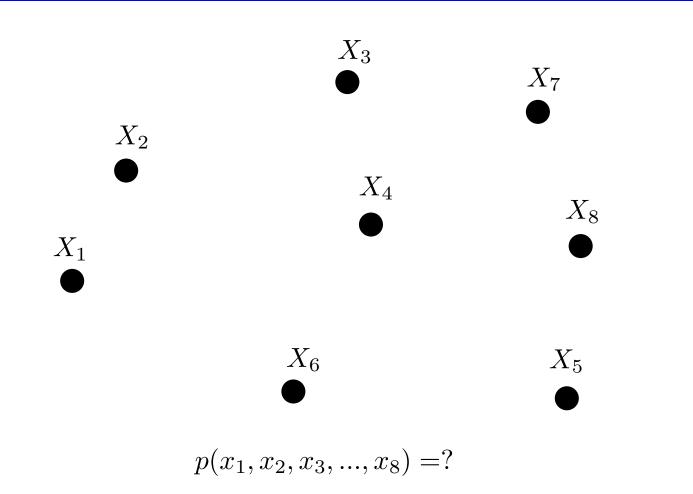
Capacity of Coordinated Actions

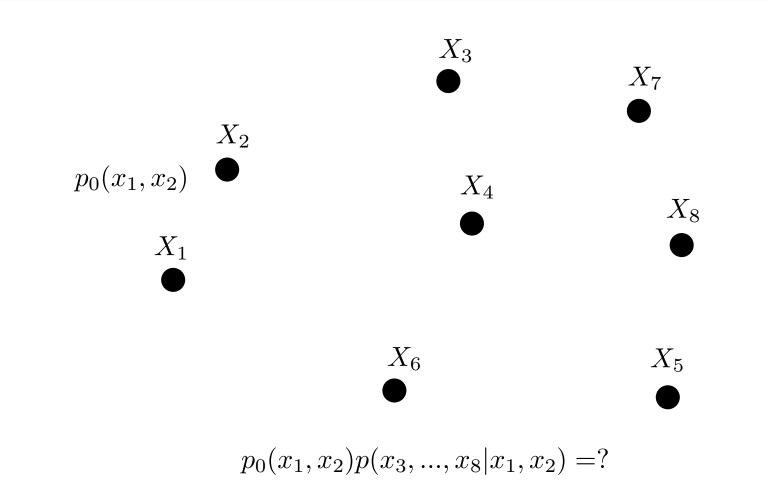
Haim Permuter & Thomas Cover

Stanford University

Coordinated Actions

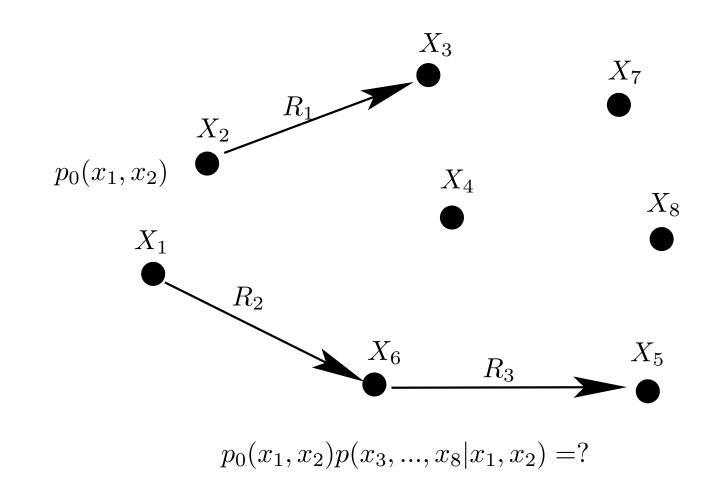


Coordinated Actions

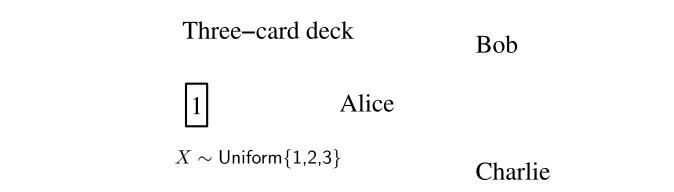


 X_1, X_2 are specified by nature according to $p_0(x_1, x_2)$

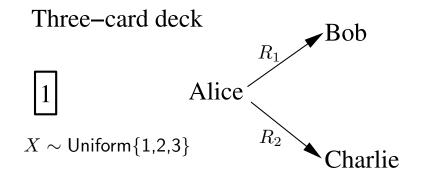
Coordinated Actions



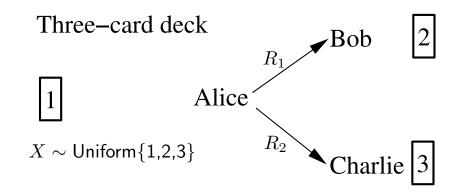
 X_1, X_2 are specified by nature according to $p_0(x_1, x_2)$



Alices's card X is specified by nature.



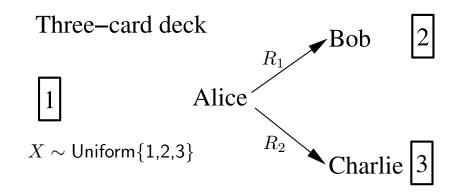
Alices's card X is specified by nature.



