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Motivation
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The Role of AI in 6G & Beyond
AI is playing an increasingly significant role in engineering.
As a case in point, next-generation communication systems will
leverage AI at all layers of the protocol stack.

[Bonati et al ‘21]
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The Life Cycle of an AI Model
In many engineering problems (e.g., in digital twin platforms), AI
modules should be:

1) well calibrated, providing a faithful quantification of the
uncertainty of their decisions, e.g., for monitoring

2) sample efficient, enabling fast adaptation

[O-RAN ‘20]
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This Talk

Reliable AI, enabling monitoring and analysis:
▶ Bayesian learning

Sample-efficient AI, enabling fast adaptation:
▶ Meta-learning

Reliable and sample-efficient AI:
▶ Bayesian meta-learning
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Reliable AI:
Bayesian Learning
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Frequentist Learning vs. Bayesian Learning

Frequentist learning (e.g., standard deep learning):
▶ Optimization of a single model parameter vector θ
▶ Decision based on a single model p(x |θ)
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Frequentist Learning vs. Bayesian Learning

Bayesian learning:
▶ Optimization of a distribution q(θ) in the model parameter space
▶ Decision obtained via ensembling, i.e., via Eθ∼q(θ) [p(x |θ)]

𝑞(𝜃)
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Frequentist Learning vs. Bayesian Learning
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Bayesian learning leverages the disagreement of models outside the
training data to quantify epistemic uncertainty.

Other advantages: improved generalization, active learning, online
learning, efficient distributed/federated learning1,...

1
R. Kassab and O. Simeone, “Federated generalized Bayesian learning via distributed Stein variational gradient descent,”
arXiv:2009.06419, 2020.
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Frequentist Learning vs. Bayesian Learning

Given a training set D, conventional frequentist learning minimizes
the training loss LD(θ) over θ.

Bayesian learning minimizes the variational free energy

FD(q(θ)) = Eθ∼q(θ)[LD(θ)]︸ ︷︷ ︸
average training loss

+ KL (q(θ)||p0(θ))︸ ︷︷ ︸
information-theoretic regularization

,

over distribution q(θ), where p0(θ) is a prior distribution.

Without regularization, the problem reduces to standard frequentist
learning.

The regularization term provides a bound on the generalization
error via PAC Bayes theory, and it underlies the free energy principle
in neuroscience.2

2
S. T. Jose and O. Simeone, “Free energy minimization: A unified framework for modeling, inference, learning, and
optimization,” IEEE Signal Processing Magazine, 2021.
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Approximate Bayesian Learning
Exact Bayesian learning is generally intractable (it requires computing
the posterior distribution over θ).

Approximate solutions can be obtained via variational inference (VI)
or Monte Carlo (MC) sampling3.

3
O. Simeone, Machine learning for Engineers, Cambridge University Press, 2022.
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Application to Demodulation

Short-packet transmission with I/Q imbalance4

pilots

data

pilots

4
K. Cohen, S. Park, and O. Simeone, “Learning to Learn to Demodulate with Uncertainty Quantification via Bayesian
Meta-Learning,” in Proc. WSA, 2021.

Osvaldo Simeone Bayesian Meta-Learning 12 / 36



Application to Demodulation

Frequentist and Bayesian learning yields similar accuracy levels.
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Application to Demodulation

Reliability plots: accuracy vs. confidence5

Frequentist learning yields overconfident decisions, while Bayesian
learning produces well-calibrated outputs.
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5
C. Guo, et al, “On calibration of modern neural networks,” ICML 2017.
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Extension for Robustness

Theoretically principled modifications of the free energy to account
for model misspecification and outliers6

6
M. Zecchin, S. Park, O. Simeone, M. Kountouris, and D. Gesbert, “Robust PACm : Training Ensemble Models Under
Model Misspecification and Outliers” arXiv:2203.01859, 2022.
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Sample-Efficient AI:
Meta-Learning
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Conventional Learning

Conventional machine learning may require excessive training data,
particularly in settings with time-varying conditions

Meta-learning provide tools to reduce sample complexity by
transferring knowledge from other learning tasks

inductive bias:
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Transferring Knowledge Across Tasks
There are several ways to formalize the problem of knowledge transfer
across tasks.
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Joint Learning

For reference, let us first consider joint learning as a simplified form
of multi-task learning.

Joint learning trains a shared model across K tasks, and tests the
model on any one of the K tasks.

inductive bias:
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Joint Learning

Joint learning can effectively increase the amount of data by pooling
data sets from multiple tasks.

Joint learning has two potentially critical shortcomings:
▶ The jointly trained model only works if there is a single model

parameter θ that “works well” for all tasks.
▶ There is no guarantee that the jointly trained model would be able to

adapt (even with fine-tuning) to a new task.
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Meta-Learning
Meta-learning optimizes shared hyperparameters, while enabling
adaptation of the model parameters for each task (“learning to
learn”).
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Meta-Learning

Fix a given training algorithm θtr(Dtr
k |ξ) dependent on

hyperparameters ξ (e.g., initialization).

Meta-learning addresses the aggregate training loss

L{Dk}Kk=1
(ξ) =

1

K

K∑
k=1

LDte
k
(θtr(Dtr

k |ξ)).

