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I. BACKGROUND

In this lecture, we will discuss compression using polar code, shifting our focus from

error correction to compression using a polarization matrix. Compression with polar

codes is important in communication because it enables efficient data compression for

transmission over a network. This is especially useful in practical distributed compression

applications, such as wireless sensor networks and distributed video coding. Polar codes

have emerged as new near-capacity channel codes with great potential and have been

shown to achieve distributed compression rates close to theoretical limits. This lecture is

based on [1].

II. COMPRESSION USING POLAR CODE

Throughout this lecture, we will utilize the following notation:

• P ∈ Fn×n
2 - invertible matrix.

• Zn = (Z1, Z2, ..., Zn) ∼ Bern(p)n - n size vector of i.i.d Bern(p).

• W n ≜ Zn · P

• W i = (W1,W2, ...,Wi).

• We say that Wi is highly predictable given W i−1 if H(Wi|W i−1) ≤ τ for a small τ .

• S = Sτ = {i ∈ [1, ..., n]|H(Wi|wi−1) > τ} - the set of unpredictable elements.

Before we introduce the use of polar codes for compression, we start with several

properties regarding the set S. First, in the following lemma, we introduce an upper

bound on the entropy of W n.

Lemma 1 (Upper bound on H(W n)) Let S be the set of unpredictable elements of

W n. Then we have that H(W n) ≤ |S|+ n · τ .
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Proof:

H(W n)
(a)
=

n∑
i=1

H(Wi|W i−1)

(b)
=

∑
i∈S

H(Wi|W i−1) +
∑
i/∈S

H(Wi|W i−1)

(c)

≤ |S|+ τ(n− |S|)

≤ |S|+ n · τ,

where (a) follows from the chain rule, (b) follows from sum property, and (c) follows

from the fact that H(X|Y ) ≤ H(X) and Hb(Wi) ≤ 1 (Wi is binary).

Moving forward, using Lemma 1, we provide in the following lemma a lower bound

on the set S of unpredictable elements of W n.

Lemma 2 (Size of S) Let Zn = (Z1, Z2, ..., Zn) ∼ Bern(p)n and P ∈ Fn×n
2 invertible

matrix. Further, let W n ≜ Zn · P and S be the set of unpredictable elements of W n.

Then, the size of the set S is lower bounded by |S| ≥ n · (H(p)− τ).

Proof: Consider the following:

|S|+ n · τ
(a)

≥ H(W n)

|S|+ n · τ
(b)

≥ H(Zn)

|S|+ n · τ
(c)

≥ n ·Hb(p),

where (a) follows from Lemma 1, (b) follows from the fact that P is invertible, and (c)

follows from the fact that zn is distributed i.i.d Bern(p). Accordingly, we obtain that

|S| ≥ n · (Hb(p)− τ).

In conclusion, Lemma 1 provides a lower bound on the size of the set S, which contains

the indices of the unpredictable elements of the polarized vector W n. This result is derived

by using the chain rule of entropy and some properties of entropy to relate the entropy of

W n to the entropy of the original data symbols Zn and the conditional entropy of each
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bit Wi given the previous bits W i−1. This lemma provides a useful tool for estimating

the size of S and understanding the behavior of polar codes.

Definition 1 (Polarized matrix & unpredictable columns) We say that an invertible

matrix P ∈ Fn×n
2 is (ϵ, τ)-polarizing for Bern(p)n if for W n = Zn · P (where Zn ∼

Bern(p)n) and

S = Sτ = {i ∈ [1, ..., n] | H(Wi|W i−1) > τ}

we have |S| ≤ n · (H(p) + ϵ).

III. POLAR COMPRESSOR - SOURCE CODING

Source coding is the process of efficiently representing information in a compact form.

In the context of compression using polar codes, source coding refers to the use of polar

codes to compress data symbols into a more concise representation.

The source coding process involves taking a sequence of data symbols as input and

transforming them into a compressed representation using the polar code construction.

The encoder identifies which bit channels are suitable for transmitting information and

assigns the information bits to these good bit channels. The compressed representation

generated by the encoder consists only of the information bits assigned to the good bit

channels.