Alices's card X is specified by nature.

The Goal

to achieve uniform distribution over the six permutations of (1, 2, 3)



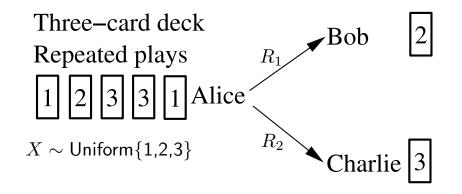
Alices's card X is specified by nature.

The Goal

to achieve uniform distribution over the six permutations of (1, 2, 3)

Question

How much information must Alice send to Bob and to Charlie to achieve the goal?



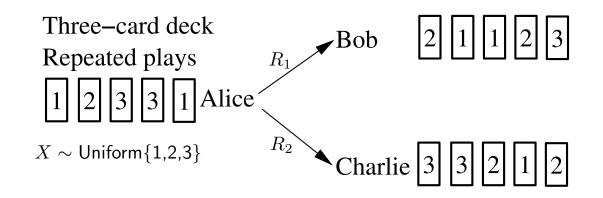
Alices's card X is specified by nature.

<u>The Goal</u>

to achieve uniform distribution over the six permutations of (1, 2, 3)

Question

How much information must Alice send to Bob and to Charlie to achieve the goal?



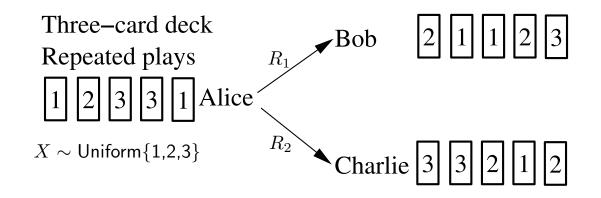
Alices's card X is specified by nature.

<u>The Goal</u>

to achieve uniform distribution over the six permutations of (1, 2, 3)

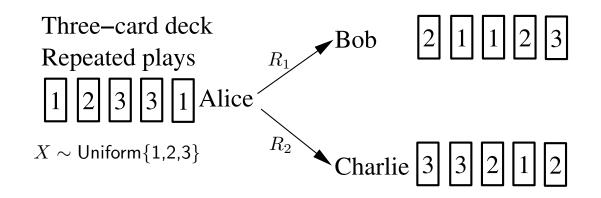
Question

How much information must Alice send to Bob and to Charlie to achieve the goal?



A brute-force solution

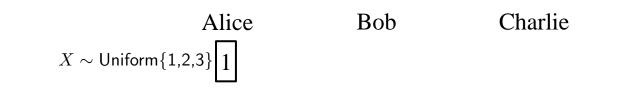
Alice transmits to Bob and Charlie her card number. This requires $R_1 = R_2 = \log 3$.

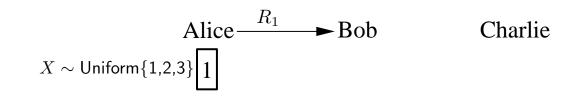


A brute-force solution

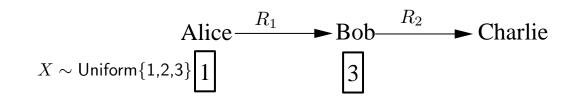
Alice transmits to Bob and Charlie her card number. This requires $R_1 = R_2 = \log 3$.

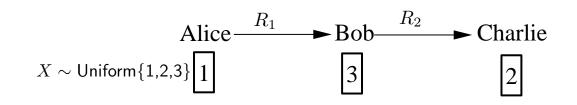
Is it optimal?

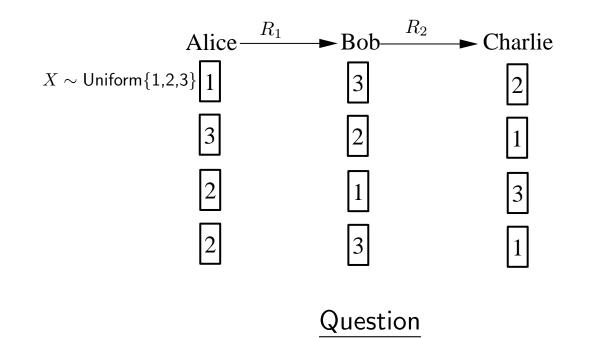






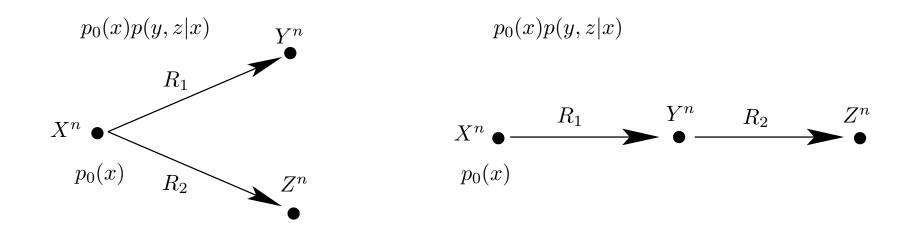






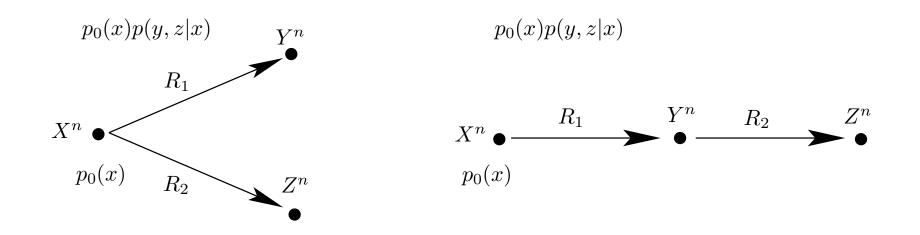
How much information must Alice send to Bob and Bob to Charlie to have uniform distribution over the six permutations of (1, 2, 3)?

