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Motivation
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The Role of Al in 6G & Beyond

@ Al is playing an increasingly significant role in engineering.
@ As a case in point, next-generation communication systems will
leverage Al at all layers of the protocol stack.
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The Life Cycle of an Al Model

@ In many engineering problems (e.g., in digital twin platforms), Al
modules should be:

e 1) well calibrated, providing a faithful quantification of the
uncertainty of their decisions, e.g., for monitoring

e 2) sample efficient, enabling fast adaptation
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This Talk

o Reliable Al, enabling monitoring and analysis:
» Bayesian learning

o Sample-efficient Al, enabling fast adaptation:
> Meta-learning

o Reliable and sample-efficient Al:
» Bayesian meta-learning
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Reliable Al:
Bayesian Learning




Frequentist Learning vs. Bayesian Learning

e Frequentist learning (e.g., standard deep learning):

» Optimization of a single model parameter vector 6
» Decision based on a single model p(x|0)
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Frequentist Learning vs. Bayesian Learning

o Bayesian learning:

» Optimization of a distribution g(#) in the model parameter space
> Decision obtained via ensembling, i.e., via Egq(9) [P(x|0)]

q(6)
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Frequentist Learning vs. Bayesian Learning

@ Bayesian learning leverages the disagreement of models outside the
training data to quantify epistemic uncertainty.

@ Other advantages: improved generalization, active learning, online
learning, efficient distributed /federated learning?,...

R. Kassab and O. Simeone, “Federated generalized Bayesian learning via distributed Stein variational gradient descent,”
arXiv:2009.06419, 2020.
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Frequentist Learning vs. Bayesian Learning

@ Given a training set D, conventional frequentist learning minimizes
the training loss Lp(6) over 6.
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Frequentist Learning vs. Bayesian Learning

@ Given a training set D, conventional frequentist learning minimizes
the training loss Lp(6) over 6.

@ Bayesian learning minimizes the variational free energy

Fp(q(0)) = Ep~qolln()] + KL (q(9)llpo(9)) ;

average training loss information-theoretic regularization

over distribution g(6), where po(f) is a prior distribution.
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Frequentist Learning vs. Bayesian Learning

@ Given a training set D, conventional frequentist learning minimizes
the training loss Lp(6) over 6.

@ Bayesian learning minimizes the variational free energy

Fp(q(0)) = Ep~qolln()] + KL (q(9)llpo(9)) ;

average training loss ~ information-theoretic regularization

over distribution g(6), where po(f) is a prior distribution.

o Without regularization, the problem reduces to standard frequentist
learning.
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Frequentist Learning vs. Bayesian Learning

@ Given a training set D, conventional frequentist learning minimizes
the training loss Lp(6) over 6.

@ Bayesian learning minimizes the variational free energy

Fp(q(0)) = Ep~qolln()] + KL (q(9)llpo(9)) ;

average training loss ~ information-theoretic regularization

over distribution g(6), where po(f) is a prior distribution.
o Without regularization, the problem reduces to standard frequentist
learning.

@ The regularization term provides a bound on the generalization
error via PAC Bayes theory, and it underlies the free energy principle
in neuroscience.?

2 . . . .
S. T. Jose and O. Simeone, “Free energy minimization: A unified framework for modeling, inference, learning, and

optimization,” |EEE Signal Processing Magazine, 2021.
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Approximate Bayesian Learning

e Exact Bayesian learning is generally intractable (it requires computing
the posterior distribution over 6).

MC sampling
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Approximate Bayesian Learning
e Exact Bayesian learning is generally intractable (it requires computing
the posterior distribution over 6).
@ Approximate solutions can be obtained via variational inference (VI)
or Monte Carlo (MC) sampling®.

MC sampling

3 O. Simeone, Machine learning for Engineers, Cambridge University Press, 2022.
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Application to Demodulation

@ Short-packet transmission with |/Q imbalance*

DY
pilots

(((lﬂ))

K. Cohen, S. Park, and O. Simeone, “Learning to Learn to Demodulate with Uncertainty Quantification via Bayesian
Meta-Learning,” in Proc. WSA, 2021.
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Application to Demodulation

@ Frequentist and Bayesian learning yields similar accuracy levels.
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Application to Demodulation

@ Reliability plots: accuracy vs. confidence®

o Frequentist learning yields overconfident decisions, while Bayesian
learning produces well-calibrated outputs.

