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Abstract- We propose the problem of coordinating ac-
tion over many nodes by distributed communication. The
idea is to switch the emphasis from exchanging information
to setting up cooperative action. Examples are given. We
solve most 3-node problems but one remains open.
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I. INTRODUCTION

We start with two questions based on Fig. 1:
Alice, Bob and Charlie play a game with cards num-

bered 1,2, and 3. Alice receives a random card. The goal
is for Bob and Charlie to choose cards that are different
from Alice's card and different from each other. In other
words, we want the cards held by Alice, Bob and Charlie
to represent a fair deal, with Alice's card specified at
random by nature. This is an example of distributed task
assignment.
a) How much information must Alice transmit to Bob,

and Bob transmit to Charlie, to achieve the goal if
there is no direct communication between Alice and
Charlie?

Alice =>Bob= Charlie

b) How much information must Alice transmit to Bob
and transmit to Charlie to achieve the goal if there is
no direct communication between Bob and Charlie?

Bob
Alice

vm 'Charlie

Obviously, if Alice transmits her card number to
Bob and Charlie, the players can achieve the goal. For
instance, Bob will choose the larger number and Charlie
will choose the least number from the pair of numbers
that are possible. This requires log 3 bits to be sent to
each. However, can they do better? If we assume that
the players have time synchronization, and a delay in
picking the card is allowed, can we derive information
theoretic bounds?

Fig. 1. Coordination capacity: What are the rates (Ri, R2) that
can achieve the joint distribution po (x)p(y, zI x), when the actions at
node X are specified by nature and distributed according to p(x n)
W1 Po (xi).

Those two questions are special cases of a more
general question: How much information {Rij }II,ij =
1, 2, ... , m, must be conveyed between m nodes of
a network to achieve a specified joint distribution
p(Ax, X2 ... XTm) at the nodes, given that the values at
a certain subset of the nodes is specified? Equivalently,
we ask for the set of all distributions achievable with
communication rate {Rij }, subject to specified random
values at a subset of the nodes.

Applications might include task assignment (no two
agents performing the same job), game theory (several
agents taking joint action according to an optimal dis-
tribution [1]), communication (coherent relaying infor-
mation), control (in a distributed environment), social
planning (how do we achieve a desirable cooperation),
and quantum information (quantum coding of mixed
states [2], [3]).

A. Two nodes, no communication

Before developing the mathematical formulation of
the problem let us discuss the case where we have two
nodes and suppose that no communication between these
nodes is allowed. However, the nodes can agree ahead
of time how they will behave, i.e., common randomness
is allowed.
We assume throughout that common randomness W

is available to all nodes. Here W might be obtained
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The random variable W E W/V plays the role of common
randomness available at the encoder and decoder, where
W is independent of X'.

Fig. 2. No communication. Any distribution p(X, y) can be achieved
without communication between nodes.

from observation of some celestial event, or merely
a prior agreement among the nodes to use a given
randomly selected code. All that is necessary is that W
be sufficiently rich (W uniform on the unit interval

will do) and that W be independent of the nodes that
are specified. A quantification of the amount of common
randomness needed is given by Cuff [4]. The common

randomness W plays much the same role as w E Q in the
standard probability space set up (Q, B, P) with random
variables X (w), Y (w), ....

What is the set of all joint distributions p(x, y) that can
be achieved at these isolated nodes? The answer turns
out to be any distribution whatsoever. This would seem

to be the end of the problem.
But the problem changes dramatically when one of the

nodes is specified to take on a certain value. Suppose
that node X takes on a value x drawn according to
the marginal distribution po(x). Now what distributions
p(x, y) are achievable? The answer, which is given by
Theorem 1 (when R = 0), turns out to be only those
distributions of the form p(x, y) = po(x)p(y). This
makes sense. There is no communication between X
and Y, so Y must be independent of X. Apparently,
nature's insistence on a certain value for X restricts the
set of joint distributions that can be achieved.

II. PROBLEM DEFINITION AND RESULTS.

A. Two nodes with communication

Here we assume that we have two nodes, where one

node, say the source, produces a sequence of actions
X1, X2, Xn i.i.d. p(x), x E X, and the other node,

say the agent, receives information from the source and
can pick its own sequence of actions YI, Y2, ..., Yn where
yi E Y. We assume throughout that the number of
different actions IXI and IYI are finite. The setting of
distributed action with a single agent is illustrated in
Fig. 3.

Definition 1: A (2nR, n) distributed action code con-

sists of an encoding function,

fn: Xn XVV {1 2 ...12nR} (1)

and a decoding function,

gn:{1, 2, 2nR} X W Y n. (2)

xnfn(Xn,W) Yn =~j(fn(Xn, W), W)
0 Encoder - Decoder 0-

]7l Po (xix) E 2nR PO()p(yI x)

Fig. 3. Distributed action in the case of one source of actions X'
distributed according to p(X') = 1I=, PO(xi) and one agent Yn.
The desired distribution po(x)p(ylx) is achievable if R > I(X; Y).

