that the distributions in
the maximization domain are now time-invariant.

(h) Follows from the fact that Si−1 is a function of Y i−1
i−k :

since the code is restricted, Xi−1
i−k is a function of Y i−1

i−k
and, by its definition, Si−1 is a function of Xi−1

i−k .
(i) Follows from the fact that conditioning reduces entropy.
(j) Similarly to step (f), it suffices to prove by induction that

if we have two distributions {P̃(1)(yi | yi−1
i−k , si−1)}n

i=1
and {P̃(2)(yi | yi−1

i−k , si−1)}n
i=1 which induce the

same marginal distributions {P̃(yi | si−1)}n
i=1, then

{P̃(1)(yi
i−k , si

i−1)}n
i=1 and {P̃(2)(yi

i−k, si
i−1)}n

i=1 coin-
cide. Recall that since the code is restricted, si is a
function of (si−1, yi ). denote this function by si =
h(si−1, yi ). For i = 1 we have:

P̃(1)(y1, s10 ) = �{s0=0} P̃(y1 | s0)P̃(1)(s1 | y1, s0)

= �{s0=0} P̃(y1 | s0)�s1=h(s0,y1)

= P̃(2)(y1, s10 ).

Now, assume by induction that P̃(1)(yi−1
i−1−k, si−1

i−2 ) =
P̃(2)(yi−1

i−1−k, si−1
i−2 ) and we need to prove that

P̃(1)(yi
i−k , si

i−1) = P̃(2)(yi
i−k , si

i−1):

P̃(1)(yi
i−k , si

i−1) = P̃(1)(yi−1
i−k , si−1)P̃(1)(yi | yi−1

i−k , si−1)
P̃(1)(si | yi

i−k , si−1)
(1)= P̃(2)(yi−1

i−k , si−1)P(yi | si−1)
�{si =h(si−1,yi )}

= P̃(2)(yi
i−k, si

i−1),

where (1) follows from the induction assumption,
the Markov chain yi − si−1 − yi−1

i−k and the notation
defined above.

(k) Follows by defining a conditional distribution, δ j �
p(X = 0 | S = j, θ = �).

(l) Follows from a simple identity.
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For each instance of the tuple (δ0, . . . , δk−1), the random
process {Si }n

i=1 is first-order Markov. Additionally, for all
tuples, there is a single closed communicating class for this
process, so there exists a stationary distribution and the value
of

∑n
i=1 Pr(Si = j) can be made arbitrarily close to nπS( j),

where πS( j) denotes the stationary distribution that is induced
by the Markov chain in Fig. 4. Using the transitions matrix of
the Markov process {Si }n

i=1:

������Si−1
Si S = 0 S = 1 S = 2 S = 3 … S = k

S = 0 ε + ε̄δ0 ε̄δ̄0 0 0 … 0
S = 1 ε + ε̄δ1 0 ε̄δ̄1 0 … 0
S = 2 ε + ε̄δ2 0 0 ε̄δ̄2 … 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

S = k − 1 ε + ε̄δk−1 0 0 0 … ε̄δ̄k−1
S = k 1 0 0 0 … 0

we can show that:

πS( j) = ε j ∏ j−1
m=0 δm

1+ ∑k−1
j=0

(
ε j+1∏ j

m=0 δm

) , j = 0, . . . , k − 1,

where
∏−1

m=0 δm � 1. Therefore, we have that

R ≤ (1− ε) max
{pi (x |s,θ=�)}

k−1∑
j=0

H2(δ j )[πS( j) + ε′′
n ] + ε′

n

n
,

where ε′′
n is the correcting factor from the stationary distri-

bution and satisfies ε′′
n → 0. By taking the limit n → ∞,

and substituting the stationary distribution, we conclude that
an achievable rate is upper bounded by

Cnc(0,k) ≤ max
0≤δ0,...,δk−1≤1

Rε(δ0, . . . , δk−1). (16)

VI. DOES C fb = Cnc FOR ANY INPUT CONSTRAINT?

In previous sections it was shown that C fb(0,k)(ε) = Cnc(0,k)(ε).
This section concerns the ensuing question: is it true that non-
causal knowledge of the upcoming erasure does not increase
the feedback capacity for any input constraint?
It turns out that the non-causal capacity of the (d,∞)-RLL

case can be easily solved using the same arguments as in
previous sections. Therefore, we investigated this family with
a hope to prove its feedback capacity as well. For d = 1,
it has been proven in [7] that C fb(1,∞)(ε) = Cnc(1,∞)(ε). This
result coincides with Theorem 2 since the (1,∞) constraint
is equivalent to the (0, 1) constraint by swapping ‘1’s and
‘0’s. However, for d=2, we are able to show that C fb(2,∞)(ε) <
Cnc(2,∞)(ε). Thus, the answer to the aforementioned question is
no.
The first result is the non-causal capacity of the BEC with

a (d,∞)-RLL input constraint, for any d ≥ 1.
Lemma 7. For any d ∈ N, the non-causal capacity of the
(d,∞)-RLL input constrained BEC is given by:

Cnc(d,∞)(ε) = max
0≤δ≤ 1

2

H2(δ)
1
1−ε + dδ

. (17)

Fig. 10. State diagram describing all sequences that can be generated while
satisfying the (2,∞)-RLL constraint: every ‘1’ is followed by at least two
‘0’s.