The goal of source coding is to create a compressed representation that is as concise

as possible while still allowing for the original data to be accurately recovered by the

decoder. In lossless compression, the decoder can recover the original data symbols

exactly, with no loss of information. In lossy compression, some loss of information

may occur, but the decoder still strives to recover the original data symbols as closely as

possible.

In summary, source coding in compression using polar codes involves

using polar codes to compress data symbols into a concise representation

that allows for accurate recovery of the original data by the decoder.
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Encoder Decoder
zn w|S| ẑn

In the figure above, the source coding where zn is an i.i.d vector ∼ Bern(p)n, wn ≜

zn · P , and S is equal to the set of unpredictable elements of wn. The encoder receive

zn and outputs w|S| which consist of the wi for which i ∈ S. The decoder receive w|S|

to compute ẑn. Note that:

• We use |S| bits over n bits message, and therefore the rate is R = |S|
n

.

• At lecture 5 we have shown that R ≥ H(zn).

A. Polar compressor - Encoder

In compression using polar codes, the encoder plays a crucial role. It takes a sequence

of data symbols as input and transforms them into a compressed representation using

the polar code construction. The encoder determines which bit channels are suitable for

transmitting information and assigns the information bits to these good bit channels.

The compressed representation generated by the encoder consists solely of the

information bits assigned to the good bit channels. The goal of the encoder is to create

a compressed representation that is as concise as possible while still allowing for the

original data to be recovered by the decoder.

Encoder
zn w|S|
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In the figure above we have:

• Input: zn ∈ Fn
2 , S ⊆ [1, ..., n].

• Output: w|S| - compressed representation of zn.

The operation of the encoder is just to multiply the input vector zn by the matrix P and

taking only wi for which i ∈ S. Thus, the output of the encoder is w|S| = (zn · P )|S|

(where P is the polarization matrix). Our encoder reduces the number of bits from n bits

to |S| bits.

B. Polar compressor - Decoder

In compression using polar codes, the decoder is an essential component as well. It

receives the compressed representation generated by the encoder and recovers the original

data symbols using the polar code construction. The decoder identifies which bit channels

are good for transmitting information and which are not. It then recovers the information

bits from the good bit channels.

The decoder aims to recover the original data symbols from the compressed repre-

sentation as accurately as possible. In lossless compression, the decoder can recover the

original data symbols exactly, with no loss of information. In lossy compression, some

loss of information may happen, but the decoder still tries to recover the original data

symbols as closely as possible.

In summary, in compression using polar codes, the decoder’s main role is to receive

the compressed representation generated by the encoder and recover the original data

symbols using the polar code construction.

Decoder
w|S| ẑn
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The decoder operates according to the successive cancellation decompression (SCD)

algorithm. The SCD algorithm works as follows:

• Input: w|S|, S ⊆ [1, ..., n], P ∈ Fn×n
2 .

• Output: ẑn ∈ Fn
2 .

• Algorithm:

1 SCD(w|S|, S, P )

2 f o r i = 1 to n :

3 i f i ∈ S :

4 ŵi = wi

5 e l s e :

6 ŵi = argmax
b

{PWi|W i−1(b|ŵi−1)}

7 r e t u r n ẑn = ŵn · P−1

Our decoder is taking the bits we sent w|S| and building new vector ŵn of size n as

follows. For indices i ∈ S (that correspond to unpredictable bits) we set ŵi = wi. Else,

it means that Ŵi is predictable so we can predict him. After we got ŵn we can compute

ẑn by the inverse matrix P , i.e., ẑn = ŵn · P−1
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IV. THEOREM ERROR OF SOURCE CODING

In the following we introduce a theorem which provides a theoretical bound on the

error rate of SCD algorithm when using polar codes for compression. The theorem states

that if the polarizing matrix P is (ϵ, τ) polarizing with unpredictable columns S, then

the failure probability of the SCD is τ ·n, where n is the length of the code. This means

that the probability that the original data symbols zn cannot be recovered exactly from

the compressed representation ẑn is less than or equal to τ · n.

The theorem also states that if P is (ϵ, ϵ/n) polarizing, then the error rate of the SCD

decoder is at most ϵ. This means that by choosing an appropriate polarizing matrix P ,

it is possible to control the error rate of the SCD decoder and achieve a desired level of

accuracy in recovering the original data symbols from the compressed representation.