Frequentist: SNR=10 dB and 256 pilots Bayesian: SNR=10 dB and 256 pilots
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C. Guo, et al, “On calibration of modern neural networks,” ICML 2017.
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Extension for

Robustness

@ Theoretically principled modifications of the free energy to account
for model misspecification and outliers®
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Model Misspecification and Outliers” arXiv:2203.01859, 2022.
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M. Zecchin, S. Park, O. Simeone, M. Kountouris, and D. Gesbert, “Robust PAC™: Training Ensemble Models Under
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Sample-Efficient Al:
Meta-Learning




Conventional Learning

@ Conventional machine learning may require excessive training data,
particularly in settings with time-varying conditions

@ Meta-learning provide tools to reduce sample complexity by
transferring knowledge from other learning tasks

inductive bias:
hyperparameters §

model class H

|model parameters ¢)|

| taining | | testing |

training ., test e
data D data D
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Transferring Knowledge Across Tasks

@ There are several ways to formalize the problem of knowledge transfer
across tasks.

source task
training data

target task
training data

task 2
training data

task K
training data

Osvaldo Simeone
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transfer multi-task
learning learning
target task task 1 task 2 task K
testing testing testing testing
task 1 task 2 task 3 meta-learning| | meta-learning| . . . |meta-learning
training data) |training dataj |training datay task 1 data task 2 data task K data
continual continual | f continual meta-
learning learning learning learning
task 1 task 2 task 3 meta-test task
testing testing testing testing




Joint Learning

o For reference, let us first consider joint learning as a simplified form
of multi-task learning.

@ Joint learning trains a shared model across K tasks, and tests the
model on any one of the K tasks.

inductive bias:
hyperparameters &

| model class H

|mode| parameters 6 |
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Joint Learning

@ Joint learning can effectively increase the amount of data by pooling
data sets from multiple tasks.
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Joint Learning

@ Joint learning can effectively increase the amount of data by pooling
data sets from multiple tasks.
@ Joint learning has two potentially critical shortcomings:

» The jointly trained model only works if there is a single model
parameter 6 that “works well” for all tasks.

» There is no guarantee that the jointly trained model would be able to
adapt (even with fine-tuning) to a new task.
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Meta-Learning
@ Meta-learning optimizes shared hyperparameters, while enabling
adaptation of the model parameters for each task (“learning to
learn”).

inductive bias:
hyperparameters §

model class

>
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Imodel parameters 6, model parameters
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Meta-Learning

e Fix a given training algorithm 6'"(D}'|¢) dependent on
hyperparameters £ (e.g., initialization).

@ Meta-learning addresses the aggregate training loss

1 K
Lingt,(€) = ¢ O Loe(6"(DF16)).
k=1
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Meta-Learning

e Fix a given training algorithm 6'"(D}'|¢) dependent on
hyperparameters £ (e.g., initialization).

@ Meta-learning addresses the aggregate training loss
K
Lipy, (€)= Z pie (07 (DK19))-
k:

@ The resulting minimization problem

» only assumes common hyperparameters &;
> inherently prepares the training algorithm 6'*(DY|¢) to adapt to new
tasks.
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Application to Demodulation

@ Short-packet transmission with |/Q imbalance’
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S. Park, H. Hang, and O. Simeone, “Learning to demodulate from few pilots via offline and online meta-learning,” IEEE
Transactions on Signal Processing, 2020.

Osvaldo Simeone Bayesian Meta-Learning 23 /36



Application to Demodulation

@ Meta-learning uses pilots received in previous frames from other
devices.
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Application to Demodulation

@ Meta-learning allows for a much faster adaptation than joint and
conventional learning.
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Other Applications of Meta-Learning

o Channel prediction®?

Equalization of multi-path channels!®

End-to-end design of encoder and decoder'!

°

°

@ Channel acquisition and precoding in FDD massive MIMO'?

@ Power control in time-varying topologies (via graph neural networks)'3
°

Radar processing**

10

11

12

13

14

A. Kalor, O. Simeone, and P. Popovski, " Prediction of mmWave/THz Blockages through Meta-Learning and Recurrent
Neural Networks,” IEEE Comm. Letters, 2022.

S. Park and O. Simeone, “Predicting Flat-Fading Channels via Meta-Learned Closed-Form Linear Filters and Equilibrium
Propagation”, arXiv:2110.00414, 2021.

T. Raviv, S. Park, N. Shlezinger, O. Simeone, Y. Eldar, and J. Kang, "Meta-ViterbiNet: Online Meta-Learned Viterbi
Equalization for Non-Stationary Channels,” in Proc. ICC, 2021.

