Towards Reliable and Efficient AI for Communications via Bayesian Meta-Learning

Osvaldo Simeone Joint work with Kfir Cohen, Sangwoo Park, and Shlomo Shamai (Shitz)

King's College London

MLCOM 2022, 24/3/2022

Motivation

The Role of AI in 6G & Beyond

- Al is playing an increasingly significant role in engineering.
- As a case in point, next-generation communication systems will leverage AI at all layers of the protocol stack.

[Bonati et al '21]

The Life Cycle of an Al Model

- In many engineering problems (e.g., in digital twin platforms), Al modules should be:
- 1) well calibrated, providing a faithful quantification of the uncertainty of their decisions, e.g., for monitoring
- 2) sample efficient, enabling fast adaptation

This Talk

- Reliable AI, enabling monitoring and analysis:
 - Bayesian learning
- Sample-efficient AI, enabling fast adaptation:
 - Meta-learning
- Reliable and sample-efficient Al:
 - Bayesian meta-learning

Reliable AI: Bayesian Learning

- Frequentist learning (e.g., standard deep learning):
 - Optimization of a single model parameter vector θ
 - Decision based on a single model $p(x|\theta)$

• Bayesian learning:

- Optimization of a distribution $q(\theta)$ in the model parameter space
- ▶ Decision obtained via ensembling, i.e., via $E_{\theta \sim q(\theta)}[p(x|\theta)]$

- Bayesian learning leverages the disagreement of models outside the training data to quantify epistemic uncertainty.
- Other advantages: improved generalization, active learning, online learning, efficient distributed/federated learning¹,...

1

R. Kassab and O. Simeone, "Federated generalized Bayesian learning via distributed Stein variational gradient descent," arXiv:2009.06419, 2020.

- Given a training set D, conventional frequentist learning minimizes the training loss $L_{D}(\theta)$ over θ .
- Bayesian learning minimizes the variational free energy

$$F_{\mathcal{D}}(q(\theta)) = \underbrace{E_{\theta \sim q(\theta)}[L_{\mathcal{D}}(\theta)]}_{\text{upper product training loss}} + \underbrace{\mathsf{KL}(q(\theta)||p_0(\theta))}_{\text{information-theoretic regularization}},$$

over distribution $q(\theta)$, where $p_0(\theta)$ is a prior distribution.

- Without regularization, the problem reduces to standard frequentist learning.
- The regularization term provides a bound on the **generalization error** via PAC Bayes theory, and it underlies the free energy principle in neuroscience.²

²

S. T. Jose and O. Simeone, "Free energy minimization: A unified framework for modeling, inference, learning, and optimization," IEEE Signal Processing Magazine, 2021.

- Given a training set \mathcal{D} , conventional frequentist learning minimizes the training loss $\mathcal{L}_{\mathcal{D}}(\theta)$ over θ .
- Bayesian learning minimizes the variational free energy

$$F_{\mathcal{D}}(q(\theta)) = \underbrace{\mathrm{E}_{\theta \sim q(\theta)}[L_{\mathcal{D}}(\theta)]}_{\text{average training loss}} + \underbrace{\mathrm{KL}(q(\theta)||p_0(\theta))}_{\text{information-theoretic regularization}},$$

over distribution $q(\theta)$, where $p_0(\theta)$ is a prior distribution.

- Without regularization, the problem reduces to standard frequentist learning.
- The regularization term provides a bound on the **generalization error** via PAC Bayes theory, and it underlies the free energy principle in neuroscience.²

²

S. T. Jose and O. Simeone, "Free energy minimization: A unified framework for modeling, inference, learning, and optimization," IEEE Signal Processing Magazine, 2021.

- Given a training set \mathcal{D} , conventional frequentist learning minimizes the training loss $\mathcal{L}_{\mathcal{D}}(\theta)$ over θ .
- Bayesian learning minimizes the variational free energy

$$F_{\mathcal{D}}(q(\theta)) = \underbrace{\mathrm{E}_{\theta \sim q(\theta)}[L_{\mathcal{D}}(\theta)]}_{\text{average training loss}} + \underbrace{\mathsf{KL}\left(q(\theta)||p_0(\theta)\right)}_{\text{information-theoretic regularization}},$$

over distribution $q(\theta)$, where $p_0(\theta)$ is a prior distribution.