In summary, this theorem provides a theoretical bound on the error rate of successive

cancellation decompression when using polar codes for compression and shows how the

choice of polarizing matrix can affect the accuracy of data recovery.

Theorem 1 If P is (ϵ, τ) polarizing with unpredictable columns S then the SCD has

failure probability of τ · n, i.e.

Pr(z
n ̸= ẑn) ≤ τ · n,

where ẑn = SCD
(
(zn ·P )s, P, S

)
. Accordingly, for P that is (ϵ, ϵ

n
) polarizing, we have

that

Perr ≤ ϵ.

Thus, if P is (ϵ, ϵ
n
) polarizing, the error of SCD decoder is at most ϵ.

Before we can prove this theorem we will need to prove the following lemma.

Lemma 3 Let X be random variable with H(X) ≤ α. Then:

1) There exists x ∈ X such that Pr(X ̸= x) ≤ α.

2) Let (X, Y ) be jointly distributed random variable with H(X|Y ) ≤ α, and A(y) =

argmax
x∈X

(P(X = x|Y = y)). Then Pr(X ̸= A(y)) ≤ α.
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Proof: [of part (1)]

Let pi ≜ Pr(X = i), x ≜ argmax(pi), and px = 1− γ s.t. Pr(X ̸= x) = γ.

Test case 1 (γ ≤ 1
2
)

α ≥ H(X)

=

|X|∑
i=1

pi log

(
1

pi

)
(a)

≥
∑
i/∈x

pi log

(
1

pi

)
(b)

≥
∑
i/∈x

pi log

(
1∑

j /∈X pj

)
(c)

≥ γ log

(
1

γ

)
≥ γ,

where (a) follows from subtracting a positive number from the sum of positive numbers,

(b) follows from the inequality pi ≤
∑

j /∈X pj where i /∈ X , and (c) follows from the

equality Pr(X ̸= x) = γ.

Test case 2 (γ ≥ 1
2
)

α ≥ H(x)

=

|X|∑
i=1

pi log(
1

pi
)

(a)

≥
|X|∑
i=1

pi log(
1

px
)

(b)
= log(

1

px
) ≥ 1

(c)

≥ Pr(X ̸= x),

where (a) follows from the inequality ∀i ∈ [1, |X|]px ≥ pi, (b) follows from the quality

log( 1
px
) is a constant and

∑|X|
i=1 pi = 1, and (c) follows from the quality

∑|X|
i=1 pi = 1.
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Proof: [of part (2)]

Pr(X ̸= A(Y ))
(a)
=

∑
y

Pr(X ̸= A(Y ), y)

(b)
=

∑
y

Pr(y)Pr(X ̸= A(Y )|y)

(c)

≤
∑
y

Pr(y)H(X|Y = y)

(d)
= H(X|Y )

≤ α,

where (a) follows from the law of total probability, (b) follows from the Lemma 2 in

part (1), (c) follows from the chain rule, and (d) follows from conditional entropy law.

In summary, Lemma 2 provides two results for bounding probabilities of events

involving random variables with bounded entropy. The first result states that if the

entropy of a random variable X is less than or equal to α, then there exists a value

x such that the probability that X is not equal to x is also less than or equal to α.

The second result states that if X and Y are jointly distributed random variables with

conditional entropy H(X|Y ) less than or equal to α, then the probability that X is not

equal to the value that maximizes the conditional probability of X given Y is also less

than or equal to α.

Proof: [of Theorem 1]

Let W n ≜ Zn · P , and assume that for every i ∈ S we set Ŵi = Wi. For any i /∈ S, by

applying Lemma 2 part (2) with X = Wi, Y = W i−1 and α = τ we get that

Pr(Wi ̸= Ai(w
i−1)) ≤ τ. (1)

where Ai(·) is

Ai(w
i−1) = argmax

wi

(P(Wi = wi|W i−1 = wi−1)).
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By union the bound, we get that
n∑

i=1

Pr(Wi ̸= Ai(w
i−1)) ≤ τ · n.

We can note that the SCD algorithm used Ai(·) that is equal to the argmax. If wn ̸= ŵn

there exists i s.t. ŵi ̸= wi, which gives us Pr(w
n ̸= ŵn) ≤ τ · n. Accordingly, we get

Pr(z
n ̸= ẑn(= SCD(zn · P )s, P, S)) ≤ τ · n.

