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Introduction to Information Theory

Lecture 7

Lecturer: Haim Permuter Scribe: Yutzis Dov, Vortman Moti and Dor Tzur

I. DIFFERENTIAL ENTROPY AND THE GAUSSIAN CHANNEL

A. Differential Entropy

Let X be a random variable with a continuous alphabet.

• FX(x) = Pr(X ≤ x) - Cumulative Distribution Function {CDF}. F (x) is a short

notation for FX(x).

• fX(x) =
dFX(x)

dx
- Probability Density Function {PDF} (in this course we will assume

the derivative exists). f(x) is a short notation for fX(x).

Definition 1 (Differential Entropy) The differential entropy h(X) of a continuous

random variable X with density fX(x) is defined as

h(X) , −
∫

fX(x) log2(fX(x)) dx , E[− log2 fX ]. (1)

Question - can h(X) be negative?

Example 1 (Uniform distribution) Let X ∼ U [0, a], i.e., fX(x) =
1

a
· 1[0,a]

h(X) = −
∫ a

0

1

a
log2

1

a
dx = log2 a. (2)

Remark 1 (Interpretation of entropy) For a finite alphabet r.v. X one can interpret

entropy using the following result. The size (first order in the exponent) of the smallest

set of sequences An such that limn→∞ Pr(An) = 1 is:

lim
n→∞

log2 |An| = nH(X). (3)

For continuous alphabet a similar result hold but with volume of set instead of it’s

cardinality.
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Definition 2 (Volume of the set) The volume of the set An ⊂ Rn is defined as:

Vol (An) =

∫

Xn∈An

dxn. (4)

The volume (first order in the exp.) of the smallest set An such that limn→∞ Pr (An) = 1

is:

Vol (An) ≈ 2nh(X). (5)

This is rigorously stated and proved in Theorem 2. Using the outcome of example (1)

we can show that Equation (5) holds:

• An is a cube of side length a, and of dimension n

• Vol (An) = an

2nh(X) = 2n log2 a = an = Vol (An) .

Example 2 (Normal distribution) Find the differential entropy of X ∼ N (0, σ2), i.e.,

fX(x) =
1√
2πσ2

e−
x
2

2σ2 .

Answer:

h(X) = −
∫ +∞

−∞

1√
2πσ2

e
−
x2

2σ2



log2
1

√
2πσ2

−
x2

2σ2
log2 e



 dx

=
1

2
log2 2πσ

2 +
σ2

2σ2
log2 e

=
1

2
log2 2πeσ

2. (6)

Exercise 1 Let X ∼ N (0, [K]), show that h(X) =
1

2
log2 (2πe)

n |K| where n is the

dimension of the square matrix [K].

Definition 3 (Typical set) For ǫ > 0 and any n, we define the typical set An
ǫ with

respect to fX(x) as follows:

An
ǫ =

{

Xn = (X1, X2, ..., Xn) ∈ X n :

∣

∣

∣

∣

−1

n
log2 f(x

n)− h(X)

∣

∣

∣

∣

≤ ǫ

}

. (7)

where f(xn) =
∏n

i=1 fX (xi).
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The properties of the typical set for continuous random variables are similar to those for

discrete random variables. The analogy of cardinality of typical set for the discrete case

is the volume of the typical set for continuous random variable.

Theorem 1 (The typical set) The typical set An
ǫ has the following properties:

1) limn→∞ Pr (Xn ∈ An
ǫ ) = 1.

2) Vol (An
ǫ ) ≤ 2n(h(X)+ǫ).

3) Vol (An
ǫ ) ≥ (1− ǫ)2n(h(X)−ǫ).

The proof is very similar to the finite alphabet case (see lecture 5) so here we will only

prove (2) and the rest will be left for the reader.

Proof: (Continuous Alphabet)

1 =

∫

Xn

f(xn) dxn (8)

(a)

≥
∫

xn∈An
ǫ

f(xn) dxn (9)

(b)

≥
∫

xn∈An
ǫ

2−n(h(X)+ǫ) dxn (10)

= Vol (An
ǫ ) 2

−n(h(X)+ǫ) (11)

⇓

Vol (An
ǫ ) ≤ 2n(h(X)+ǫ). (12)

where

(a) follows from the fact that we are reducing the set.

(b) follows from the definition of An
ǫ .