Coordinated Actions: The Setting



- the actions at node X are specified by nature: $p(x^n) = \prod_{i=1}^n p_0(x_i)$
- the actions at nodes $Y\!,Z$ are chosen according to the information received at the nodes

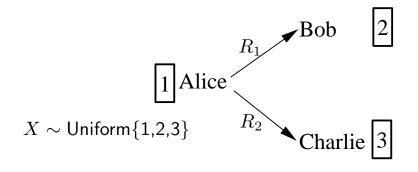
Coordinated Actions: The Goal



- to find the rates (R_1, R_2) that can achieve the joint distribution $p_0(x)p(y, z|x)$
- to find the set of all distributions $p_0(x)p(y,z|x)$ that can be achieved with communication rate (R_1,R_2)

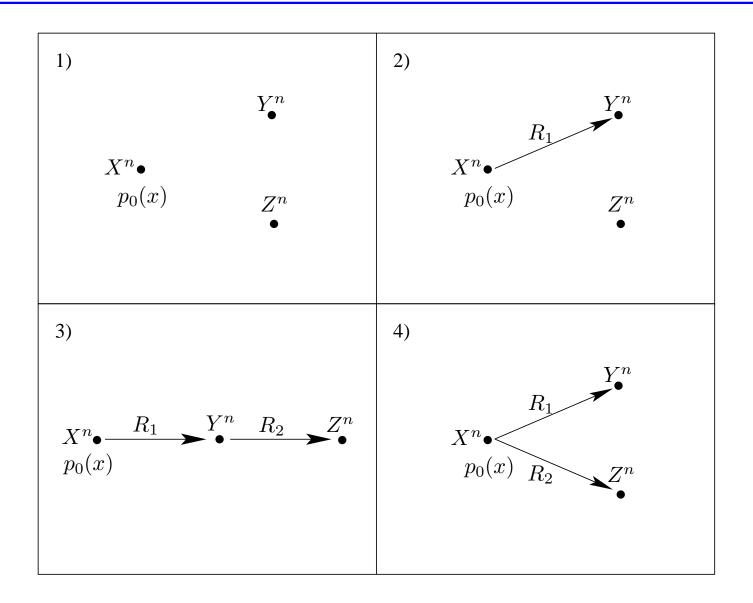
Applications

• Task Assignments - agents must perform different jobs

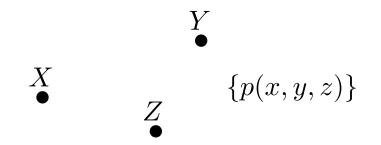


- Computation: parallelization and recombination
- Game theory players must take actions according to an optimal distribution [Anantharam/Borkar05].
- Quantum information quantum coding of mixed states
 [Barbum/Caves/Fuchs/Schumacher01], [Kramer/Savari07]

Building Blocks of Distributed Action Problems



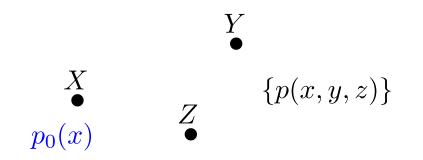
Three Nodes and No Communication



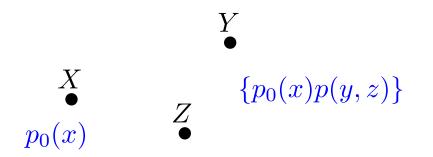
Any joint distribution p(x, y, z) can be achieved.

- $(\Omega, \mathcal{B}, P), X(\omega), Y(\omega), Z(\omega)$
- Time sharing
- Using a codebook that is generated by p(x, y, z).

Three Nodes and No Communication

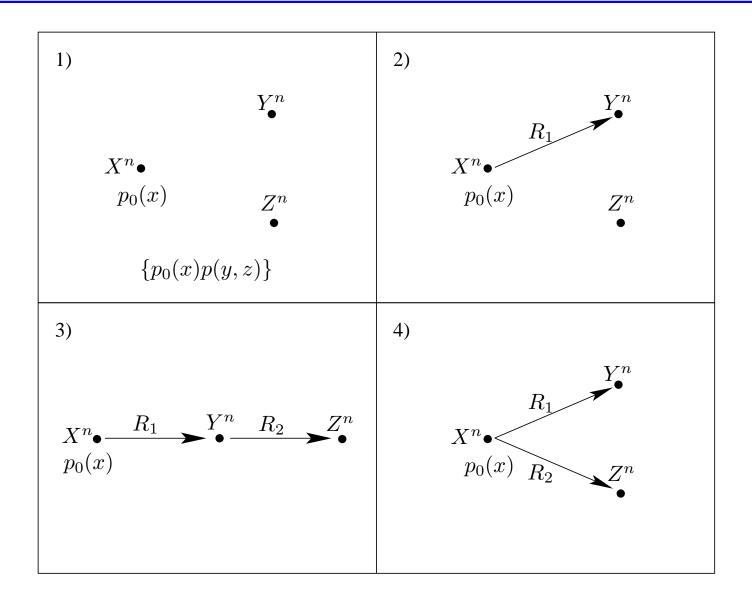


Three Nodes and No Communication



If X is specified to take a certain value distributed according to $p_0(x)$, then only $p(x, y, z) = p_0(x)p(y, z)$ can be achieved.