Definition 2: The maximum variation v, (p(x, y)) of
a (2nR, n) code (fn, gn) from the desired distribution
p(x, y) = po(x)p(y x) is defined as

v,2(p(x, y))- max E{ PX,y (X,y) -p(X,y)Y}Vn(X
xcX,yYG

(3)
where Pxn,yn (X, y) is the joint type, i.e. Pxn,yn (X, y)

n I 1 ((Xi, Yi) = (x, y)) where 1((Xi, Yi) = (x, y))
is the indicator function. The expectation is with re-

spect to the probability distribution on (Xn, W). The
sequence yn is determined by the the relation yn
gn (fn (xn W), W).

Definition 3: We say R is an achievable rate for a

distribution p(x, y) = po(x)p(y x), if there exists a se-

quence of (2nR, n) distributed action codes (ffn, gn) with
limn,o vn(p(X, y)) = 0. Similarly, we say p(x, y) =

po(x)p(y x) is an achievable distribution with rate R,
if there exists a sequence of (2nR, n) distributed action
codes (ffn, gn) with limnoc vn (p(,Xy)) .=

Definition 4: The distributed action rate for a distri-
bution p(x, y) = po(x)p(y x), is the infimum over all
achievable rates for p(x, y).

Definition 5: The cooperation region of rate R is the
set of all distributions, p(x, y) = po(x)p(y x) achievable
with this rate.
Based on a timesharing argument we show in [5] that
the cooperation region is convex.

The following theorem relates the operational defini-
tions of the cooperation region and the distributed action
rate to single letter information measures.

Theorem 1: The distributed action rate R for an i.i.d
source of actions X distributed according to po(x), and
a desired distribution po(x)p(y x), as shown in Fig 3, is
given by

R = I(X; Y), (4)

where the joint distribution of the random variables
(X, Y) is given by p(x, y) = po(x)p(y x).

Proof of Theorem 1: For achieving a joint type

Pxrl,yrl (x, y), common randomness W is not necessary
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and the proof of the achievablility follows immediately
from the proof of achievability in rate distortion theory
[6, Sec. 10.6].

(Converse) A (2RR, n) code (fn, gn) and an i.i.d
source Xn distributed according to po (x) induces a
joint distribution p(xn, yn) on (Xn, yn) where yn =

gn (ffn (Xn W), W). We denote marginal probability at

time i asp~(n) (X, y) = Pr(X, = ),y
The proof involves two steps. Using the sequence of

inequalities in the converse for rate distortion [6, (10.58)-
(10.66)] we obtain

n

nR> -(xi;Yi) (5)

In the second step we prove that the 11-distance
between the average of the marginal probabilities,

.n 1 p(n) (SC: y), and p(x, y) goes to zero, i.e.
n

nim > 1 (n) (x Y) _ p(x y) = 0. (6)
x,yEXxY i=1

Based on this property, the convexity of I(X;Y) in
p(y x), and the continuity of I(X; Y) in p(x, y), it
follows that an achievable rate must satisfy

nR > I(X; Y). (7)

B. Chain of two agents

Here we consider the case where three nodes are
connected in a chain, where the first node in the chain is
a source of actions and all the other nodes are agents who
choose their actions according to the communication
they receive from the previous node. The network for
a chain of three nodes is illustrated in Fig. 4.

Xn R1 yn R2 Zn

Po(x)p(Y, z X)
Fig. 4. Distributed action in a chain.

Definition 6: A ((2nRl, 2nR2) n) code for distributed
action in a chain consists of two encoders,

f: Xn x W 1, 2,..., 2nR (8)

f2 : 1, 2, ...,......2nRl X W 1, 2,., 2nR2 .......(9)
and two decoders

gl:1, 2, ... , 2nR, X W > yn, . .....(10)
92:1, 2, ... , 2nR2 X W > Zn . ..(I11)

where W is common randomness available at all nodes.
Let

Vn(p(x,y,z)) - maxE{ Px,,,y,,,zrl(x,y,z)
x,y,Z

-p(X, Y, z) }

denote the maximum variation from the desired distrib-
ution po(x)p(y, z x) with the ((2nRl, 2nRi), n) code.