Proof. The upper bound of Cnc(d,∞)(ε) is derived following the
same steps presented in Section V. In this case, a restricted
encoder that transmits X = 0 whenever θ = ✗. The rest of
the proof mirrors that of Section V, and we are able to show
that Cnc(d,∞)(ε) ≤ max0≤δ≤ 1

2

H2(δ)
1
1−ε +dδ

. This expression is also a

lower bound. It is achieved by applying a restricted encoder
which transmits X ∼ Ber(δ) if an erasure does not occur. The
expected number of information bits gained in a successful
transmission is H2(δ) and the expected number of channel
uses to transmit successfully is 1

1−ε , plus another d channel
uses if the transmitted bit is a ‘1’.
Next we prove that C fb(2,∞)(ε) is upper bounded by an

expression which is strictly smaller than the RHS of Eq. (17)
for d = 2. To discuss an upper bound for C fb(2,∞)(ε), we must
first introduce the concepts of the S-graph and the Q-graph.
Fig. 10 contains an S-graph, which is simply a graphical
representation of the (2,∞)-RLL constraint. A Q-graph is
an irreducible directed graph in which each node has |Y|
distinct outgoing edges. The upper bound is derived using the
method introduced in [22]. This method involves a combined
representation of both the S-graph and the Q-graph in a
coupled (S, Q)-graph, which has a stationary distribution
denoted π(s, q). The main result in [22] states the following:

Theorem 3 (Theorem 2, [22]). For every Q-graph, the feed-
back capacity is bounded by

C fb ≤ sup
p(x |s,q)

I (X; Y | Q),

where S represents the input constraint state. The joint distri-
bution is π(s, q)p(x | s, q)p(y | x, s).
We apply Theorem 3 with the Q-graph in Fig. 11. This graph

was estimated from numerical evaluations of the associated DP
problem. Calculating supp(x |s,q) I (X; Y | Q) we get:

C fb(2,∞)(ε) ≤ max
0≤δ0,δ1,δ2≤1
δ0+δ1+δ2≤1

ε
(
H2(δ0) + εH2(δ1) + ε2H2(δ2)

)
1+ ε + ε2 + 2ε(δ0 + εδ1 + ε2δ2)

.

(18)

Fig. 12 contains graphs of the non-causal capacity and the
feedback upper bound for 0 ≤ ε ≤ 1. It is clear that the
non-causal capacity is strictly greater than the feedback upper
bound in the case of the (2,∞)-RLL input constrained BEC.
The following lemma states the strong inequality for a specific
ε:

Lemma 8. For ε = 1
2 , non-causal knowledge of the erasure

does increase the feedback capacity, that is:

C fb(2,∞)(
1

2
) < Cnc(2,∞)(

1

2
). (19)
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Fig. 11. Q-graph for the (2,∞)-RLL BEC

Fig. 12. Non-causal capacity and feedback upper bound for the (2,∞)-
RLL input constrained BEC, as a function of ε. The non-causal capacity is
greater than the upper bound of the feedback capacity. Note that Cnc(2,∞)(0) =
Cnc(2,∞)(0) ∼ 0.551, which is the (2,∞)-RLL constraint capacity.

Proof. By partially deriving the RHS of (18), the only
critical point in the compact domain {(δ0, δ1, δ2) ∈ R

3|0 ≤
δ0, δ1, δ2 ≤ 1} is δ � δ0 = δ1 = δ2. Substituting δ into
(18) gives the objective of (17), so all that is left to show
is that the argument which achieves the maximum in (17) is
greater than 1

3 . For ε = 1
2 , one can show that the maximum

of (17) is obtained at 1
3 < δ < 1

2 . This means that the
local maximum of (17) is located outside the maximization
domain of (18). Additional tedious calculations also reveal
that (17) on its boundaries is strictly smaller than its local
maximum.

VII. FEEDBACK CAPACITY OF (1,2)-RLL BEC
AND FUTURE RESEARCH

In this section we present the feedback capacity of a BEC
with a (1, 2)-RLL input constraint, C fb(1,2)(ε). This is the first
example we see in which both d and k constraints are active.
Additionally, we discuss possible avenues for future research
on this topic.

A. Feedback Capacity of (1,2)-RLL BEC

A binary sequence satisfies the (1, 2)-RLL constraint if
every ‘1’ is followed by at least one ‘0’, but no more than
two consecutive ‘0’s are allowed. Graphical representation of
the constraint is provided in Fig. 13. We present a capacity
achieving coding scheme and an upper bound based on the
Q-graph approach.

Fig. 13. State diagram describing all sequences that can be generated while
satisfying the (1,2)-RLL constraint: every ‘1’ is followed by a ‘0’, and two
consecutive ‘0’s are followed by a ‘1’.

Fig. 14. FSM which defines the coding scheme. The nodes describe the
instantaneous labelling that is used by the encoder. Edges correspond to
channel outputs. In node 1 Pr(X = 0) = δ, in node 2 Pr(X = 0) = δ,
in node 3 Pr(X = 0) = 0 and in node 4 Pr(X = 0) = 1.

The construction of this coding scheme follows closely that
of the scheme presented in Section IV. Fig. 14 contains a finite
state machine we use in this case. The scheme is defined by the
FSM in Fig. 14 and the following channel input distributions:

• Pr(X = 0 | L = l1) = δ.
• Pr(X = 0 | L = l2) = δ.
• Pr(X = 0 | L = l3) = 0.
• Pr(X = 0 | L = l4) = 1.

The partitions of [0, 1), i.e., labeling, are not presented because
the amount of different labelings increases with time. The
next lemma shows that there exists a coding scheme that is
defined by the FSM in Fig. 14 and the aforementioned input
distributions. It also states the conditions under which this
scheme does not violate the input constraint.

Lemma 9. For 12 ≤ δ ≤ 2
3 , the coding scheme in Fig. 14 does

not violate the (1, 2)-RLL input constraint and achieves:

R = H2(δ)
1
1−ε + ε + δ

. (20)

The proof of Lemma 9 is presented in Appendix C. Thus,
a lower bound on the feedback capacity is:

C fb(1,2)(ε) ≥ max
1
3≤δ≤ 1

2

H2(δ)
1
1−ε + ε + δ

.

For the upper bound, we use the same Q-graph technique
from Section VI in Theorem 3. This time, the coding scheme
graph presented in Fig. 14 is chosen as our Q-graph. Calcu-
lating supp(x |s,q) I (X; Y | Q) we get:

C fb(1,2) ≤ max
0≤δ1,δ2≤1

ε2H2(δ1) + εεH2(δ2)

1+ ε + εδ1 + εεδ2
. (21)
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The following lemma shows that the upper and lower bounds
coincide:

Lemma 10. The feedback capacity of the (1, 2)-RLL input
constrained BEC is upper bounded by:

C fb(1,2) ≤ max
1
3≤δ≤ 1

2

H2(δ)
1
1−ε + ε + δ

.