Building Blocks of Distributed Action Problems



One Link

$$X^{n} \bullet \underbrace{i(x^{n}) \in \{1, \dots, 2^{nR}\}}_{p_{0}(x)} \rightarrow \bullet Y^{n}(i)$$

Definition. The pair (R, p(x, y)) is achievable, if there exists a sequence of rate R codes such that $P_{X^n,Y^n}(x, y) \rightarrow p(x, y)$ for all $x \in \mathcal{X}, y \in \mathcal{Y}$.

 $P_{X^n,Y^n}(x,y)$ is the joint type.

One Link

$$X^{n} \bullet \underbrace{i(x^{n}) \in \{1, \dots, 2^{nR}\}}_{p_{0}(x)} \rightarrow \bullet Y^{n}(i)$$

Theorem. A desired distribution $p(x, y) = p_0(x)p(y|x)$ is achievable if

R > I(X;Y),

and is not achievable if

R < I(X;Y).

Like rate distortion but without the distortion

Outline of the Proof

$$\begin{array}{c} X^n \bullet & i(x^n) \in \{1, \dots, 2^{nR}\} \\ & & \searrow \bullet \ Y^n(i) \\ p_0(x) & \end{array}$$

Achievability proof is similar to rate distortion.

Converse is based on the following lemma:

Lemma. If a sequence of R code $(2^{nR}, n)$ satisfies

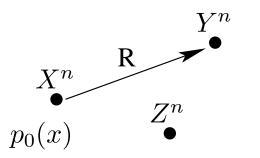
$$P_{X^n,Y^n}(x,y) \xrightarrow{\text{prob}} p(x,y), \ \forall x,y \in \mathcal{X} \times \mathcal{Y}$$

then

$$\frac{1}{n} \sum_{k=1}^{n} \Pr(X_k = x, Y_k(i) = y) \to p(x, y), \ \forall x, y \in \mathcal{X} \times \mathcal{Y}.$$
$$nR \stackrel{(a)}{\geq} I(X^n; Y^n) \stackrel{(b)}{\geq} \sum^n I(X_k; Y_k) \stackrel{(c)}{\geq} n(I(X; Y) - \epsilon_n)$$

k=1

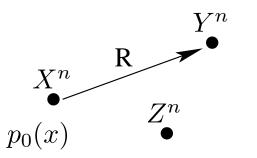
One Link



What is the achievable region?

Is it the set of all distributions $\{p_0(x)p(y|x)p(z): I(X;Y) \leq R\}$?

One Link

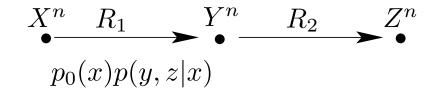


What is the achievable region?

Is it the set of all distributions $\{p_0(x)p(y|x)p(z): I(X;Y) \leq R\}$?

No. Any joint distribution $p_0(x)p(y,z)$ can be achieved without communication.

Chain of two agents



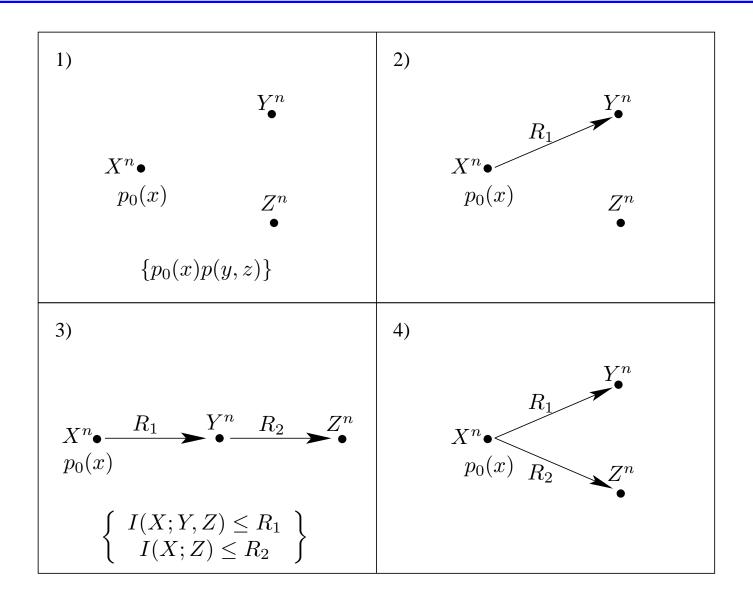
Theorem. The achievable region for a distribution $p_0(x)p(y, z|x)$ is

 $R_1 \geq I(X; Y, Z),$ $R_2 \geq I(X; Z).$

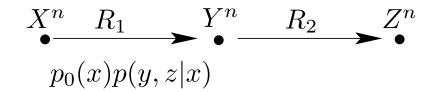
Converse: Follows from the two node case.