Theorem 2: For distributed action in a chain with an
i.i.d source distributed po0(x) and a desired distribution
po(x)p(y, z x) the achievable region is given by

R1 > I(X;Y,Z),

R2 > I(X; Z). (12)
Proof: If we consider R1 to be the rate transmitted

from the source X to agents (Y, Z) then, according to
Theorem 1, R1 must be larger than I(X; Y, Z) in order to
achieve the desired distribution Po(x)p(y, zsx). Similarly,
R2 must be larger than I(X; Z) in order to achieve the
desired distribution po(x)P(z X).
The idea of the proof for achievability is first to

cover Xn by 2nR2 codewords of Zn(Xn) such that
(Xn, Zn(Xn)) is jointly typical with high probabil-
ity and then, given that node Y knows the code-
word Zn(Xn) we need 2n(R1-R2) additional codewords
where R1 -R2 > I(X; Y Z) in order to insure that
(Xn, yn, Zn) is jointly typical with high probability. U
Example 1: Consider question (a) from the introduc-

tion. The joint distribution of the actions of Alice,
Bob and Charlie (X,Y, Z) is the uniform distribution
over all the six permutations of {1,2,3} where X is
specified by nature. Hence by Theorem 2 the minimum
communication rate for achieving the goal is for Alice
to transmit to Bob I(X; Y, Z) = H(X)- H(X Y, Z) =

log 3-0 = log 3 bits, and for Bob to transmit to Charlie
I(X; Z) = H(X)- H(X Z) = log 3 -log 2 = log 3

bits. So (RI, R2)= (log(3), log(3)) is achievable.

C. Three nodes, one rate

Consider the case where X communicates with Y at
rate R as shown in Fig. 5 and there is no communication
to Z. It makes sense that the set of achievable joint
distributions would be po(x)p(y x)p(z) over all p(y x)
such that I(X; Y) < R. It is true that this distribution
is achievable. However a larger region is achievable.

Corollary 3: The achievable region for the distributed
action problem in Fig. 5 is the set of all p(x, y, z)
po(x)p(z)p(y z, x) such that

I(X; YIZ) < R. (13)
This result can be derived directly from Theorem 2
where R2 = 0, i.e. I(X; Z) = 0 and R1 = I(X; Y, Z)
I(X;Y Z).
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yn

R
Xn p(X, y, z) po(x)p(z)p(y Ix, z)
X I(X; YIZ) < R.

Z7n

Fig. 5. Three nodes, one link: Here po(x) is given and X
1ln Po(xi) is specified at node X. Node X communicates at

rate R to node Y. Node Z receives no information. A distribu-
tion p(x,y,z) = po(x)p(z)p(yjx,z) is achievable if and only if
I(X; Y Z) < R.

and two decoders

g, : 1, 2, ..., 2nR, X W yn, (17)

92 : 1, 2,..., 2R2 X W Zn (18)
Theorem 5: A distribution po(x)p(y, z x) is achiev-

able in the broadcast setting (Fig. 7) with rate (RI, R2)
if the inequalities

R1 > I(X;U,Y),

R2 > I(X; U, Z)'i (19)

D. Multi-agent chain

Theorem 2 can be extended to a chain with N + 1
nodes (see Fig. 6) where only the first node X is a
source of action and the rest of the nodes (Y1, ...,YN)
choose actions according to the communication between
the nodes.

Corollary 4: The achievable region for the distributed
action problem given in Fig. 6 with a desired distribution
P(yl,Y2, ...YN x)po(x) and an i.i.d source - po(x) is
given by

Ri > I(X; Yi,I,. YN),I i E 1,1...,IN, (14)
where the distribution of the random variable
(X, Y, ..., YN) is given by po (X)P(Yl, Y2,, YN X)
X R, 1Y. R2 24 R3 ,..YN-1N .YN

Fig. 6. Distributed action in a chain with N + 1 nodes
E. Broadcast distributed action

This next setup generalizes problem b) from the
introduction. Here we consider a distributed action prob-
lem where the source X communicates separately with
agents Y, Z, and the agents do not communicate with
each other. The setting is illustrated in Fig. 7 and it is
related to the multiple description problem [7] [8].

yn

RxI
X)

PO (
Z

Po(x)p(Y, z X)

Fig. 7. Broadcast distributed action

Definition 7: A ((2,Rl,, 2R2) n) code for broadcast
distributed action consists of two encoders,

(15)fl: Xnx W1 1, 2 12nR

f2 : Xn X W 1, 2,..2nR2

are satisfied for some auxiliary random variable U
that forms the Markov chain Y- (X, U) -Z, i.e.
p(u, x, y, z) = po(x)p(u x)p(y u, x)p(z u, x), and sat-
isfies E.p(u, x, y, z) = Po(x)P(Y z x)
The idea of the proof is the following. First cover

Xn by 2nr(I(X;U)+c) codewords from Un and send
the appropriate codeword to both nodes, Y and Z.
Given that node Y knows the codeword Un(Xn)
one needs 2n(I¾(X;YIU)+,) codewords for any code-
word of Un(Xn) to ensure that with high probability
(Xn Un2(Xn), yn2(Un2, Xn)) is jointly typical. Finally,
in order to cover both Xn, yn by Zn given that all nodes
know Un(Xn) one needs 2n(I(X,Y;Z U)+c) codewords of
Zn for any Un(Xn), and because of the Markov relation
Y -(X, U) -Z we have I(X, Y; Z U) = I(X; Z U).