This proof also appears in Appendix C. This completes the
derivation of the capacity of the (1, 2)-RLL input constrained
BEC.

B. Future Research

As indicated by the (1, 2)-RLL example, the most logical
course of future research is to study the feedback capacity
of the general (d, k)-RLL input constrained BEC for any
natural d < k. Our method of tackling the various input
constraints discussed in this paper consisted of first running
numerical evaluations of the equivalent DP problems, and then
trying to draw conclusions as to the capacity achieving coding
scheme. However, it is important to notice that the amount of
variables we need to numerically evaluate grows linearly with
the parameters d and k. Thus, this somewhat naive approach
will probably not suffice to find the capacity expression for
the general case. The feedback capacity of the general (d, k)-
RLL input constrained BEC is still open, in particular for
d = 1, k ≥ 3 and for 2 ≤ d < k.
We have also invested efforts in solving the second famous

family of the (d, k)-RLL constraints, the (d,∞)-RLL con-
straints. As illustrated in the previous section, the non causal
capacity is not a tight upper bound on the capacity, so alter-
native methods to the ones presented in this paper should
be applied to tackle these constraints. Based on numerical
experiments, we tend to believe that the capacity in this case
will be an optimization over more than one parameter.
Another topic to consider for future research is the intro-

duction of memory to the erasures process. It is well known
that the unconstrained capacity of the BEC with memory is
equal to 1 − ε with and without feedback. In other words,
for the BEC neither memory nor feedback increase channel
capacity. However, in the constrained case one can think of
an example where the introduction of memory to the erasures
process decreases the capacity relative to that of the same
channel with an i.i.d. erasures process. The question of what
types of memory increase or decrease the constrained capacity
merits further investigation.

APPENDIX A
EQUALITY OF THE BOUNDS

In this appendix, we prove Lemma 1. It states that the
lower and upper bounds, calculated in Sections IV and V,
respectively, are equal. In addition, it shows that (δ0, . . . , δk−1)
that maximize Rε (δ0, . . . , δk−1) are connected to each other in
a series of equations that allow us to compute (δ0, . . . , δk−2)
once the maximizing δk−1 is known.
Denote:

D1 =
{
(δ0, . . . , δk−1) ∈ R

k | 0 ≤ δ0, . . . , δk−1 ≤ 1
}

, (22)

D2 =
{
(δ0, . . . , δk−1) ∈ R

k | 0 ≤ δ0, . . . , δk−1 ≤ 1

2

}
. (23)

Define δ∗ = (δ∗
0 , . . . , δ

∗
k−1)

def= argmaxD1 Rε (δ0, . . . , δk−1).
We aim to show that δ∗ ∈ D2. The proof is spread across
several lemmas, which show the following:

• In Lemma 11 we prove that ∇ Rε(δ) = 0 ⇐⇒ δ satisfies
Eqs. (6). We also show that Eqs. (6) imply that δ0 ≥ . . . ≥
δk−1.

• Lemma 12 proves that for any (δ1, . . . , δk−1) ∈ D1
there exists a unique 0 ≤ δ0(δ1, . . . , δk−1) ≤ 1

2 , which

is denoted by δ∗
0 , such that

∂ Rε(δ0,...,δk−1)
∂δ0

∣∣∣
δ0=δ∗

0

= 0.

Lemmas 11 and 12 together show that there exists a
unique δ ∈ D2 such that ∇ Rε(δ) = 0.

• Lemma 13 proves that Rε(δ0, . . . , δk−1) has no maximum
on the boundary of D1, and hence, δ∗ ∈ D2.

To simplify notation, for k > l we define
∏l

m=k(·) def= 1 and∑l
i=k(·) def= 0.

Lemma 11. A k-tuple δ = (δ0, . . . , δk−1) ∈ D1 satisfies
∇ Rε(δ) = 0 if and only if

δ j = δ j+1

δ j+1 + δ j+1
(

δ j+1
δ j+2

)ε
j = 0, 1, . . . , k − 2,

where we define δk = 1. In addition δ0 ≥ . . . ≥ δk−1.
Proof. First prove that ∇ Rε(δ) = 0 if and only if the following
relation holds:

log

(
δ j

δ j

)
= log

(
δ j+1
δ j+1

)
+ε log

(
δ j+1
δ j+2

)
, j = 0, 1, . . . , k−2.

Denote:

N =
k−1∑
i=0

(
εi+1H2(δi )

i−1∏
m=0

δm

)
,

D = 1+
k−1∑
i=0

(
εi+1

i∏
m=0

δm

)
. (24)

So
Rε (δ0, . . . , δk−1) = N

D
and,

∂ Rε(δ0, . . . , δk−1)
∂δ0

=
∂N
∂δ0

D − N ∂ D
∂δ0

D2
.

We write the partial derivative ∂ Rε(δ0...δk−1)
∂δ j

for j =
0, 1, . . . , k − 1 using the notations introduced in (24):

∂ Rε(δ0 . . . δk−1)
∂δ j

=

1

D

⎛
⎜⎜⎝ε j+1

j−1∏
m=0

δm log

(
δ j

δ j

)
+

k−1∑
i= j+1

εi+1H2(δi )

i−1∏
m=0
m 	= j

δm

⎞
⎟⎟⎠

− N

D2

k−1∑
i= j

εi+1
i∏

m=0
m 	= j

δm . (25)
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We will prove the lemma using an inductive argument starting
from δk−1 and working our way back to δ0.
Base case: by simplifying the equation ∂ Rε

δk−1 = 0 we immedi-
ately get:

N = D log

(
δk−1
δk−1

)
. (26)

Note that we arrive at (26) by dividing both sides of the
equation by

∏k−2
m=0 δm . We know that this is allowed since for

any j = 0, . . . , k−1 we have that limδ j →0+
∂ Rε(δ0...δk−1)

∂δ j
= ∞.