- Without regularization, the problem reduces to standard frequentist learning.
- The regularization term provides a bound on the **generalization error** via PAC Bayes theory, and it underlies the free energy principle in neuroscience.²

²

T. Jose and O. Simeone, "Free energy minimization: A unified framework for modeling, inference, learning, and optimization," IEEE Signal Processing Magazine, 2021.

- Given a training set \mathcal{D} , conventional frequentist learning minimizes the training loss $\mathcal{L}_{\mathcal{D}}(\theta)$ over θ .
- Bayesian learning minimizes the variational free energy

$$F_{\mathcal{D}}(q(\theta)) = \underbrace{\mathrm{E}_{\theta \sim q(\theta)}[L_{\mathcal{D}}(\theta)]}_{\text{average training loss}} + \underbrace{\mathsf{KL}\left(q(\theta)||p_0(\theta)\right)}_{\text{information-theoretic regularization}},$$

over distribution $q(\theta)$, where $p_0(\theta)$ is a prior distribution.

- Without regularization, the problem reduces to standard frequentist learning.
- The regularization term provides a bound on the **generalization error** via PAC Bayes theory, and it underlies the free energy principle in neuroscience.²

2

S. T. Jose and O. Simeone, "Free energy minimization: A unified framework for modeling, inference, learning, and optimization," IEEE Signal Processing Magazine, 2021.

Approximate Bayesian Learning

- Exact Bayesian learning is generally intractable (it requires computing the posterior distribution over θ).
- Approximate solutions can be obtained via variational inference (VI) or Monte Carlo (MC) sampling³.

O. Simeone, Machine learning for Engineers, Cambridge University Press, 2022

Approximate Bayesian Learning

- Exact Bayesian learning is generally intractable (it requires computing the posterior distribution over θ).
- Approximate solutions can be obtained via variational inference (VI) or Monte Carlo (MC) sampling³.

O. Simeone, Machine learning for Engineers, Cambridge University Press, 2022.

3

• Short-packet transmission with I/Q imbalance⁴

4

K. Cohen, S. Park, and O. Simeone, "Learning to Learn to Demodulate with Uncertainty Quantification via Bayesian Meta-Learning," in Proc. WSA, 2021.

• Frequentist and Bayesian learning yields similar accuracy levels.

- Reliability plots: accuracy vs. confidence⁵
- Frequentist learning yields **overconfident** decisions, while Bayesian learning produces **well-calibrated** outputs.

5

C. Guo, et al, "On calibration of modern neural networks," ICML 2017.

Extension for Robustness

• Theoretically principled modifications of the free energy to account for model misspecification and outliers⁶

⁶

M. Zecchin, S. Park, O. Simeone, M. Kountouris, and D. Gesbert, "Robust PAC^m : Training Ensemble Models Under Model Misspecification and Outliers" arXiv:2203.01859, 2022.

Sample-Efficient AI: Meta-Learning

Conventional Learning

- Conventional machine learning may require excessive training data, particularly in settings with time-varying conditions
- Meta-learning provide tools to reduce sample complexity by transferring knowledge from other learning tasks

Transferring Knowledge Across Tasks

 There are several ways to formalize the problem of knowledge transfer across tasks.

Osvaldo Simeone

Joint Learning

- For reference, let us first consider **joint learning** as a simplified form of multi-task learning.
- Joint learning trains a shared model across K tasks, and tests the model on any one of the K tasks.

Joint Learning

- Joint learning can effectively increase the amount of data by pooling data sets from multiple tasks.
- Joint learning has two potentially critical shortcomings:
 - The jointly trained model only works if there is a single model parameter θ that "works well" for all tasks.
 - There is no guarantee that the jointly trained model would be able to adapt (even with fine-tuning) to a new task.

Joint Learning

- Joint learning can effectively increase the amount of data by pooling data sets from multiple tasks.
- Joint learning has two potentially critical shortcomings:
 - The jointly trained model only works if there is a single model parameter θ that "works well" for all tasks.
 - There is no guarantee that the jointly trained model would be able to adapt (even with fine-tuning) to a new task.

Meta-Learning

 Meta-learning optimizes shared hyperparameters, while enabling adaptation of the model parameters for each task ("learning to learn").

