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Abstract—In this paper, a neural network based Multiple-
Input-Multiple-Output (MIMO) algorithm is presented. The
algorithm is specifically designed to be integrated in a coded
MIMO-OFDM system, and is based upon projected gradient
descent iterations. We combine our model as a part of a modern
coded MIMO-OFDM system, and we compare its performance
with common MIMO detectors on simulated data, as well as on
field data. We also investigated our model’s performance in the
presence of several common communication impairments, and
demonstrated empirically its robustness. We show empirically
that a single trained model is suited for the detection of both
coded and uncoded data, with or without impairments, and in
the presence of a wide range of tested SNR levels.

Index Terms—Deep Learning, wireless communications, im-
pairments, iterative neural network, LDPC, MIMO-detection,
soft-decision.

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) OFDM based
schemes are a key technique in today’s widespread 4G wireless
communication technology, and will be even more pivotal
in the emerging 5G era. Using multiple antennas in the
transmitter and the receiver significantly increases the system’s
spectral efficiency, thus increasing the information throughput
[1], [2]. However, MIMO detection imposes an NP-hard
problem on the receiver, which has to detect the data symbols
sent by each transmitter. MIMO detection has been an active
research area for many years [3], and several sub-optimal yet
feasible detection algorithms have been proposed, differing in
their complexity vs. accuracy performance trade-off. Recent
developments in machine learning, and, specifically, in the
field of deep learning, have motivated the use of data-driven
techniques to solve various wireless communication tasks, one
of which is the MIMO detection problem [4], [5].

A. Legacy Approaches

The optimal joint detection of transmitted symbols in a
MIMO system is given by the Maximum Likelihood (ML)
solution, which requires the calculation of metrics for all
possible transmitted vectors. Therefore, the ML algorithm
quickly becomes infeasible when the number of transmitters
and the modulation order increase. Many ideas have been
proposed to overcome this limitation; the main solutions
are listed below. On the side of high accuracy and high
complexity, Sphere Decoding (SD) based algorithms have
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been proposed. The classical SD algorithm searches for a
solution in an iterative manner, and the accuracy/complexity
ratio is controlled by a predefined initial radius parameter
r [6]. Extensive research has been dedicated to choosing r
effectively, including some proposals to use machine learning
for this purpose [7], [8]. Additional SD-based methods with
variable or predefined complexity were developed in [9], [10].
On the side of low complexity algorithms, the linear Zero
Forcing (ZF) and the Linear Minimum Mean Square Error
(LMMSE) detectors [3] are well known algorithms, which are
based on a linear transformation on the received symbol vector
at the receiver. Successive Interference Cancellation (SIC)
based detectors offer some performance gain over the linear
detectors, with a reasonable complexity increase. One of the
most well-known SIC algorithms is V-blast [11]. Semi-Definite
Relaxation detectors (SDR) obtain a solution by relaxing the
finite alphabet constraint of the ML problem, and by using
semi-definite programming [12].

B. Machine learning approaches

Several methods based on machine learning techniques have
been published. In [13] a novel algorithm named ’DetNet’
is proposed, where an iterative procedure is used in order
to obtain MIMO detection. In [15] a customized sigmoid
function was proposed in order to account for growth in
the required output neurons for high constellation usage and
to ease the learning procedure. They have also suggested
using a combination of two separate neural networks, one
initialized randomly while the other is with the ZF solution,
and to combine their results to improve performance. In [7] a
neural network was combined with a classical SD algorithm
such that the neural network was trained to select the initial
radius. In [16] a neural network (NN) is used to improve
the belief-propagation MIMO detection algorithm. In [17]
a model-driven approach is used to combine NN and an
approximate message passing algorithm to a MIMO detector.
In [18], different NN architectures are compared in MIMO
detection. In [19] both DNN and CNN are tested for MIMO
detection with perfect and imperfect channel knowledge. Deep
unfolding of the Alternating Direction Method of Multipliers
(ADMM) iterative algorithm is applied to MIMO detection
in [20]. In [21] a partial learning based MIMO detection
model is presented. In [22] NN architecture is used for soft
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demodulation. Comprehensive surveys of machine learning for
wireless networks are presented in [23], [24].