This means that if ∇ Rε(δ0 . . . δk−1) = 0 then δ j 	= 0 for all
j = 0, . . . , k − 1.
Next we write the equation ∂ Rε

∂δk−2 = 0 and substitute N
using (26):

0 =
(

εk−1
k−3∏
m=0

δm log

(
δk−2
δk−2

)
+ εk H2(δk−1)

k−3∏
m=0

δm

)
1

D

− 1

D
log

(
δk−1
δk−1

)[
εk−1

k−3∏
m=0

δm + εk
k−3∏
m=0

δmδk−1

]

= log

(
δk−2
δk−2

)
− εδk−1 log(δk−1) − εδk−1 log(δk−1)

− log
(

δk−1
δk−1

)
− εδk−1 log(δk−1) + εδk−1 log(δk−1).

So

log

(
δk−2
δk−2

)
= log

(
δk−1
δk−1

)
+ ε log

(
δk−1
1

)
(27)

and the base case is proven.
Inductive step: we assume that the claim holds for
δk−2, δk−3, . . . , δ j+1 and we will now prove it for δ j . Sub-
stituting (27) into (26) we get:

N = D

(
log

(
δk−2
δk−2

)
− ε log(δk−1)

)
. (28)

We start by writing the equation

0 = ∂ Rε(δ0, . . . , δk−1)
∂δ j

= 1

D2

⎛
⎝
⎛
⎝ε j+1

j−1∏
m=0

δm log

(
δ j

δ j

)

+
k−1∑

i= j+1
εi+1H2(δi )

i−1∏
m=0
m 	= j

δm

⎞
⎟⎟⎠ D

−N
k−1∑
i= j

εi+1
i∏

m=0
m 	= j

δm

⎞
⎟⎟⎠ .

We can divide by ε j+1∏ j−1
m=0 δm and use (28) to get:

0 =
⎛
⎝log

(
δ j

δ j

)
+

k−1∑
i= j+1

εi− j H2(δi )

i−1∏
m= j+1

δm

⎞
⎠ D

− D

(
log

(
δk−2
δk−2

)
− ε log(δk−1)

)
k−1∑
i= j

εi− j
i∏

m= j+1
δm .

Next we use the definition of the binary entropy function to
replace H2(δk−2), H2(δk−1) with an explicit expression:

0 = log

(
δ j

δ j

)
+

k−3∑
i= j+1

εi− j H2(δi )

i−1∏
m= j+1

δm

− εk−2− j
k−3∏

m= j+1
δmδk−2 log(δk−2)

− εk−2− j
k−3∏

m= j+1
δmδk−2 log(δk−2)

− εk−1− j
k−2∏

m= j+1
δmδk−1 log(δk−1)

− εk−1− j
k−2∏

m= j+1
δmδk−1 log(δk−1)

− log
(

δk−2
δk−2

)
k−3∑
i= j

εi− j
i∏

m= j+1
δm

− εk−2− j
k−2∏

m= j+1
δm log(δk−2)

+ εk−2− j
k−3∏

m= j+1
δmδk−2 log(δk−2)

− log
(

δk−2
δk−2

)
εk−1− j

k−1∏
m= j+1

δm

+ log(δk−1)
k−3∑
i= j

εi− j+1
i∏

m= j+1
δm

+ log(δk−1)εk−1− j
k−2∏

m= j+1
δm

+ log(δk−1)εk− j
k−1∏

m= j+1
δm .

Recall that δ = 1− δ, so we can simplify this expression:

0 = log

(
δ j

δ j

)
+

k−3∑
i= j+1

εi− j H2(δi )

i−1∏
m= j+1

δm

− εk−2− j
k−3∏

m= j+1
δm log(δk−2)
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+

(∗)︷ ︸︸ ︷
log

(
δk−1
δk−1

)
εk−1− j

k−1∏
m= j+1

δm

− log
(

δk−2
δk−2

)
k−3∑
i= j

εi− j
i∏

m= j+1
δm

−

(∗)︷ ︸︸ ︷
log

(
δk−2
δk−2

)
εk−1− j

k−1∏
m= j+1

δm

+ log(δk−1)
k−3∑
i= j

εi− j+1
i∏

m= j+1
δm

+

(∗)︷ ︸︸ ︷
log(δk−1)εk− j

k−1∏
m= j+1

δm . (29)

The three expression marked with (∗) cancel each other as
a result of (27). Now we will use the induction assumption
again by substituting

log

(
δk−2
δk−2

)
= log

(
δk−3
δk−3

)
− ε log

(
δk−2
δk−1

)
,

so

0 = log

(
δ j

δ j

)
+

k−4∑
i= j+1

εi− j H2(δi )

i−1∏
m= j+1

δm

−

(∗)︷ ︸︸ ︷
εk−3− j

k−4∏
m= j+1

δmδk−3 log(δk−3)

− εk−3− j
k−4∏

m= j+1
δmδk−3 log(δk−3)

−

(∗)︷ ︸︸ ︷
εk−2− j

k−3∏
m= j+1

δm log(δk−2)

− log
(

δk−3
δk−3

)
+ ε log(δk−2) −

(∗)︷ ︸︸ ︷
ε log(δk−1)

− εδ j+1 log
(

δk−3
δk−3

)
+ ε2δ j+1 log(δk−2)

−
(∗)︷ ︸︸ ︷

ε2δ j+1 log(δk−1) − log
(

δk−3
δk−3

)
k−4∑

i= j+2
εi− j

i∏
m= j+1

δm + log(δk−2)
k−4∑

i= j+2
εi− j+1

i∏
m= j+1

δm

−

(∗)︷ ︸︸ ︷
log(δk−1)

k−4∑
i= j+2

εi− j+1
i∏

m= j+1
δm

− log(δk−3)εk−3− j
k−3∏

m= j+1
δm

+

(∗)︷ ︸︸ ︷
log(δk−3)εk−3− j

k−3∏
m= j+1

δm

+

(∗)︷ ︸︸ ︷
log(δk−2)εk−2− j

k−3∏
m= j+1

δm

−

(∗)︷ ︸︸ ︷
log(δk−1)εk−2− j

k−3∏
m= j+1

δm

+

(∗)︷ ︸︸ ︷
log(δk−1)

k−3∑
i= j

εi− j+1
i∏

m= j+1
δm .