Meta-Learning

- Fix a given training algorithm θ^{tr}(D^{tr}_k|ξ) dependent on hyperparameters ξ (e.g., initialization).
- Meta-learning addresses the aggregate training loss

$$\mathcal{L}_{\{\mathcal{D}_k\}_{k=1}^{K}}(\xi) = \frac{1}{K} \sum_{k=1}^{K} L_{\mathcal{D}_k^{\text{te}}}(\theta^{\text{tr}}(\mathcal{D}_k^{\text{tr}}|\xi)).$$

- The resulting minimization problem
 - only assumes **common hyperparameters** ξ ;
 - ▶ inherently prepares the training algorithm θ^{tr}(D^{tr}_k|ξ) to adapt to new tasks.

Meta-Learning

- Fix a given training algorithm θ^{tr}(D^{tr}_k|ξ) dependent on hyperparameters ξ (e.g., initialization).
- Meta-learning addresses the aggregate training loss

$$\mathcal{L}_{\{\mathcal{D}_k\}_{k=1}^{K}}(\xi) = \frac{1}{K} \sum_{k=1}^{K} L_{\mathcal{D}_k^{\text{te}}}(\theta^{\text{tr}}(\mathcal{D}_k^{\text{tr}}|\xi)).$$

- The resulting minimization problem
 - only assumes common hyperparameters ξ;
 - Inherently prepares the training algorithm θ^{tr}(D^{tr}_k|ξ) to adapt to new tasks.

• Short-packet transmission with I/Q imbalance⁷

7

S. Park, H. Hang, and O. Simeone, "Learning to demodulate from few pilots via offline and online meta-learning," IEEE Transactions on Signal Processing, 2020.

• Meta-learning uses pilots received in previous frames from other devices.

Osvaldo Simeone

Bayesian Meta-Learning

24 / 36

 Meta-learning allows for a much faster adaptation than joint and conventional learning.

Other Applications of Meta-Learning

- Channel prediction^{8,9}
- Equalization of multi-path channels¹⁰
- End-to-end design of encoder and decoder¹¹
- Channel acquisition and precoding in FDD massive MIMO¹²
- Power control in time-varying topologies (via graph neural networks)¹³
- Radar processing¹⁴

⁸ A. Kalor, O. Simeone, and P. Popovski, "Prediction of mmWave/THz Blockages through Meta-Learning and Recurrent Neural Networks," IEEE Comm. Letters, 2022.

S. Park and O. Simeone, "Predicting Flat-Fading Channels via Meta-Learned Closed-Form Linear Filters and Equilibrium Propagation", arXiv:2110.00414, 2021.

¹⁰ T. Raviv, S. Park, N. Shlezinger, O. Simeone, Y. Eldar, and J. Kang, "Meta-ViterbiNet: Online Meta-Learned Viterbi Equalization for Non-Stationary Channels," in Proc. ICC, 2021.

S. Park, O. Simeone, and J. Kang, "End-to-End Fast Training of Communication Links Without a Channel Model via Online Meta-Learning," in Proc. SPAWC, 2020.

¹² Y. Liu and O. Simeone, "HyperRNN: Deep learning-aided downlink CSI acquisition via partial channel reciprocity in FDD massive MIMO," in Proc. IEEE SPAWC, 2021.

¹³ I. Nikoloska and O. Simeone, "Fast power control adaptation via meta-learning for random edge graph neural networks," in Proc. IEEE SPAWC, 2021.

¹⁴ W. Jiang, A. Haimovich, M. Govoni, T. Garner, and O. Simeone, "Fast Data-Driven Adaptation of Radard Detection via Meta-Learning," in Proc. Asilomar, 2021.

Reliable and Sample-Efficient AI: Bayesian Meta-Learning

 Recall that, given a prior p₀(θ), for each learning task k, Bayesian learning aims at minimizing the free energy

$$F_{\mathcal{D}_k}(q(\theta)) = \underbrace{\mathrm{E}_{\theta \sim q(\theta)}[L_{\mathcal{D}_k}(\theta)]}_{\text{average training loss}} + \underbrace{\mathrm{KL}\left(q(\theta)||p_0(\theta)\right)}_{\text{information-theoretic regularization}}$$

- With variational inference, minimization is done over the parameters φ of a variational distribution $q(\theta|\varphi)$ (e.g., Gaussian).
- Hyperparameters ξ may determine
 - the prior $p_0(\theta|\xi)$ (empirical Bayes)
 - the optimizer over φ (e.g., initialization)