Achievability: First transmit information from X to Z (i.e., $R_2 = I(X;Z)$). Then use Z as side information for X and Y (i.e., $R_1 = R_2 + I(X;Y|Z)$).

Building Blocks of Distributed Action Problems



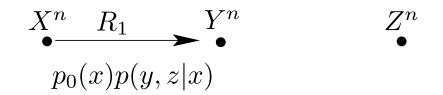
Three nodes one rate



Theorem. The achievable region for a distribution $p_0(x)p(y, z|x)$ is

 $R_1 \geq I(X;Y,Z),$ $R_2 \geq I(X;Z).$

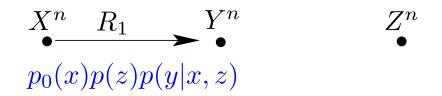
Three nodes one rate



Theorem. The achievable region for a distribution $p_0(x)p(y, z|x)$ is

 $R_1 \geq I(X;Y,Z),$ 0 = I(X;Z).

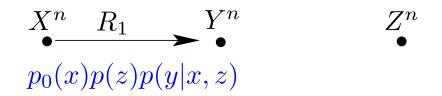
Three nodes one rate



Theorem. The achievable region for a distribution $p_0(x)p(z)p(y|x,z)$ is

 $R_1 \geq I(X;Y,Z).$

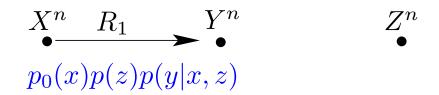
Three nodes one rate



Theorem. The achievable region for a distribution $p_0(x)p(z)p(y|x,z)$ is

 $R_1 \geq I(X;Y|Z).$

Three nodes one rate

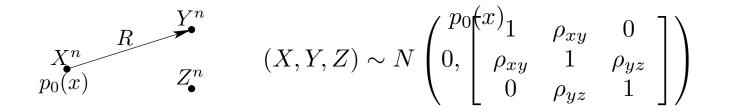


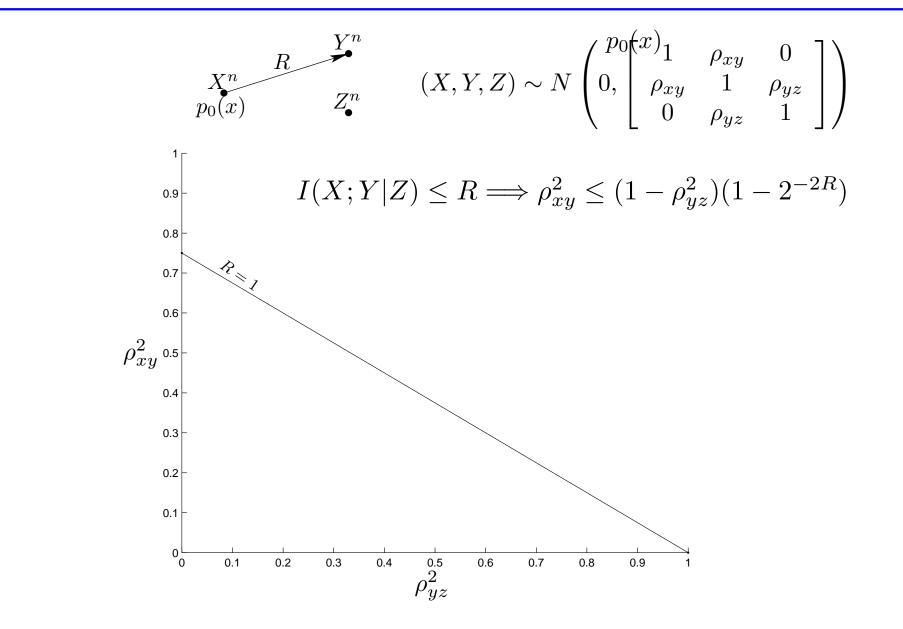
Theorem. The achievable region for a distribution $p_0(x)p(z)p(y|x,z)$ is

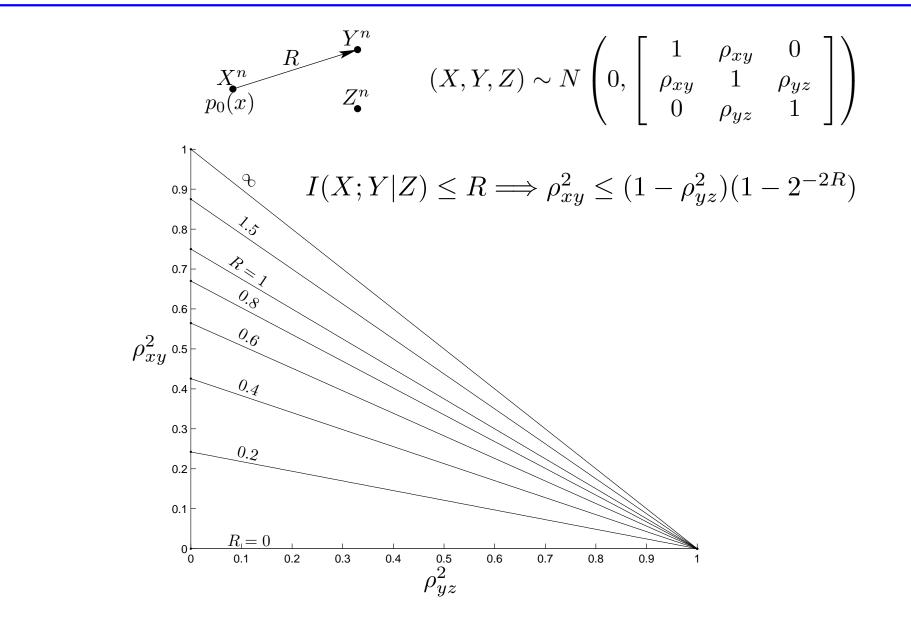
 $R_1 \geq I(X;Y|Z).$

There is a tension between the dependence of X and Y, and between the dependence of Y and Z.