All expressions marked with (∗) cancel each other out. Again,
using δ = 1− δ we can simplify and arrive at:

0 = log

(
δ j

δ j

)
+

k−4∑
i= j+1

εi− j H2(δi )

i−1∏
m= j+1

δm

− εk−3− j
k−4∏

m= j+1
δm log(δk−3)

− log
(

δk−3
δk−3

)
k−4∑
i= j

εi− j
i∏

m= j+1
δm

+ log(δk−2)
k−4∑
i= j

εi− j+1
i∏

m= j+1
δm . (30)

When we compare (30) to (29) we see a pattern emerging.
Continuing to perform these substitutions we reach:

0 = log

(
δ j

δ j

)
− εδ j+1 log(δ j+1)

− εδ j+1 log(δ j+1) − ε2δ j+1 log(δ j+2)

− log
(

δ j+2
δ j+2

)
(1+ εδ j+1)

+ log(δ j+2)(ε + ε2δ j+1).

Performing the final substitution and simplifying further we
get:

0 = log

(
δ j

δ j

)
− εδ j+1 log(δ j+1) − εδ j+1 log(δ j+1)

− ε2δ j+1 log(δ j+2) − log
(

δ j+1
δ j+1

)
+ ε log(δ j+2)

− ε log(δ j+3) − εδ j+1 log(δ j+1) + εδ j+1 log(δ j+1)
+ ε2δ j+1 log(δ j+2) − ε2δ j+1 log(δ j+3) + ε log(δ j+3)
+ ε2δ j+1 log(δ j+3),
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and, finally, we arrive at:

log

(
δ j

δ j

)
= log

(
δ j+1
δ j+1

)
+ ε log

(
δ j+1
δ j+2

)
. (31)

Now we will use induction again to prove that

δ j = δ j+1

δ j+1 + δ j+1
(

δ j+1
δ j+2

)ε
j = 0, 1, . . . , k − 2

and that δ0 ≥ δ1 ≥ . . . ≥ δk−1.
Base case: we will start by showing that δk−2 ≥ δk−1.

In (27) we have that

log

(
δk−2
δk−2

)
= log

(
δk−1
δk−1

)
+ ε log

(
δk−1

)
.

By rearranging this equation we get:

δk−2
δk−2

= δ
1+ε
k−1

δk−1
,

which means that:

δk−2 = 1

1+ δ
1+ε
k−1

δk−1

= δk−1
δk−1 + δ

1+ε
k−1

.

Note that assuming δk−1 > 0:

δk−1 + δ
1+ε
k−1 < 1 ⇐⇒ δ

ε
k−1 < 1

and the right hand side of this equivalence surely holds (under
said assumption). We have proven the base case.
Inductive step: we assume that the claim holds for
δk−2, δk−3, . . . , δ j+1 and we will now prove it for δ j . In (31)
we have:

log

(
δ j

δ j

)
= log

(
δ j+1
δ j+1

)
+ ε log

(
δ j+1
δ j+2

)
.

Following the same steps as in the base case we arrive at:

δ j = δ j+1

δ j+1 + δ j+1
(

δ j+1
δ j+2

)ε
.

Now,

δ j+1 + δ j+1

(
δ j+1
δ j+2

)ε

< 1 ⇐⇒
(

δ j+1
δ j+2

)ε

< 1,

and we know that the right hand side of the equivalence
holds thanks to the induction assumption (note that δ j+1 >
δ j+2 �⇒ δ j+1 < δ j+2).
This lemma shows that for any (δ1, . . . , δk−1) satisfying

0 ≤ δ1, . . . , δk−1 ≤ 1 there exists 0 ≤ δ0 ≤ 1
2 for which

∂ Rε(δ0,...,δk−1)
∂δ0

∣∣
δ0=δ0

= 0 and that this δ0 is unique.

Lemma 12. This lemma has two parts:
1) For any (δ1, . . . , δk−1) satisfying 0 ≤ δ1, . . . , δk−1 ≤ 1

there exists 0 ≤ δ0(δ1, . . . , δk−1) < 1
2 , which we denote

δ̄0, such that:

∂ Rε (δ0, . . . , δk−1)
∂δ0

∣∣∣
δ0=δ̄0

= 0.

2) The partial derivative ∂ Rε(δ0,...,δk−1)
∂δ0

is monotonic non-
increasing in δ0.

Proof. We calculate ∂ Rε(δ0,...,δk−1)
∂δ0

and show that:

lim
δ0→0+

∂ Rε (δ0, . . . , δk−1)
∂δ0

> 0 (32)

and
∂ Rε (δ0, . . . , δk−1)

∂δ0

∣∣∣
δ0= 1

2

< 0. (33)

Since the partial derivative is a continuous function of δ0 we
can use the intermediate value theorem to prove the first part
of the lemma. Recall that:

∂ Rε(δ0, . . . , δk−1)
∂δ0

=
∂N
∂δ0

D − N ∂ D
∂δ0

D2
.

First note that D2 > 0. This means that we only need to
determine the sign of ∂N

∂δ0
D−N ∂ D

∂δ0
as δ0 → 0+ and for δ0 = 1

2

to prove that (32) and (33) hold. Since the expression ∂ Rε
∂δ0

is
a long one, we will divide it into two parts:

∂ N

∂δ0
D =

(
ε log

(
δ0

δ0

)
+

k−1∑
i=1

εi+1H2(δi )

i−1∏
m=1

δm

)
(
1+

k−1∑
i=0

εi+1
i∏

m=0
δm

)
, (34)

N
∂ D

∂δ0
=

(
k−1∑
i=0

εi+1H2(δi )

i−1∏
m=0

δm

)(
k−1∑
i=0

εi+1
i∏

m=1
δm

)
.