The resulting minimization problem
▶ only assumes common hyperparameters ξ;
▶ inherently prepares the training algorithm θtr(Dtr

k |ξ) to adapt to new
tasks.
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Application to Demodulation

Short-packet transmission with I/Q imbalance7

pilots

data

7
S. Park, H. Hang, and O. Simeone, “Learning to demodulate from few pilots via offline and online meta-learning,” IEEE
Transactions on Signal Processing, 2020.
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Application to Demodulation
Meta-learning uses pilots received in previous frames from other
devices.
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Application to Demodulation
Meta-learning allows for a much faster adaptation than joint and
conventional learning.

meta-learning
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Other Applications of Meta-Learning

Channel prediction8,9

Equalization of multi-path channels10

End-to-end design of encoder and decoder11

Channel acquisition and precoding in FDD massive MIMO12

Power control in time-varying topologies (via graph neural networks)13

Radar processing14

8
A. Kalor, O. Simeone, and P. Popovski, ”Prediction of mmWave/THz Blockages through Meta-Learning and Recurrent
Neural Networks,” IEEE Comm. Letters, 2022.

9
S. Park and O. Simeone, “Predicting Flat-Fading Channels via Meta-Learned Closed-Form Linear Filters and Equilibrium
Propagation”, arXiv:2110.00414, 2021.

10
T. Raviv, S. Park, N. Shlezinger, O. Simeone, Y. Eldar, and J. Kang, ”Meta-ViterbiNet: Online Meta-Learned Viterbi
Equalization for Non-Stationary Channels,” in Proc. ICC, 2021.

11
S. Park, O. Simeone, and J. Kang, ”End-to-End Fast Training of Communication Links Without a Channel Model via
Online Meta-Learning,” in Proc. SPAWC, 2020.

12
Y. Liu and O. Simeone, ”HyperRNN: Deep learning-aided downlink CSI acquisition via partial channel reciprocity in FDD
massive MIMO,” in Proc. IEEE SPAWC, 2021.

13
I. Nikoloska and O. Simeone, ”Fast power control adaptation via meta-learning for random edge graph neural networks,”
in Proc. IEEE SPAWC, 2021.

14
W. Jiang, A. Haimovich, M. Govoni, T. Garner, and O. Simeone, ”Fast Data-Driven Adaptation of Radard Detection via
Meta-Learning,” in Proc. Asilomar, 2021.
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Reliable and Sample-Efficient AI:
Bayesian Meta-Learning
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Integrating Bayesian Learning and Meta-Learning

Recall that, given a prior p0(θ), for each learning task k , Bayesian
learning aims at minimizing the free energy

FDk
(q(θ)) = Eθ∼q(θ)[LDk

(θ)]︸ ︷︷ ︸
average training loss

+ KL (q(θ)||p0(θ))︸ ︷︷ ︸
information-theoretic regularization

With variational inference, minimization is done over the parameters
φ of a variational distribution q(θ|φ) (e.g., Gaussian).
Hyperparameters ξ may determine

▶ the prior p0(θ|ξ) (empirical Bayes)
▶ the optimizer over φ (e.g., initialization)
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Integrating Bayesian Learning and Meta-Learning

Accordingly, we obtain a (variational) posterior distribution
qtr(θ|Dtr

k , ξ) for task k given data Dtr
k and hyperparameter vector ξ.

Given data from K tasks, meta-learning can be defined as the
minimization of the aggregate average training loss

F{Dk}Kk=1
(ξ) =

1

K

K∑
k=1

Eθ∼qtr(θ|Dtr
k ,ξ)

[LDte
k
(θ)].

This criterion can be derived (and extended) via PAC Bayes
theory15,16,17

15
S. T. Jose, O. Simeone, and G. Durisi, “Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk
Minimization,” IEEE Trans. Inf. Theory, to appear.

16
S. T. Jose and O. Simeone, “An information-theoretic analysis of the impact of task similarity on meta-learning,” in Proc.
IEEE ISIT 2021.

17
S. Jose, S. Park, and O. Simeone, “Information-Theoretic Analysis of Epistemic Uncertainty in Bayesian Meta-learning,”
in Proc. AISTATS 2022.
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Application to Demodulation
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Application to Demodulation
Symbol error rate vs. SNR (with 8 pilots)18

18
K. Cohen, et al, “Learning to Learn to Demodulate with Uncertainty Quantification via Bayesian Meta-Learning,” in Proc.
WSA, 2021.
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Application to Demodulation

Reliability plots (with 8 pilots)
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Other Applications of Bayesian Meta-Learning

Active Bayesian meta-learning19

Bayesian optimization for black-box optimization20

19
K. Cohen, S. Park, and O. Simeone, “Towards Reliable and Efficient AI for 6G: Bayesian Active Meta-Learning for Few-
Pilot Demodulation and Equalization,” arXiv:2108.00785, 2022.

20
I. Nikoloska and O. Simeone, “Bayesian Active Meta-Learning for Black-Box Optimization,” submitted.
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Conclusions
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Conclusions

Reliable AI via Bayesian learning

Efficient AI via meta-learning

Reliable and efficient AI via Bayesian meta-learning

Directions for future research:
▶ Robustness to model misspecification and outliers
▶ Formal reliability guarantees
▶ Active learning and meta-learning
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