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Neural Networks on Demand

Many deep neural networks (DNNs) are time or location specific
Users can’t store all possible DNNs they may need
DNN on demand: Download DNN at the time of inference
Federated edge learning: Training over the air
Storage of DNN parameters in memory
DNNs are huge: VGG-16 has 138 million parameters (>500 MB)
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AirNet: Neural Networks in the Air

Model parameters transmitted over a noisy channel
Classification done with reconstructed DNN
A joint source-channel coding problem: Goal is to reconstruct a
model with high accuracy

M. Jankowski, D. Gündüz, and K. Mikolajczyk, “AirNet: Neural network transmission over
the air,” 2021.
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Conventional Approach: Compress and Transmit

Weight sharing
Network pruning
Tensor decomposition
Knowledge distillation
Quantization

Figures from Tan and Le (2019), Sanh et al. (2019).
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Universal DNN Compression

MPEG-7 Part 17: Compression of Neural Networks for
Multimedia Content Description and Analysis
Context-based Adaptive Binary Arithmetic Coding (CABAC)
No retraining required

S. Wiedemann et al., ”DeepCABAC: A Universal Compression Algorithm for Deep Neural
Networks,” in IEEE Journal of Selected Topics in Signal Processing, May 2020.
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Uncoded/Analog Transmission of DNNs
Conventional approach: Compress NN weights, use channel
coding against errors

Requires accurate channel estimation
Channel encoding/decoding can be time consuming
Suffers from the ‘cliff effect’

Proposed approach: Analog transmission of DNNs
Recent success of end-to-end joint source-channel coding solutions
for image and video transmission

Challenges:
How to do compression in analog domain?
How to make model robust against noise?
How to introduce error correction?

E. Bourtsoulatze, D. Burth Kurka, and D. Gündüz, “Deep joint source-channel coding for
wireless image transmission,” IEEE Trans. on Cognitive Comms. and Networking, Sep. 2019.

T.-Y. Tung and D. Gunduz, “DeepWiVe: Deep-learning-aided wireless video transmission,
submitted, Nov. 2021.

B. Isik, K. Choi, X. Zheng, T. Weissman, S. Ermon, H.-S. P. Wong, A. Alaghi, “Neural
Network Compression for Noisy Storage Devices,” 2020.
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Noise Injection to Neural Networks

Deep neural networks (DNNs) are often over-parametrized and
suffer from overfitting
Proper regularization is essential for better generalization
Inject noise during training: dropout
Proposed approach: Pruning (for bandwidth reduction) + noise
injection during training (for robustness) + knowledge
distillation (for higher accuracy)

Srivastava et al.,“Dropout: A simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, 2014.

Noh et al., “Regularizing deep neural networks by noise: its interpretation and
optimization,” NeurIPS 2017.
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Analog Error Correction

Can we achieve error reduction for
sensitive/important weights?

Power / bandwidth allocation
Shannon-Kotelnikov mapping:
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DNNs in the Air
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Observation: Better to prune more, and then introduce
redundancy through SK mapping

M. Jankowski, D. Gündüz, and K. Mikolajczyk, AirNet: Neural network transmission over
the air, arXiv, 2021.
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Unequal Error Protection

Some weights are more important/ sensitive to noise than others
How to do unequal error protection in analog domain?

Choose layers according to noise sensitivity
Use second-order information
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AirNet Bandwidth Allocation

AWGN, SNR = 5dB, b ∼ 0.65 × 106.
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Noisy Neural Networks

Noise during inference
Noise during training

Let r ∈ Rd be the DNN parameters, received with additive noise
(often Gaussian):

r = w + z

ML estimation: ŵML = r
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Bayesian Estimation

Assume Gaussian prior on w: W ∼ N (W;µw, σ2
w), where µw and

σ2
w are the sample mean and sample variance of

w = {w[i] : i = 1, 2, ..., d}:

µw = 1
d

d∑
i=1

w[i], σ2
w = 1

d

d∑
i=1

(w[i]− µw)2.

MMSE estimation: Given r ∈ Rd,

ŵMMSE = σ2
w

σ2
w + σ2

z

r + µwσ
2
z

σ2
w + σ2

z

e,

where e is an all-ones vector.
MMSE estimate is also the MAP estimate.
But, the goal is to maximize inference accuracy, not MSE.
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Bayesian Denoiser with Compensators

Most parameter values in a DNN are very small in magnitude
Larger parameters matter more than smaller ones for accuracy

Minimize
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Simple Three-Layer Network

F : y(x,w) =
N∑
i=1

vi tanh(uix),

After denoising, neural network output can be written as

ỹ(x,w, z, θ(λ), ρ(λ, β)) =
N∑
i=1

[θvi + θ∆vi + ρ] tanh(θuix+ θ∆uix+ ρx),

θ(λ), ρ(λ, β): multiplicative and additive factors in MMSEpb.
For x ∼ U [−c, c], ui, vi ∼ N (0, σ2

w), gain w.r.t. ML estimation in
average output error:

D̄ML − D̄MMSEpb

D̄ML
≈ 2σ2

z

σ2
w + 2σ2

z

.

Y. Shao, S. C. Liew, D. Gunduz, “Denoising noisy neural networks: A Bayesian approach
with compensation,” arXiv 2021.
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Bayesian Denoiser with Compensators
ResNet34

𝑎

WNR dB

1 dB

T
es

t 
ac

cu
ra

cy
 (

%
)

ResNet18

𝑏

WNR dB

0.8 dB

T
es

t 
ac

cu
ra

cy
 (

%
)

ShuffleNet

𝑐

WNR dB

0.5 dB

T
es

t 
ac

cu
ra

cy
 (

%
)

BERT

𝑑

WNR dB

1.1 dB

T
es

t 
ac

cu
ra

cy
 (

%
)

(a) RestNet34 (CIFAR-10); (b) RestNet18 (CIFAR-10); (c) ShuffleNet V2
(CIFAR-10); (d) BERT (SST-2).
WNR: weight variance to noise power ratio

Y. Shao, S. C. Liew, D. Gunduz, “Denoising noisy neural networks: A Bayesian approach
with compensation,” arXiv 2021.
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Training with a Bayesian Denoiser
OAC

ShuffleNet
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Federated edge learning across 20 wireless devices
CIFAR-10 training with ShuffleNet V2 (a) and ResNet18 (b)

Y. Shao, S. C. Liew, D. Gunduz, “Denoising noisy neural networks: A Bayesian approach
with compensation,” arXiv 2021.
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Thank You!
For more information:

www.imperial.ac.uk/ipc-lab

Call for papers:
IEEE Journal on Selected Areas in Communications , Special Issue on

“Beyond Transmitting Bits: Context, Semantics and Task-Oriented
Communications”

Deadline April 1st, 2022
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