(35)
Simplifying ∂N

∂δ0
D − N ∂ D

∂δ0
we get:

∂ N

∂δ0
D − N

∂ D

∂δ0
= ε log

(
δ0

δ0

)

+ log
(

δ0

δ0

)
k−1∑
i=0

εi+2
i∏

m=0
δm +

k−1∑
i=1

εi+1H2(δi )

i−1∏
m=1

δm

+
(

k−1∑
i=1

εi+1H2(δi )

i−1∏
m=1

δm

)(
k−1∑
i=0

εi+1
i∏

m=0
δm

)

− εH2(δ0)
k−1∑
i=0

εi+1
i∏

m=1
δm

−
(

k−1∑
i=1

εi+1H2(δi )

i−1∏
m=1

δm

)(
k−1∑
i=0

εi+1
i∏

m=0
δm

)

= log(δ0)

[
ε +

k−1∑
i=0

εi+2
i∏

m=0
δm + δ0

k−1∑
i=0

εi+2
i∏

m=1
δm

]

+ log(δ0)
[
−ε −

k−1∑
i=0

εi+2
i∏

m=0
δm

+δ0

k−1∑
i=0

εi+2
i∏

m=1
δm

]
+

k−1∑
i=1

εi+1H2(δi )

i−1∏
m=1

δm

= log(δ0)

[
ε +

k−1∑
i=0

εi+2
i∏

m=1
δm

]
− ε log(δ0)
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+
k−1∑
i=1

εi+1H2(δi )

i−1∏
m=1

δm . (36)

It is clear from (36) that limδ0→0+
∂N
∂δ0

D − N ∂ D
∂δ0

= ∞.
Next we evaluate

(
∂N
∂δ0

D − N ∂ D
∂δ0

) ∣∣∣
δ0= 1

2

:

(
∂ N

∂δ0
D − N

∂ D

∂δ0

) ∣∣∣
δ0= 1

2

=

−
[
ε +

k−1∑
i=0

εi+2
i∏

m=1
δm

]
+ ε +

k−1∑
i=1

εi+1H2(δi )

i−1∏
m=1

δm

= ε2 [(H2(δ1) − 1) + εδ1 (H2(δ2) − 1) + . . .

+εk−2
k−2∏
m=1

δm (H2(δk−1) − 1) − εk−1
k−1∏
m=1

δm

]
. (37)

Note that all the summands are non-positive. It follows that:

(H2(δ1) − 1) + εδ1 (H2(δ2) − 1) + . . .

+ εk−2
k−2∏
m=1

δm (H2(δk−1) − 1) = 0

if and only if we set δ1 = . . . = δk−1 = 1
2 . However setting

δ1 = . . . = δk−1 = 1
2 we get:

−εk−1∏k−1
m=1 δm < 0. Thus

(
∂N
∂δ0

D − N ∂ D
∂δ0

) ∣∣∣
δ0= 1

2

< 0. We

now use the intermediate value theorem to prove the first part
of the lemma.
In the second part we want to show that the partial derivative

∂ Rε(δ0,...,δk−1)
∂δ0

is monotonic non-increasing in δ0. It is clear
that D2 is monotonic increasing in δ0 so we must prove that
∂N
∂δ0

D − N ∂ D
∂δ0

is non-increasing in δ0 to complete the proof.
In order to achieve this goal we derive ∂N

∂δ0
D − N ∂ D

∂δ0
again

with respect to δ0:

∂
(

∂N
∂δ0

D − N ∂ D
∂δ0

)
∂δ0

=
−

[
ε +

k−1∑
i=0

εi+2
i∏

m=1
δm

]

δ0
− ε

δ0

This expression is clearly non-positive and that proves the
lemma.
We have shown that there is a unique δ ∈ D2 that satisfies

∇ Rε(δ) = 0. Now, all that remains is to prove that the
suspicious point we worked so hard to find is, in fact, a local
maximum of Rε(δ0, . . . , δk−1) in the domain D1. We already
know that it is the only critical point in the interior of
the domain, so we can safely say that the function gets its
maximum value in that point or somewhere on the boundary.
The final lemma will show that the function does not get its
maximal value on the edge of the domain.

Lemma 13. The maximum of Rε(δ0, . . . , δk−1) does not
occur on the boundary of the domain D1.

Proof. To prove this we will use the KKT conditions.
First we will write the maximization problem in its standard
form. Define δ = (δ0, . . . , δk−1) and the following constraint

functions:

g0(δ) = −δ0 , g̃0(δ) = δ0 − 1
...

...

gk−1(δ) = −δk−1 , g̃k−1(δ) = δk−1 − 1.
We want to maximize

Rε(δ0, . . . , δk−1)

subject to

gi(δ) ≤ 0 , g̃i(δ) ≤ 0 i = 0, . . . , k − 1.
The KKT conditions tell us that if a point δ∗ is a local maxi-
mum then there exist constants μi and μ̃i (i = 0, . . . , k − 1)
such that:

∇ Rε(δ∗) =
k−1∑
i=0

μi∇gi (δ∗) +
k−1∑
i=0

μ̃i∇ g̃i (δ∗) (38)

and
μi ≥ 0 , μ̃i ≥ 0 i = 0, . . . , k − 1.

Let us assume, by contradiction, that Rε has a local maximum
on the boundary of the domain D1, and, specifically, that the
local maximum is obtained for δ0 = 0. Since we assume that
g0(δ) = 0 we know that g̃0(δ) = −1 and so there is no need
to address the inequality condition g̃0(δ) ≤ 0. Eq. (38) above
gives us k − 1 equalities. In this case the equality that we get
from differentiating with regard to δ0 is:

∂N
∂δ0

D − N ∂ D
∂δ0

D2
= −μ0, (39)

where

∂ N

∂δ0
D =

(
log

(
δ0

δ0

)
+

k−1∑
i=1

εi+1H2(δi )

i−1∏
m=1

δm

)
(
1+

k−1∑
i=0

εi+1
i∏

m=0
δi

)

N
∂ D

∂δ0
=

(
k−1∑
i=0

εi+1H2(δi )

i−1∏
m=1

δm

)(
k−1∑
i=0

εi+1
i∏

m=1
δi

)

D2 =
(
1+

k−1∑
i=0

εi+1
i∏

m=0
δi

)2
.