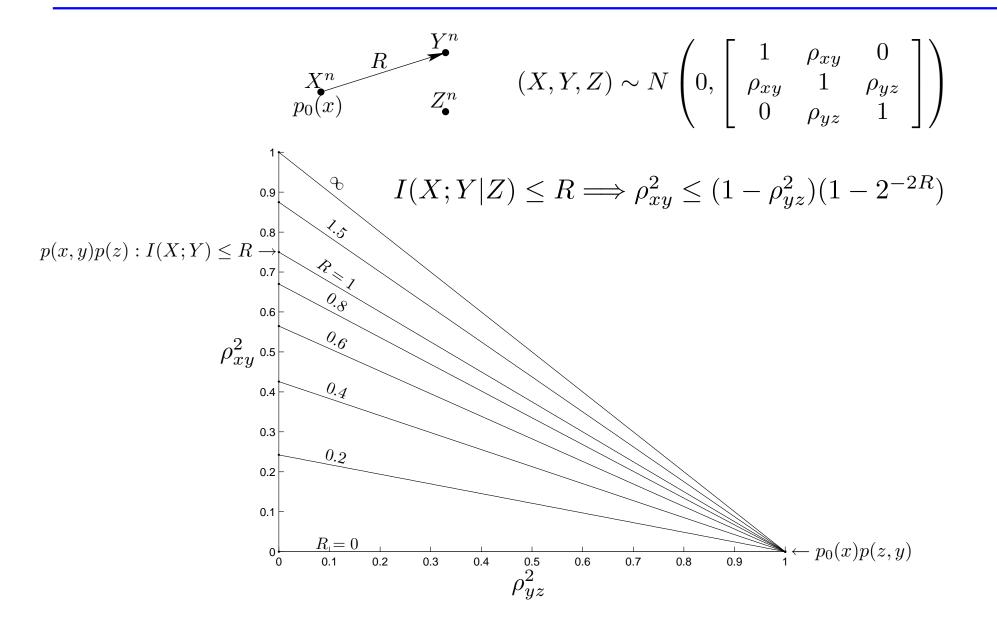
Three nodes one rate: The Gaussian Case

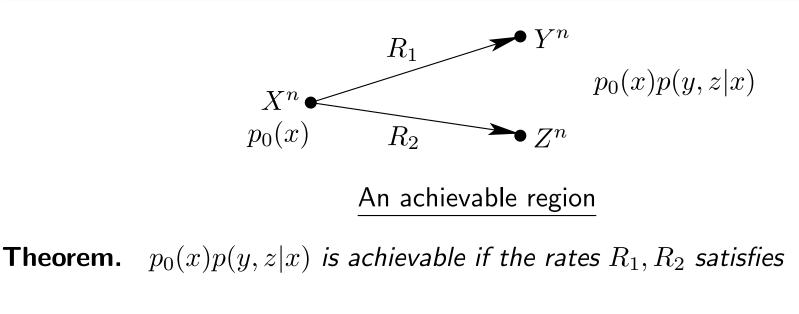






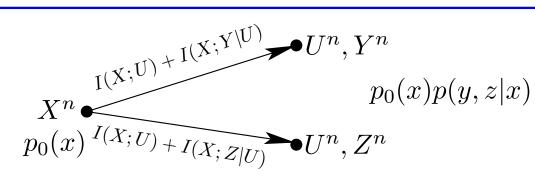
Three nodes one rate: The Gaussian Case





 $R_1 > I(X; U, Y),$ $R_2 > I(X; U, Z),$

for some Y - (X, U) - Z.

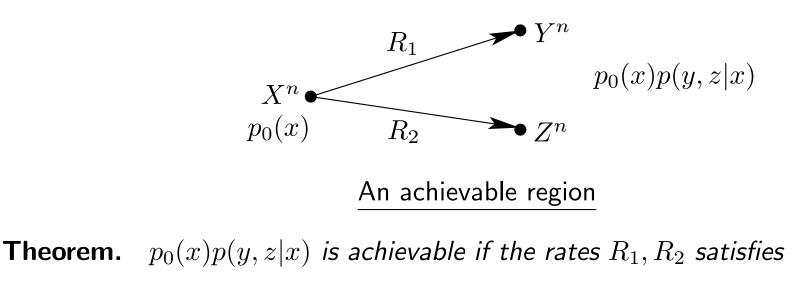


An achievable region

Theorem. $p_0(x)p(y, z|x)$ is achievable if the rates R_1, R_2 satisfies

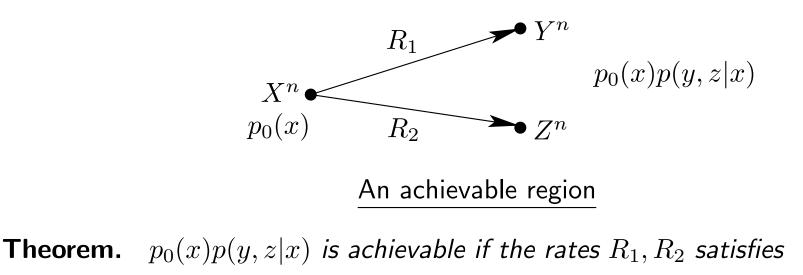
 $R_1 > I(X; U, Y),$ $R_2 > I(X; U, Z),$

for some Y - (X, U) - Z.