C. Main contributions

In this work we introduce the following novelties: first,
we present a soft-output iterative MIMO detection algorithm,
which can be integrated into a coded system. We demonstrate
our algorithm’s results on 5G MIMO-OFDM simulated data,
as well as on recorded field data. We present our algorithm’s
performance on both uncoded and LDPC coded data. We
show that our model provides competitive detection results
on coded data without any explicit knowledge of the noise
variance, which is usually required for Log Likelihood Ratio
(LLR) calculations. Moreover, we demonstrate our model’s
robustness to several common wireless radio impairments.
This feature allows to further reduce the system’s complexity,
as no additional algorithms are required for tracking and
handling such impairments.

II. PROBLEM SETUP

In this section we describe mathematically the MIMO
detection problem and give a brief introduction for the coding
used in our system. We also describe and explain several
common communication impairments.

A. MIMO model

Under the common assumption of frequency flatness and
slow fading with ¢ transmit antennas and 7 receive antennas,
a MIMO system can be modeled by the following complex
base band (BB) model:

y=Hx +n, (1)

where & € C?! are the sent complex symbols taken from a finite
constellation of size |M|, y € C" is the received complex
vector, H € C"™ is the complex base band channel matrix,
and n € C” is complex additive white Gaussian noise. We
consider the problem of MIMO detection, where we wish
to detect the transmitted data o given the received data y.
At first, we assume the channel response is ideally estimated
and given, and later we will investigate performance under
imperfect channel estimates. Given the exact channel matrix,
the ideal solution of MIMO detection is given by the maximum
likelihood solution which is written as:

&, = argmin ||y — Ha||. )
xT

As stated, this solution requires an exhaustive search over all
|M|t possible transmitted vectors, which becomes infeasible
in a large scale MIMO setup and/or a large constellation.

B. Coded systems

Shannon proved long ago that reliable communication over
a noisy channel is possible with the use of channel coding,
as long as the transmission rate is less than the channel
capacity. Low density parity check (LDPC) codes, invented
by Gallager in 1962, have been shown to be near capacity
achieving in Gaussian channels [25], and are at the heart of

modern coding and the new 5G NR standard [26]. Usually,
LDPC decoding is done using a message passing algorithm.
We take this approach by integrating LDPC encoding and
decoding procedures in order to present and compare results
in coded systems. In coded systems, the decoder requires soft
decision metrics which indicate the confidence level of each
decoded bit. Usually, the log likelihood ratio (LLR) is used.
For a MIMO model, the LLR for bit m in transmitter n is
defined as:

P(by, = 1y',...y", H)
Pbr, =0|yt, ...,y H)’

LLR(b},) = log 3)
where n = 1,2,...,t and m =0, 1, ... log, | M| — 1. Assuming
that all symbols in the constellation have equal probability, the
LLR can be written as:

LLR(b) = log Z Pyt o, ) 4)
z:bn =0

m

S exp ( _ Hy,:z;wuz)

S ep( bRy

x:b7, =0

As for the hard decision ML solution, obtaining the exact
LLR is a complex exhaustive procedure, which includes not
only the calculation of | M |* metrics, but also a complex proce-
dure of summation and exponentiation that becomes infeasible
in a large scale MIMO setup and/or a large constellation.

C. Communication system impairments

Practical communication systems suffer from impairments.
System impairments differ in their origin and effect. Most
common impairments are induced by the analog front end
(AFE) and the transmission medium. In this work we choose
several common impairments to test the performance of our
proposed model under their effects.

1) Carrier frequency offset (CFO): CFO arises when the
local oscillator (LO) at the receiver is not synchronized
with the LO at the transmitter. This happens usually due to
frequency mismatch between the local oscillators, or due to
motion of either the transmitter or the receiver. In OFDM
systems, CFO causes amplitude distortion and commutative
phase rotation for each sub-carrier in the OFDM symbol, and
additional inter carrier interference (ICI) [27].

2) Power amplifier (PA) distortion: High power efficiency
requires the PA to work near its saturation region. This
introduces nonlinear effects, which result in distortion of the
output constellation and spectral regrowth. Compensation for
these effects requires at least one of the following: specific
pre/post distortion hardware, clipping or back-off.

3) 1Q imbalance: The mixers used for up-converting or
down-converting the BB signal may be impaired by mismatch
in the in-phase and quadrature signal paths. OFDM is very
sensitive to IQ imbalance at the receiver, and requires either
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Fig. 1. NN model architecture. I1, ..

specific compensation or very precise and expensive hardware
[28].