We have already shown in a previous lemma that the left hand
side of Eq. (39) tends to +∞ as δ0 → 0+ and so we get a
negative μ0 in violation of the KKT conditions. If we assume
that a local maximum is obtained for δ0 = 1 we will arrive at
a similar equation:

∂N
∂δ0

D − N ∂ D
∂δ0

D2
= μ̃0, (40)

and it is easy to see that the left hand side of Eq. (40)
tends to −∞ as δ0 → 1− so, again, we get a negative μ̃0.
We can conclude that there is no local maximum of Rε on the
boundary of D1 where δ0 = 0 or δ0 = 1. In a similar way we
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can show that there is, in fact, no local maximum on any part
of the boundary of D1.
We have proven that Rε(δ0, . . . , δk−1) has one local max-

imum in the domain D1 and that it satisfies 1
2 > δ0 ≥ δ1 ≥

. . . ≥ δk−1. This proves that we can substitute D1 for D2
as the maximization domain and the maximal value will not
change as a result.

APPENDIX B
LEMMA FOR THE CONVERSE

Prior to the proof we present some standard definitions
of second order types. A second order type of a sequence
xn ∈ X n is a probability distribution P̂(2)

xn ∈ Pn−1(X 2) defined
as:

P̂(2)
xn (a, b) = N ((a, b) | xn)

n − 1 ,

for all (a, b) ∈ (X 2). Denote by P (2)
n (X , c) the set of

all possible second order types of sequences xn ∈ X n

with x1 = c. The second order type of a sequence
xn can be viewed as the joint empirical distribution of
x1, x2, . . . , xn−1 and x2, x3, . . . , xn . For dummy random vari-
ables X, Y representing such a second order type (i.e.,
PX,Y ∈ P (2)

n (X , c)), we define a second order type
class:

T n,(2)(PX,Y , c) = {xn ∈ X n : P̂(2)
xn = PX,Y , x1 = c}.

We also define a second order ε-typical set with respect to a
joint distribution PX,Y and c:

T n,(2)
ε (PX,Y , c) =

{
xn ∈ X n : x1 = c,

∀(a, b) ∈ X 2
∣∣∣P̂(2)

xn (a, b) − PX,Y (a, b)
∣∣∣ ≤ ε

and PX,Y (a, b) = 0 ⇒ P̂(2)
xn (a, b) = 0

}
.

A known result from [23] is that for large enough n there
exists τ (ε) > 0 such that:

2n(H(Y |X)−τ (ε)) ≤
∣∣∣T n,(2)

ε (PX,Y , c)
∣∣∣ ≤ 2n(H(Y |X)+τ (ε)),

where limε→0 τ (ε) = 0.
Proof of Lemma 6 We aim to show that there exists a single
letter distribution such that the typical set induced by this
distribution contains the typical set induced by the given n-
tuple distribution. Since for a given distribution the size of its
typical set is closely related to its entropy, that will suffice to
prove the lemma.
We emphasize that n is fixed throughout the proof,

so defined quantities are implicit functions of n. Con-
sider an n-tuple constrained distribution P̃Y n (yn) =
�{y1=1}

∏n
i=2 P̃(i)

Yi |Yi−1 (yi | yi−1), as stated in the lemma. Set
ε = 1

(n−1)|X |n . Let xnk ∈ T k
ε (P̃Y n ), meaning that the sequence

xnk contains k “letters” of the n-fold alphabet X n and it is
first order ε-typical with respect to the distribution P̃Y n . Since
xnk ∈ T k

ε (P̃Y n ) we have that ∀xn ∈ X n |P̂xnk (xn)−P̃Y n (xn)| ≤
ε. Equivalently:∣∣∣N(xn | xnk) − k P̃Y n (xn)

∣∣∣ ≤ kε. (41)

Define a single letter joint distribution:

P̃X,Y (a, b) =
∑

xn∈X n

P̃Y n (xn)
N ((a, b) | xn)

n − 1 . (42)

We want to show that there exists δ > 0 such that xnk ∈
T nk,(2)

δ (P̃X,Y , 1). In order to do that we need to calculate the
empirical distribution of pairs of letters in xnk . Each n-tuple
xn,i contains n − 1 pairs. The sequence xnk is made up of
k n-tuples, so there are an additional k − 1 pairs that are not
contained in a single n-tuple. In total there are k(n−1)+k−1 =
nk − 1 pairs of letters. For (a, b) ∈ X 2 denote by η(a, b) the
number of times the pair (a, b) appears in xnk and is not
contained in a single n-tuple. Clearly 0 ≤ η(a, b) ≤ k − 1.
Now:∣∣P̂(2)

xnk (a, b) − P̃X,Y (a, b)
∣∣ =

∣∣∣∣∣ N
(
(a, b) | xnk

)
nk − 1 − P̃X,Y (a, b)

∣∣∣∣∣
=

∣∣∣∣ 1

nk − 1

[ ∑
xn∈X n

N(xn | xnk)N
(
(a, b) | xn) + η(a, b)

]

− P̃X,Y (a, b)

∣∣∣∣
=

∣∣∣∣ 1

nk − 1
[ ∑

xn∈X n

(
N(xn | xnk) − k P̃Y n (xn)

)
N

(
(a, b) | xn)

+
∑

xn∈X n

k P̃Y n (xn)N
(
(a.b) | xn) + η(a, b)

]
− P̃X,Y (a, b)

∣∣∣∣
(a)=

∣∣∣∣ 1

nk − 1
∑

xn∈X n

(
N(xn | xnk) − k P̃Y n (xn)

)
N

(
(a, b) | xn)