Example 1 (Polarized compression with two input ) Let P2 =

1 0

1 1

 and

Z1, Z2 ∼ Bern(p) where 0 < p < 1
2

and w2 ≜ z2 · P2. Then, we get that

H(W1,W2)
(a)
= H(Z1, Z2)

(b)
= H(Z1) +H(Z2)

= 2Hb(p). (2)

H(W1)
(c)
> H(Z1)

= Hb(p). (3)

H(W2|W1) = H(W1,W2)−H(W1)

(d)
= 2Hb(p)−H(W1)

(e)
< Hb(p),

where (a) follows from H(wn) = H(zn), (b) follows since z2 is i.i.d, (c) follows from

the inequality Pr(W1 = 1) = 2p(1− p) > p, (d) follows from (2), and (e) follows from

(3).

Therefore, we can conclude that by multiplying z2 by P2, we have achieved polarization

of two equally entropic bits into one bit with higher entropy and one bit with lower
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entropy, as shown by the calculations of H(W1) and H(W2|W1). This property is essential

for the construction of polar codes, as explained in [1][pp.217].

Corollary 1 Polar codes are a type of error-correcting code used in communication

systems. In this context, zn represents a vector of two equally entropic bits, and P2 is a

2x2 matrix known as the polarization matrix. When zn is multiplied by P2, the resulting

vector has one bit with higher entropy and one bit with lower entropy. This process is

called polarization because it separates the entropy of the two input bits into one bit that

is more random (higher entropy) and one bit that is more deterministic (lower entropy).

This property is useful in the construction of polar codes because it allows for efficient

encoding and decoding of information.
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Example 2 (Polarized compression with n input) Let P2n =

1 0

1 1

⊗n

and zn =

{u, v} where u = {Z1, ..., Zn
2
} and v = {Zn

2
+1, ..., Zn}.

Z1

Z2

...
Zn

2
−1

Zn
2

Pn
2

Zn
2
+1

Zn
2
+2

...
Zn−1

Zn

Pn
2

W1

W2

...
Wn

2
−1

Wn
2

Wn
2
+1

Wn
2
+2

...
Wn−1

Wn

where Pn(z
n) = Pn(u, v) = (Pn

2
(u), Pn

2
(v)).

This example demonstrates how polarized compression can be applied to n input

bits. This example shows how a larger polarization matrix P n
2 can be constructed by

taking the Kronecker power of the 2x2 polarization matrix P2. The input vector Z is

then partitioned into two subvectors u and v, and the polarization matrix is applied to

each subvector separately. The resulting polarized vector W has some bits that are more

entropic and some bits that are less entropic. This example illustrates how the concept

of polarization can be extended to larger input sizes and how it can be used to achieve

efficient compression of data.

Theorem 2 (Strong polarization) Fix p ∈ (0, 1
2
) and constant c. There exists a poly-

nomial function n0 such that for every ϵ > 0, there exists n = 2t with 1
ϵ
≤ n ≤ n0

ϵ
,

and a set E ⊆ {1, . . . , n} with |E| ≤ ϵ
2
· n such that for every i /∈ E, the conditional

entropy H(Wi|W i−1) is either less then n−c, or greater then 1 − n−c. Furthermore, if

we let S = {i ∈ [n]|H(Wi|W i−1) ≥ n−c} then |S| ≤ (H(p) + ϵ)n and the matrix Pn is

(ϵ, 1/nc) polarizing for BER(p)n with unpredictable columns S.
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The strong polarization (Theorem 2) allows us to specify how close to zero the

conditional entropy of the polarized bits should be.

In conclusion, we have presented the topic of compression using polar codes, which

are a novel type of error-correcting codes that have great potential for communication and

compression applications. We have explained the concept of polarization, which is the

key idea behind polar codes, and how it separates the entropy of equally entropic bits into

more entropic and less entropic bits by using a polarization matrix. We have also shown

how polar compression operates by encoding only the less entropic bits and using the

SCD algorithm to decode them with low failure probability. Further, we have provided

some theoretical results and proofs to demonstrate the properties and performance of

polar codes.

For more information or more detailed proofs on polar codes and compression, please

refer to [1].
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