 $R_1 > I(X;V) + \min\{I(X;U,Y|V), I(X,U;Y|V)\},\$ $R_2 > I(X;V) + \min\{I(X;U,Z|V), I(X,U;Z|V)\},\$

for some Y - (V, X, U) - Z.

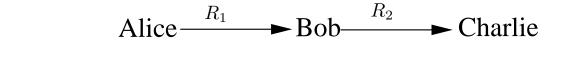


 $R_1 > I(X;V) + \min\{I(X;U,Y|V), I(X,U;Y|V)\},\$ $R_2 > I(X;V) + \min\{I(X;U,Z|V), I(X,U;Z|V)\},\$

for some Y - (V, X, U) - Z.

If X - Y - Z or Y - X - Z, then the region is optimum.

Solving the Cascade Question



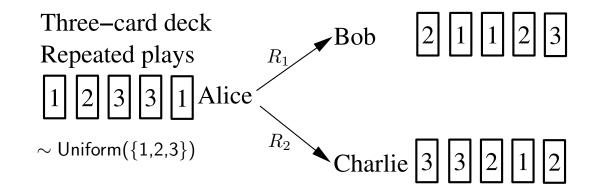
 $X \sim \mathsf{Uniform}\{1,2,3\}$

Alice (X), Bob (Y) and Charlie's (Z) actions need to be distributed uniformly over the six possible permutations of $\{1, 2, 3\}$.

$$R_1 \geq I(X; Y, Z) = \log 3,$$

$$R_2 \geq I(X; Z) = \log \frac{3}{2}.$$

An Achievable Scheme for Question 1



We restrict $Y = \{1, 2\}$ and $Z = \{2, 3\}$. Y will choose 1 and Z will choose 3 as default, unless X tells to one of them to choose 2.

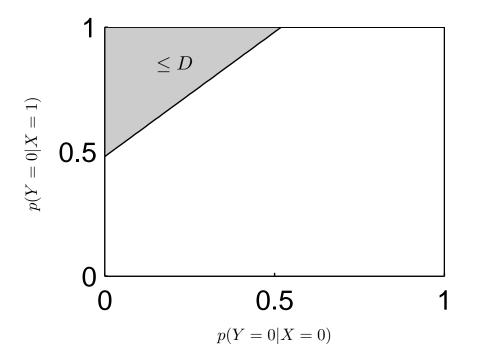
$$R_1 \ge I(X; U, Y) = H(\frac{1}{3}) - 0 = 0.918$$

Paul Cuff showed that $R_1 = R_2 = 0.890$ is achievable.

Coordinated Action and Rate Distortion

In rate distortion problems the distortion is a **linear function** of the distribution. Consider a source $X \sim \text{Bernoulli}(\frac{1}{2})$ and a reconstruction Y.

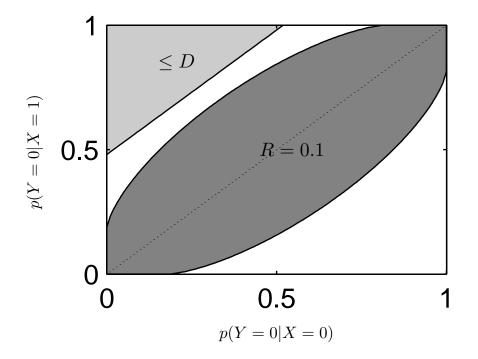
$$D = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} d(x, y) p_0(x) p(y|x) = \frac{1}{2} (1 - p(Y = 0|X = 0) + p(Y = 0|X = 1))$$
(1)



Coordinated Action and Rate Distortion

In rate distortion problems the distortion is a **linear function** of the distribution. Consider a source $X \sim \text{Bernoulli}(\frac{1}{2})$ and a reconstruction Y.

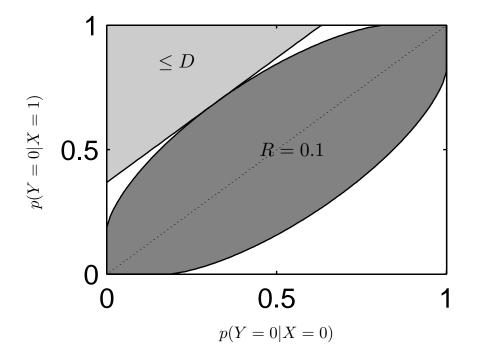
$$D = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} d(x, y) p_0(x) p(y|x) = \frac{1}{2} (1 - p(Y = 0|X = 0) + p(Y = 0|X = 1))$$
(2)