+ k(n − 1)P̃X,Y (a, b)

nk − 1 + η(a, b)

nk − 1 − (nk − 1)P̃X,Y (a, b)

nk − 1
∣∣∣∣

(b)≤
∣∣∣∣ |X |nkεN ((a, b) | xn)

nk − 1
∣∣∣∣ +

∣∣∣∣∣ (1− k)P̃X,Y (a, b)

nk − 1

∣∣∣∣∣
+

∣∣∣∣ k − 1
nk − 1

∣∣∣∣
(c)≤

∣∣∣∣ k

nk − 1
∣∣∣∣ +

∣∣∣∣ k − 1
nk − 1

∣∣∣∣ +
∣∣∣∣ k − 1
nk − 1

∣∣∣∣ , (43)

where

(a) Follows from Eq. (42):∑
xn∈X n P̃Y n (xn)N ((a.b) | xn) = (n − 1)P̃X,Y (a, b).

(b) Follows from the triangle inequality, Eq. (41) and
η(a, b) ≤ k − 1.

(c) Follows from the fact that N ((a, b) | xn) ≤ n − 1,
P̃X,Y (a, b) ≤ 1 and the definition of ε.

From Eq. (43), for every ξ > 0 there exist k ∈ N such that
for any (a, b) ∈ X 2

∣∣∣P̂(2)
xnk (a, b) − PX,Y (a, b)

∣∣∣ ≤ 3

n
+ ξ.

Denote δ = 3
n + ξ . We have shown that xnk ∈ T k

ε (P̃Yn ) �⇒
xnk ∈ T nk,(2)

δ (P̃X,Y , 1). Thus,
∣∣∣T k

ε (P̃Yn )
∣∣∣ ≤

∣∣∣T nk,(2)
δ (P̃X,Y , 1)

∣∣∣.
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Fig. 15. Induction base case: the initial node is 4 and all channel outputs
are erasures. Each partition assigns the required amount of the unit interval to
‘0’ and to ‘1’. The (1, 2)-RLL input constraint is satisfied by these labelings:
every ‘1’ is followed by a ‘0’ and no more than two consecutive ‘0’s are
allowed.

For any pair τ1(ε) > 0, τ2(δ) > 0 with limε→0 τ1(ε) = 0,
limδ→0 τ2(δ) = 0 there exist K such that for all k > K :

2
k
(

HP̃Y n
(Y n)−τ1(ε)

)
≤

∣∣∣T k
ε (P̃Y n )

∣∣∣
≤

∣∣∣T nk,(2)
δ (P̃X,Y , 1)

∣∣∣
≤ 2nk

(
HP̃Y |X (Y |X)+τ2(δ)

)
.

So
1

n

(
HP̃Y n

(Y n) − τ1(ε)
)

≤
(

HP̃Y |X (Y | X) + τ2(δ)
)

,

or, alternatively,

HP̃Y n
(Y n) ≤ nHP̃Y |X (Y | X) + ζn , lim

n→∞ ζn = 0.

We can think of the single letter distribution P̃Y |X as
P̃Yi ,Yi−1(yi | yi−1) and define Q̃Y n (yn) = ∏n

i=1 P̃Yi ,Yi−1 (yi |
yi−1).

APPENDIX C
PROOFS FOR THE FEEDBACK CAPACITY OF

THE (1, 2)-RLL BEC

Proof of Lemma 9 The definition of the scheme clearly shows
that if Yi = 1 then Xi+1 = 0, and if Yi−1 = Yi = 0 then
Xi+1 = 1. All that remains is to prove that it is possible to
assign δ of the unit interval to ‘0’ in the case of consecutive
erasures. We prove this using induction on the number of
erasures, n. As a base case take n = 3. Fig. 15 shows possible
partitions of the unit interval that comply with the definition
of the coding scheme. The last partition in Fig. 15 assumes
that 0 ≤ 2δ − 1 ≤ 1− δ. This means that 12 ≤ δ ≤ 2

3 .
For n ≥ 4 consecutive erasures consider the following:
1) Subintervals of [0, 1] which were labeled ‘1’ during
the previous channel use must now be labeled ‘0’.

Additionally, the total length of these subintervals is
1 − δ. This means that we must assign an additional
2δ − 1 to ‘0’.

2) Subintervals of [0, 1] which were labeled ‘1’ two chan-
nel uses ago are now unconstrained. The total length of
these subintervals is also 1− δ.

3) The two sets of subintervals mentioned in items 1) and
2), above, are disjoint.

Given that δ ≤ 2
3 we can assign 2δ − 1 of the unconstrained

subintervals to ‘0’.
We calculate the rate achieved by this scheme using the

same method shown in Section IV. In the case of this coding
scheme, and after exchanging δ with 1 − δ, we reach the
following rate:

R = H2(δ)
1
1−ε + ε + δ

. (44)

Proof of Lemma 10 Eq. (21) contains an upper bound to
C fb(1,2)(ε). By partially deriving the RHS of Eq. (21), it can
be shown that the maximum is attained for δ2 = 1 − δ1.
Substituting this relation into Eq. (21) gives:

C fb(1,2) ≤ max
0≤δ≤1

H2(δ)
1
1−ε + ε + δ

. (45)

Since H2(x) = H2(1 − x), it is clear that the maximum is in
0 ≤ δ ≤ 1

2 . The derivative of Eq. (45) is equal to zero only
when

(1− δ)
1
1−ε +ε+1 = δ

1
1−ε +ε. (46)

The LHS and RHS of Eq. (46) are, respectively, monotonic
decreasing and monotonic increasing functions of δ. In order
for the maximizing δ to be at least 13 , we need to prove that
for any ε (

2

3

) 1
1−ε +ε+1

≥
(
1

3

) 1
1−ε +ε

, (47)

which simplifies to
2

1
1−ε +ε+1 ≥ 3. (48)

Since the power increases in ε, it is sufficient to check that
Eq. (48) holds for ε = 0, and indeed 23 = 8 ≥ 3.
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