For some specific cases (Examples 2 and 3) we can
prove optimality by using a simple lower bound that
follows from the converse for two nodes in Section II-A.
Example 2: Markov chain X- Y -Z. The random

variables X, Y, Z form the Markov chain X- Y -Z.
We choose the auxiliary random variable U = Z, and
therefore we have the Markov chain Z -(Z, X) -Y.
According to Theorem 5 if R1, R2 satisfy

R1 >

R2 >

I(X; U,Y)
I(X; U,Z)

I(X; Z, Y) = I(X; Y),
I(X; Z) (20)

then the distribution p(x,y,z) = Po(x)p(yx)p(Zx) is
achievable . According to the converse for two nodes,
Theorem 1, if there is a code at rate (RI, R2) that
achieves a distributed action distribution p(x,y,z)
po(x)p(y x)p(z x) then (20) must be satisfied.

Example 3: Markov chain Y- X -Z: The random
variables X, Y, Z form a Markov chain Y-X -Z. For
this case U can be chosen to be null and the region given
in (19) becomes

R1 > I(X;Y),
R2 > I(X; Z).

(16) Similar to the previous case this region is optimal.
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Example 4: Question (b) from the introduction: Alice
Bob and Charlie's actions X, Y, Z are distributed uni-
formly over the six possible permutations of {1, 2, 3}.
Consider the deterministic scheme in Fig. 8. Node Y
takes only the actions 1, 2 and node Z takes only the
action 2, 3. For example, in Fig. 8 if X = 1 then Y = 2
and Z = 3. This scheme is asymmetric, but by using
six different schemes of this form and using the random
variable U for timesharing between them we can achieve
a uniform distribution over all six permutations. It is
sufficient that

R1 > I(X; U, Y) = I(X; Y U)

H(Y U) -H(Y U, X) = H( ) -0 = 0.918,3
and similarly, R2 > H( 1).

x y

1
2 2
3 3

x z

1 1

2 2

3 3

Fig. 8. The dependency of random variables X, Y, Z that achieves
R1 = R2= H(1) in Example 4.

It is possible to extend the cooperation region pre-
sented in Theorem 5 by introducing an additional auxil-
iary random variable V such that (U, V, X, Y, Z) forms
a Markov chain Y -(V, U, X) -Z. For this case an
achievable region for the distribution po (X)p(y, z 1x) is

R1 > I(X;V)+min{I(X;U,YIV),I(X,U;YIV)},
R2 > I(X;V)+min{I(X;U,ZIV),I(X,U;ZIV)}.

The proof is omitted; see [5].

III. DISTRIBUTED ACTION AND RATE DISTORTION

There are similarities between rate distortion problems
and distributed action problems. Distributed action con-
siders the coordination of all the nodes, while in rate
distortion the pairwise distortions between source and
reconstructions are considered.

In the rate distortion problem, the goal is to achieve
limn,, Ed(Xn, yn) < D where the distortion be-
tween sequence Xn and the reconstruction yn is defined
by d(Xn, yn) = 1En d(xi, yi). Then distribution D
is achievable at rate R if there exists a distribution
po(x)p(y x) such that

E po(x)p(y x)d(x, y) < D (21)
x,Y

and I(X; Y) < R. Hence, the distortion is a linear
function of the distribution. Eq. (21) defines a half space

where the distributions satisfy the distortion criteria. Fig.
9 shows a typical cooperation region when R = 0.1 for a
binary source and two nodes as defined in Section I1-A.
The figure also shows the corresponding half-space for
Hamming distortion less then D.

c
0 0.5

p(Y = OIX = 0)

Fig. 9. Typical cooperation region for the case of two nodes.
The dark region is the cooperation region for rate R = 0.1 and
X - Bernoulli(0.5). The shaded region defines the set of all joint
distributions Po(x)p(ylx) with Hamming distortion less then D, i.e.
E(d(XnIyn)) < D where D is chosen to satisfy R(D) = 0.1.

We know that the set PR of achievable distributions
Po(X)P(Yl,Y2,.,,|x) at rate R is convex. Thus these
distributions can be characterized by the envelope of
tangent hyperplanes

D(d(x, YI,nY2, max P(X,Y1,Y2,...)d(x,y1,Y2,.)
X,y1 ,Y2...

defined for every "distortion" d(x, yl, Y2,...).
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