4) Noisy channel estimates: As stated in section II-A,
the MIMO detection problem assumes the channel matrix
is given. Ideally, one would like to obtain the true channel
coefficients, and usually performance is evaluated under this
assumption. However, in practice these have to be estimated
and tracked [29]. Using estimated channel coefficients instead
of the ground truth leads to performance degradation.

III. PROPOSED NN MODEL

In this section we describe our NN detection model archi-
tecture. We outline the motivation for the use of an iteration
based solution to the MIMO detection problem. Then, we
describe in detail the building blocks and detection operation
of our algorithm. We describe the training procedure and the
detection operation in both coded and uncoded modes. A high
level architecture is shown in Fig. 1.

We emphasize that the presented NN model, once trained on
a single training set, presents competitive results in detecting
both coded and uncoded data, with or without impairments and
in the presence of a wide range of noise power levels. Even
more remarkable is the fact that for coded data, calculating
the LLRs requires the knowledge of the noise variance. Yet,
our model is able to produce inputs to the LDPC decoder that
produces near ML performance without any knowledge of the
SNR level.

A. Iteration based model motivation

We take a similar approach to that in [13] and utilize an
iteration based model. The idea is to use a projected gradient
approach to solve (2). We modified the model presented in [13]
to output directly soft probabilities by using a softmax output
layer. We added a block named “probability to values”, which
linearly combines the softmax output probabilities with the
constellation symbols at each iteration. We added a highway
network block that combines the previous estimate with the
“probability to values” output to yield the next estimate.
Considering the function to be optimized

lly — Hal|?, (©)

., lc denote the values of the real & imaginary parts of the used constellation as defined in (11).

which is found in (2) and taking the gradient with respect to
the vector x yields the following expression [14]:

lly — He|* _

ox n

where H™ indicates the conjugate transpose operation over

the channel matrix H. This expression, which consists of the
terms:

- H*(y_Hw) ) (7)

H*y, H*Hzx, 3

suggests building a solution in an iterative way, using the
following relation:

;i:k-&-l =F(a1i;€+a2H*y+a3H*H§3k), 9)

where o, g, a3 are learn-able parameters and F' is a nonlin-
ear function. The complete detection procedure is described
in the next section.

B. Detection operation and building blocks

As described in the previous section, the model uses the
projections in (8) as features. The initial input features are
obtained by randomizing a prediction &y. After randomizing
o, we project the received signal y and the initial prediction
o as stated in (8) to obtain the following input features:

<Re{§30}> (Re{H*y}) (Re{H*H:i:o}) (10)

Im{zo} )’ \Im{H*y})’  \Im{H*HZo})"

Since we use a real valued neural network model, we split
and concatenate each input feature into its real and imaginary
parts. The model is an iterative model that outputs in each
iteration soft probabilities for the real and imaginary parts of
each of the transmitted symbols:
P(Re{z'} =1)
P(Re gxli =1y)

P(Re gxli =1,)

P(Re{2?} =1)) 7 (11)

P(Re {2t} = 1.)

P(Im {z'} = 1,)
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where [1,1s,...,l. denote all the possible real values that the
real and imaginary part of the transmitted symbol may take;
hence ¢ = /| M]|. For example, for a QPSK constellation:

L, _ 1
V2TV

The model feeds back a linear combination of the output
probabilities with the constellation vector in each iteration to
be used for the next iteration until the required number of
iterations is reached; then the final probabilities are obtained.
At iteration k£ the model performs the following operations:

=

1) The current features as in (10) (replacing the 0 subscript
with & — 1) enter 2 fully connected neural network
layers with Batch Normalization and Relu activation.
The number of neurons in each layer can be configured.

2) The fully connected layers feed an I/Q softmax layer,
which computes probabilities for each transmitted sym-
bol as described in (11).