 Recall that, given a prior p₀(θ), for each learning task k, Bayesian learning aims at minimizing the free energy

$$F_{\mathcal{D}_k}(q(\theta)) = \underbrace{\mathrm{E}_{\theta \sim q(\theta)}[L_{\mathcal{D}_k}(\theta)]}_{\text{average training loss}} + \underbrace{\mathrm{KL}\left(q(\theta)||p_0(\theta)\right)}_{\text{information-theoretic regularization}}$$

- With variational inference, minimization is done over the parameters φ of a variational distribution $q(\theta|\varphi)$ (e.g., Gaussian).
- Hyperparameters ξ may determine
 - the prior $p_0(\theta|\xi)$ (empirical Bayes)
 - the optimizer over φ (e.g., initialization)

- Accordingly, we obtain a (variational) posterior distribution $q^{tr}(\theta | \mathcal{D}_k^{tr}, \xi)$ for task k given data \mathcal{D}_k^{tr} and hyperparameter vector ξ .
- Given data from K tasks, meta-learning can be defined as the minimization of the aggregate average training loss

$$\mathcal{F}_{\{\mathcal{D}_k\}_{k=1}^{K}}(\xi) = \frac{1}{K} \sum_{k=1}^{K} \mathrm{E}_{\theta \sim q^{\mathrm{tr}}(\theta \mid \mathcal{D}_k^{\mathrm{tr}}, \xi)}[L_{\mathcal{D}_k^{\mathrm{te}}}(\theta)].$$

 This criterion can be derived (and extended) via PAC Bayes theory^{15,16,17}

¹⁵

S. T. Jose, O. Simeone, and G. Durisi, "Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk Minimization," IEEE Trans. Inf. Theory, to appear.

S. T. Jose and O. Simeone, "An information-theoretic analysis of the impact of task similarity on meta-learning," in Proc. IEEE ISIT 2021.

S. Jose, S. Park, and O. Simeone, "Information-Theoretic Analysis of Epistemic Uncertainty in Bayesian Meta-learning," in Proc. AISTATS 2022.

- Accordingly, we obtain a (variational) posterior distribution $q^{tr}(\theta | \mathcal{D}_k^{tr}, \xi)$ for task k given data \mathcal{D}_k^{tr} and hyperparameter vector ξ .
- Given data from K tasks, meta-learning can be defined as the minimization of the aggregate average training loss

$$\mathcal{F}_{\{\mathcal{D}_k\}_{k=1}^{K}}(\xi) = \frac{1}{K} \sum_{k=1}^{K} \mathrm{E}_{\theta \sim q^{\mathrm{tr}}(\theta \mid \mathcal{D}_k^{\mathrm{tr}}, \xi)}[\mathcal{L}_{\mathcal{D}_k^{\mathrm{te}}}(\theta)].$$

 This criterion can be derived (and extended) via PAC Bayes theory^{15,16,17}

¹⁵

S. T. Jose, O. Simeone, and G. Durisi, "Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk Minimization," IEEE Trans. Inf. Theory, to appear.

¹⁶ S. T. Jose and O. Simeone, "An information-theoretic analysis of the impact of task similarity on meta-learning," in Proc. IEEE ISIT 2021.

¹⁷ S. Jose, S. Park, and O. Simeone, "Information-Theoretic Analysis of Epistemic Uncertainty in Bayesian Meta-learning," in Proc. AISTATS 2022.

• Symbol error rate vs. SNR (with 8 pilots)¹⁸

18

K. Cohen, et al, "Learning to Learn to Demodulate with Uncertainty Quantification via Bayesian Meta-Learning," in Proc. WSA, 2021.

• Reliability plots (with 8 pilots)

Other Applications of Bayesian Meta-Learning

- Active Bayesian meta-learning¹⁹
- Bayesian optimization for black-box optimization²⁰

¹⁹

¹⁹ K. Cohen, S. Park, and O. Simeone, "Towards Reliable and Efficient AI for 6G: Bayesian Active Meta-Learning for Few-Pilot Demodulation and Equalization," arXiv:2108.00785, 2022.

I. Nikoloska and O. Simeone, "Bayesian Active Meta-Learning for Black-Box Optimization," submitted.

Conclusions

Conclusions

- Reliable AI via Bayesian learning
- Efficient AI via meta-learning
- Reliable and efficient AI via Bayesian meta-learning
- Directions for future research:
 - Robustness to model misspecification and outliers
 - Formal reliability guarantees
 - Active learning and meta-learning

Acknowledgements

This work has been supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 725731)