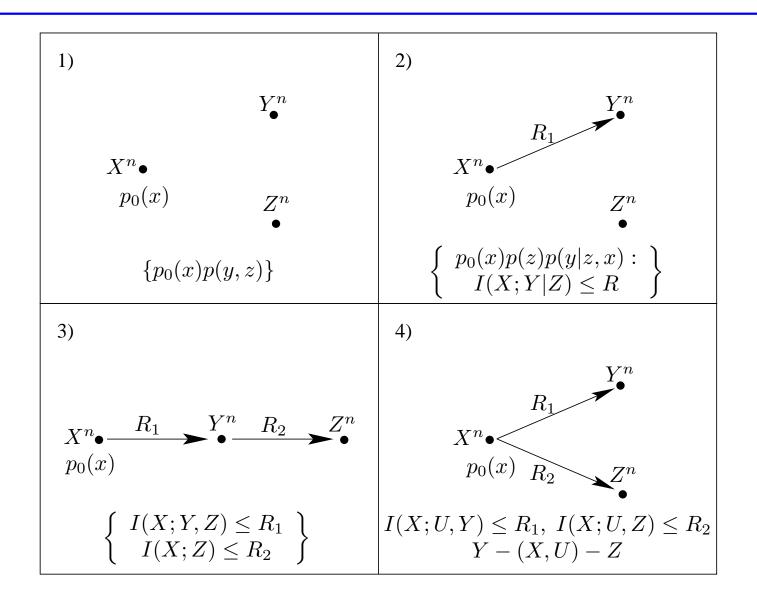
Coordinated Action and Rate Distortion

In rate distortion problems the distortion is a **linear function** of the distribution. Consider a source $X \sim \text{Bernoulli}(\frac{1}{2})$ and a reconstruction Y.

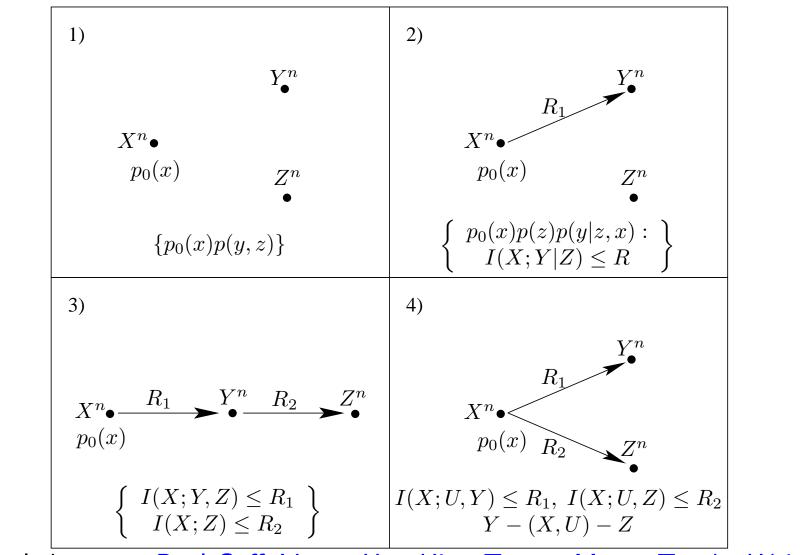
$$D = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} d(x, y) p_0(x) p(y|x) = \frac{1}{2} (1 - p(Y = 0|X = 0) + p(Y = 0|X = 1))$$
(3)



Summary

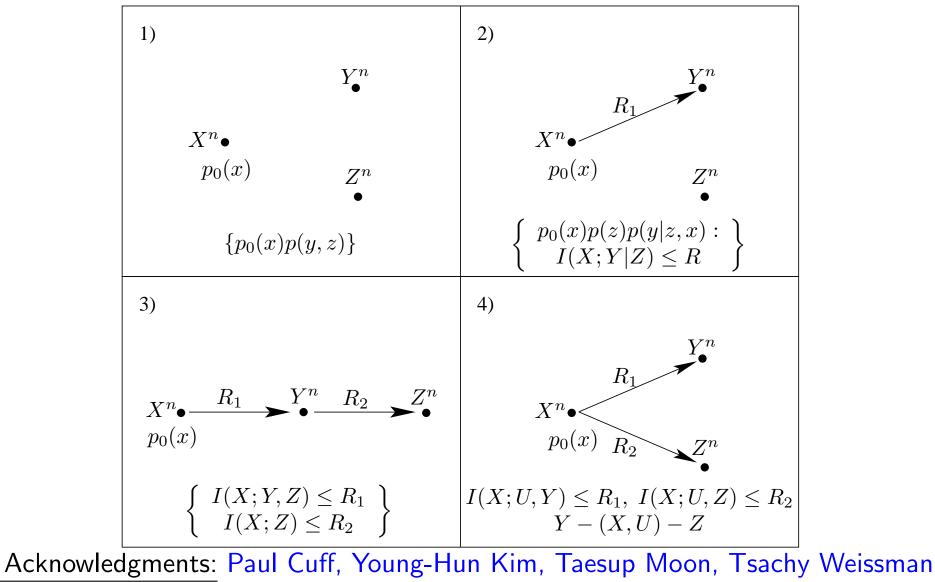


Summary



Acknowledgments: Paul Cuff, Young-Hun Kim, Taesup Moon, Tsachy Weissman

Summary



Thank You!