3) The output probabilities enter a block named “prob-
abilities to values”, which is a matrix multiplication
that combines the output probabilities to a single soft
decision output by multiplying each probability with its
corresponding value:

Re{i"} =Y 14P(Ref{z"} =l4),n =1,2,....1,
d=1

Im{i"} = 1aP(Im{a"} =1a), n=1,2, ...t
d=1

For example, assume we use a 16QAM constellation as
shown in Fig. 2. Then, our softmax layer will output for
the real and imaginary part of each transmitted symbol
the probabilities: P(ly), P(l2), P(l3), P(l4). This block
will combine the probabilities to yield a single soft
output value: I3 P(ly) + loP(l2) 4+ I3 P(l3) + 14 P(l4) for
the real and imaginary parts of each transmitted symbol,
finally resulting in a 2¢ size vector.

4) The soft values from the “probabilities to values” block
enter a highway layer with the previous soft symbols
1. Highway layers have been found to ease gradient
flows in very deep neural networks [30]. Thus, this
operation combines the previous estimate &;_1 and the
soft output from the “probabilities to values” block
together to obtain the current estimate &j:

& = F(&p_1, H'y, H*HE ¢ _1, W) - 0(&1_1, W})
+i¢;€_1 . (1 — a(:i:k_l,W,f)),

where W}, W7 represents all the learn-able parameters
of iteration k£ and F' is the nonlinear operations acting
on the features on each iteration.

5) Finally, &; is multiplied by H*H to obtain the ap-
propriate features for the next iteration. Thus, after the
k'" iteration, the features H*y, &5 and H*Hay, are
combined and fed-back to the (k + 1)*" iteration.

1000 1001 1011 1010
@] O O O

1100 1101 1111 1110
O O @ O
O O O O

0100 0101 0111 0110
O O @ O

0000 0001 0011 0010

Fig. 2. 16 QAM constellation
C. Training

Training is done by minimizing the sum of negative log
losses (NLL) of the predicted output probability of the real
and imaginary parts of each symbol. That is, for each MIMO
sample we wish to minimize:

- {zt:zc: 1{R€{xj} = lq} log Py (Re {ij = lq})

j=1q¢=1

+iil{]m{xj} — 1, flog Py (T {# = lq})},

j=1q=1

(12)

where 6 indicates the model learn-able parameters. We also
adopted Batch Normalization (BN) [31] and Dropout (DO)
[32] which are widely used procedures in DL. Specifically,
we added BN before the Relu activation. DO was used after
the first Relu activation in each iteration.

D. Uncoded system mode

When working in uncoded mode, one simply assigns the
final hard decision estimate of the transmitted symbol vector
by taking the real and imaginary parts corresponding to the
maximum probabilities of the real and imaginary parts of each
symbol.

E. Coded system mode

The model’s soft outputs produced by the softmax layer
allow easy integration of the model in a coded system. The
output probabilities can be summed to produce an estimate for
the bit probabilities, then the LLRs can be obtained by simple
division and logarithm as given in (3).

IV. DESIGN OF EXPERIMENTS

In this section we describe the various configurations of the
experiments we conducted. In order to thoroughly investigate
our model’s performance, strengths and weaknesses we tested
the model with the following configuration options:
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1) Data generation method: MATLAB 5G toolbox, field
trial data

2) MIMO setup: 8x8, 32x32

3) Constellation: QPSK, 16QAM

4) LDPC code rate: none, 0.25, 0.5

5) Impairments: none, CFO, PA distortion, inaccurate chan-
nel estimation, IQ imbalance.

A. Data generation

We tested our model by generating data from 2 different
sources.

1) MATLAB 5G toolbox: We used the MATLAB 5G tool-
box [33] in order to generate various OFDM-MIMO trans-
missions with various MIMO setups and constellations. Using
the MATLAB toolbox allows us to accurately simulate MIMO-
OFDM transmissions over fading channels that are accepted
by the 5G standard. Specifically, we have used TDL-D type
channels - a 13 delay tap channel with a 30ns delay spread,
as described in the 3gpp specification document [34].

2) Field trial data: An important aspect of our research
is testing the proposed model not only with MATLAB sim-
ulated data, but also with recorded radio field data. The data
were collected from a single moving user equipment (UE)
transmitting a 30KHz spacing OFDM signal to a line of sight
(LOS) base station (BS). The route was divided to 8 segments
to simulate 8 different UEs located at different locations. It
should be noted that the training data and test data sets are
generated independently, i.e., noise, impairments and channel
realization are randomized independently.