S. Park, O. Simeone, and J. Kang, "End-to-End Fast Training of Communication Links Without a Channel Model via
Online Meta-Learning,” in Proc. SPAWC, 2020.

Y. Liu and O. Simeone, "HyperRNN: Deep learning-aided downlink CSI acquisition via partial channel reciprocity in FDD
massive MIMO,” in Proc. IEEE SPAWC, 2021.

I. Nikoloska and O. Simeone, "Fast power control adaptation via meta-learning for random edge graph neural networks,”
in Proc. IEEE SPAWC, 2021.

W. Jiang, A. Haimovich, M. Govoni, T. Garner, and O. Simeone, " Fast Data-Driven Adaptation of Radard Detection via
Meta-Learning,” in Proc. Asilomar, 2021.
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Reliable and Sample-Efficient Al:
Bayesian Meta-Learning




Integrating Bayesian Learning and Meta-Learning

@ Recall that, given a prior pg(6), for each learning task k, Bayesian
learning aims at minimizing the free energy

Fp,(q(9)) = Eoq(o)[Lp, (0)] + KL (q(0)[1po(9))

average training loss ~ information-theoretic regularization

@ With variational inference, minimization is done over the parameters
¢ of a variational distribution q(0|y) (e.g., Gaussian).

Osvaldo Simeone Bayesian Meta-Learning 28 / 36



Integrating Bayesian Learning and Meta-Learning

@ Recall that, given a prior pg(6), for each learning task k, Bayesian
learning aims at minimizing the free energy

Fp,(q(9)) = Eoq(o)[Lp, (0)] + KL (q(0)[1po(9))

average training loss ~ information-theoretic regularization

@ With variational inference, minimization is done over the parameters
¢ of a variational distribution q(0|y) (e.g., Gaussian).
@ Hyperparameters £ may determine

> the prior po(0|€) (empirical Bayes)
» the optimizer over ¢ (e.g., initialization)
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Integrating Bayesian Learning and Meta-Learning

@ Accordingly, we obtain a (variational) posterior distribution
q" (0| DY, €) for task k given data DY and hyperparameter vector &.

@ Given data from K tasks, meta-learning can be defined as the
minimization of the aggregate average training loss

K
1
Fioye (8 = % > Eoegroiy.e)llos(0)].
k=1
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Integrating Bayesian Learning and Meta-Learning

@ Accordingly, we obtain a (variational) posterior distribution
q" (0| DY, €) for task k given data DY and hyperparameter vector &.

@ Given data from K tasks, meta-learning can be defined as the
minimization of the aggregate average training loss

K
1
Fioye (8 = % > Eoegromy.glLop(0)].
k=1

@ This criterion can be derived (and extended) via PAC Bayes

theory15:16,17

15 S. T. Jose, O. Simeone, and G. Durisi, “Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk
Minimization,” IEEE Trans. Inf. Theory, to appear.

16 S. T. Jose and O. Simeone, “An information-theoretic analysis of the impact of task similarity on meta-learning,” in Proc.
IEEE ISIT 2021.

17

S. Jose, S. Park, and O. Simeone, “Information-Theoretic Analysis of Epistemic Uncertainty in Bayesian Meta-learning,”
in Proc. AISTATS 2022.
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Application to Demodulation
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Application to Demodulation

@ Symbol error rate vs. SNR (with 8 pilots)®
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K. Cohen, et al, “Learning to Learn to Demodulate with Uncertainty Quantification via Bayesian Meta-Learning,” in Proc.

WSA, 2021.
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Application to Demodulation

o Reliability plots (with 8 pilots)

Frequentist meta-learning Bayesian meta-learning
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Other Applications of Bayesian Meta-Learning

o Active Bayesian meta-learning!®

@ Bayesian optimization for black-box optimization?®

9 K. Cohen, S. Park, and O. Simeone, “Towards Reliable and Efficient Al for 6G: Bayesian Active Meta-Learning for Few-
Pilot Demodulation and Equalization,” arXiv:2108.00785, 2022.
I. Nikoloska and O. Simeone, “Bayesian Active Meta-Learning for Black-Box Optimization,” submitted.
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Conclusions
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Conclusions

Reliable Al via Bayesian learning
Efficient Al via meta-learning

Reliable and efficient Al via Bayesian meta-learning

Directions for future research:

» Robustness to model misspecification and outliers
» Formal reliability guarantees
» Active learning and meta-learning
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