B. Algorithm comparison

We compared our model’s performance with that of the
following known algorithms. In uncoded mode:

1) ML

2) V-blast (as in [11])

3) ZF [3]
In coded mode:

1) ML soft LLR (as in (4))

2) Iterative Soft Interference Cancellation (SIC) (as in [35])

3) ZF soft LLR [36]
When using LDPC coding, the decoding is done by a sum-
product message-passing algorithm for 25 iterations for all
algorithms.

C. Impairments embedding

The impairments described in section II-C were combined
in the MATLAB simulation for creating distorted samples
both for training and for inference. We used the following
configurations:

1) Randomized CFO shift uniformly Acfo ~ U0, 100]H z
for each OFDM sub-frame and applied by MATLAB 5G
toolbox.

2) Distortion of the transmitted waveform using Saleh-
Power amplifier distortion model with AM/AM and
AM/PM coefficients [1,0.25], [0.26,0.25], respectively
[37]. The Back Off (BO) is defined as 10log,, £

Pavg’

where piq, is the input power that produces output
power which is 1db less than the input power, and pg.q
is the average power of the signal. We set the BO=3db
which introduces the PA with high nonlinear effects.

3) Ideal channel estimates were distorted by adding com-
plex white Gaussian noise at variance lower than the
SNR level.

4) IQ imbalance was added to the receiver waveform
according to [28]. When using a QPSK constellation we
have randomized the gain error A ~ U[—10, 10][db], and
the phase error A¢ ~ U[—10,10] degrees.

V. RESULTS AND INSIGHTS

In this section we give numerical performance results of
our NN model compared with common known algorithms in
different experiments. Throughout our experiments we have
explored many hyper-parameter configurations which include
different combinations of number of neurons in each layer,
number of iterations, dropout, batch-normalization, optimizer,
and learning rate. Eventually, we came to the conclusion that
performing 20 iterations with 200 neurons in the first layer and
100 neurons in the second layer offers the best performance
vs complexity trade-off for all 8x8 MIMO setups, whereas
for all 32x32 cases we used 600 neurons for both layers. DO
probability was set to Bernoulli distribution with probability
0.2. We also confirmed that this configuration suits both the
MATLAB generated data and the field data. The exact same
model was used in both cases, only the training data set was
different. We explored different configurations of the training
data (SNR, impairments). We came to the conclusion that
overall, training on clean data samples with SNR around 10db
led to best overall performance both on clean data samples and
on distorted data samples. Overall, only 3 unique NN models
were trained for the following results:

1) A single model for all 8x8§ MIMO MATLAB generated
data experiments: uncoded, coded, uncoded with impair-
ments.

2) A single model for all 32x32 MIMO MATLAB gener-
ated data.

3) A single model for the 8x8 MIMO field generated data.
All models were trained using the same hyper-parameters,
except for the number of neurons in the 32x32 model which
was set to 600 for all layers.

A. Uncoded results

We first present uncoded MIMO system results without
impairments. In this setup, we train our model on 800K
MIMO samples. Detection and BER calculation are done on
7000 samples for each SNR point. We see that our model is
competitive with the optimal ML performance in most of the
SNR range. A significant gain is achieved over the ZF and
V-blast algorithms. Results are shown in Fig. 3.

B. Uncoded results with impairments

We trained our model using samples obtained from MIMO-
OFDM transmissions as before, but this time the tested sam-
ples were affected by the 4 impairments described in previous
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8x8 QPSK uncoded
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Fig. 3. BER vs SNR of 8x8 MIMO QPSK uncoded without impairments.
8x8 QPSK uncoded - CFO
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Fig. 4. BER vs SNR of 8x8 MIMO QPSK - Affected by CFO of up to
100Hz.

sections. Using a single trained model, we tested on samples
affected by each individual impairment separately. The results
in Fig. 4 show that our proposed model is significantly less
affected by CFO and is very robust compared to the other
algorithms in the presence of this distortion. As for the
presence of IQ imbalance shown in Fig. 5 and noisy channel
estimates shown in Fig. 6, it seems that the performance of
all algorithms suffers in a similar way.

The detection result of PA distorted data is shown in Fig.
7 and shows that performance is severely degraded for all
algorithms. The algorithm that is most affected is the ML,
while the NN maintains the best results throughout almost all
of the SNR range. To summarize, we note that the NN model
is more robust to the presence of CFO shift and PA distortion
than the common algorithms due to the fact that the NN does
not assume any specific physical model.

C. Coded results

We now present results of a coded MIMO system. For 8x8
MIMO with QPSK, it is still feasible to obtain a ML solution
by a computer. The results shown in Fig. 8 demonstrate that

8x8 QPSK uncoded - IQ imbalance

BER

10 |——2F 1

—©— V-blast
ML

—*—NN

0 5 10 15 20 25 30
SNR

Fig. 5. BER vs SNR of 8x8 MIMO QPSK - Affected by IQ imbalance.

8x8 QPSK uncoded - Noisy channel estimate

BER

10 | —+—2F 3

—©— V-blast
ML

—¥— NN

0 5 10 15 20 25 30
SNR

Fig. 6. BER vs SNR of 8x8 MIMO QPSK - Affected by noisy channel
estimates.
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Fig. 7. BER vs SNR of 8x8 MIMO QPSK - Saleh model PA distortion, 3db
BO.
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8x8 QPSK LDPC rate 0.5
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Fig. 8. BER vs Eb/NO of 8x8 MIMO QPSK LDPC code rate 0.5 without
impairments.

32x32 QPSK LDPC rate 0.5
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Fig. 9. BER vs Eb/NO of 32x32 MIMO QPSK LDPC code rate 0.5 without
impairments.

with LDPC code rate 0.5 our model’s performance comes very
close to the ML’s performance. For 32x32 MIMO, ML is no
longer feasible. When using QPSK modulation, code rate 0.5
provided a good operating point. The results in Fig. 9 show
our model’s superior results over the common algorithms. For
32x32 MIMO with 16QAM modulation, we set the code rate
to 0.25. These results are shown in Fig. 10 and again show
our model’s robust performance.

D. Coded field results

Using collected field trial data, we were able to produce
MIMO channel matrices and use them for creating new
training and test data sets. We trained our model with the exact
same hyper-parameters that were used for the MATLAB data.
Performance on coded test data is shown in Fig. 11.

E. Complexity analysis

We provide a table comparing detection complexity of a
single MIMO sample by counting floating point operations
(FLOPS). The proposed NN model is assumed to be in

32x32 16QAM LDPC rate 0.25

10° i i
101 E
o
W 102k
w10
109 E
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—©— SIC soft decision LLR
—#— NN probs to LLR
104 . . . . . . .
2 4 6 8 10 12 14 16 18

Eb/NO

Fig. 10. BER vs Eb/NO of 32x32 MIMO 16QAM LDPC code rate 0.25
without impairments.

8x8 QPSK coded - field data
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102 : ' : : :
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Fig. 11. BER vs Eb/NO of 8x8 MIMO QPSK LDPC code rate 0.5 field data
without impairments.

inference mode. Real matrix inverse is counted as O(n?)
FLOPS. A single complex multiplication of 2 complex valued
scalars is counted as 6 FLOPS. L and Lo denote the number
of neurons in the first and the second fully-connected layers of
each iteration. I denotes for the number of iterations. Results
are given for 32x32 MIMO, 16QAM.

TABLE I
DETECTION COMPLEXITY COMPARISON
Detector FLOPS
ZF (8r —2)rt + (2r)3 + t(8t + 8r — 4) = 0.54M
VBlast 3¢ (8p—2)p(p+ 7+ 1) + (2p) + 16r —2 = 7.4M
ML |M[t[8r(t + 1) — 2] =2.87 - 1012
NN I[L1(12t 1) + La(2L1 + 1) + 1662+
2tc(2Ly + 1) + Qt] = 25.5M
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VI. SUMMARY AND CONCLUSIONS

In this work we suggested an iterative soft output NN
model for MIMO detection. We showed how to integrate the
model in a full modern coded MIMO-OFDM system and
compared its results with those of common algorithms. We
demonstrated that training our algorithm on a single data set
yields competitive results, especially for coded data, where,
also remarkably, the noise variance was not used. We have also
shown that the same model that was already trained, was also
robust in the presence of several common communication im-
pairments, since the NN does not assume any specific model.
This is very encouraging, as there are many communication
impairments, each of which requires specific consideration that
may increase the hardware and processing time costs. We have
also shown that the same model configuration suits data sets
which originate from 2 different sources: MATLAB simulation
and live radio field data.
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