Theorem 2 Let Bn be a set such that limn→∞ Pr (Xn ∈ Bn) = 1, then for any η > 0

1

n
log2 Vol (Bn) ≥ h(X)− η. (13)

Proof: Let An
ǫ be a typical set, so we can claim that:

• Pr (Xn ∈ An
ǫ ) → 1 (Theorem 1)
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• Pr (Xn ∈ Bn) → 1 (Assumption of theorem 2)

In other words ∀δ > 0, ∃n large enough such that:

Pr (Xn ∈ An
ǫ ) > 1− δ (14)

Pr (Xn ∈ Bn) > 1− δ (15)

Pr (Xn ∈ (Bn ∩An
ǫ )) = Pr (Xn ∈ Bn) + Pr (Xn ∈ An

ǫ )− Pr(Xn ∈ Bn ∪ An
ǫ )

(a)

≥ Pr (Xn ∈ Bn) + Pr (Xn ∈ An
ǫ )− 1

(b)

≥ 1− δ + 1− δ − 1 = 1− 2δ.

where

(a) follows from the fact that Pr(Xn ∈ Bn ∪An
ǫ ) ≤ 1.

(b) follows from Equation (14) and (15).

1− 2δ ≤ Pr (Xn ∈ (Bn ∩ An
ǫ ))

=

∫

xn∈(Bn∩An
ǫ )

f(xn) dxn

(a)

≤
∫

xn∈(Bn∩An
ǫ )

2−n(h(X)−ǫ) dxn

(b)

≤
∫

xn∈Bn

2−n(h(X)−ǫ) dxn

⇓

Vol (Bn) ≥ (1− 2δ)2n(h(X)−ǫ).

where

(a) follows from Theorem 1

(b) follows from the fact that we are increasing the volume.

We can choose the value of δ > 0 and ǫ > 0, as small as we like. Let ǫ = η and δ → 0

so that (1− 2δ) → 1. Choosing those values of δ and ǫ will yield the desired result :

Vol (Bn) ≥ 2n(h(X)−η). (16)
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Definition 4 (Divergence) Divergence between two PDFs f(x) and g(x) that satisfy that

if for some x, g(x) = 0, then f(x) = 0 is defined as

D (fX‖gX) ,
∫

x∈X
fX(x) log2

fX(x)

gX(x)
dx. (17)

Lemma 1 (Non-negativity of divergence) Divergence is non-negative:

1) D (fX‖gX) ≥ 0.

2) D (fX‖gX) = 0 ⇔ fX(x) = gX(x).

Proof:

−D (fX‖gX) =

∫

x∈X
fX(x) log2

gX(x)

fX(x)
dx

= Ef

[

log2
gX

fX

]

(a)

≤ log2 Ef

[

gX

fX

]

= 0 (18)

where

(a) follows from Jensen’s inequality.

We have equality iff we have equality in Jensen’s inequality, which occurs iff fX(x) =

gX(x) almost everywhere (i.e. there is a countable set of x ∈ X for which fX(x) 6=
gX(x)).

Definition 5 (Conditional Entropy)

h (X|Y ) , −
∫

fX,Y (x, y) log2 fX|Y (x|y) dx dy = E
[

− log2 fX|Y (X|Y )
]

. (19)

Definition 6 (Mutual Information) The mutual information between two random

variables X and Y is given by

I(X ; Y ) , D (fX,Y ‖fXfY ) = h (X)− h (X|Y ) . (20)

Alternatively and equivalent

I (X ; Y ) = sup
Q,P

I ([X ]P ; [Y ]Q) . (21)

Where the supremum is over all finite partitions P and Q.

The quantization of X by P (denoted [X ]P) is the discrete random variable defined by

P (xi) =

∫ xi+∆

xi−∆

fX(x) dx. (22)
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Lemma 2 (Mutual Information is non-negative)

I(X ; Y ) ≥ 0. (23)

Or equivalently,

h(X) ≥ h(X|Y ). (24)

Exercise 2 (Property of covariance matrix) Prove that the Determinant of a

covariance matrix is less than or equal to the product of it’s diagonal elements.

Answer: Using the inequality h(Xn) ≤ ∑n
i=1 h(Xi) where Xn is Gaussian random

vector with covariance matrix K we obtain the following outcome :

n

2
log2 2πe |K| 1n ≤

n
∑

i=1

1

2
log2 2πeKii, (25)

hence

|K| ≤
n
∏

i=1

Kii. (26)

Lemma 3

h(aX) = h(X) + log2(|a|). (27)

Proof: Let Y = aX . Then,

fY (y) =
1

|a|fX
(y

a

)

. (28)

and

h(Y ) = −
∫

fY (y) log2 fY (y) dy

= −
∫

1

a
fX

(y

a

)

log2

(

1

a
fX

(y

a

)

)

a d
(y

a

)

= −
∫

fX

(y

a

)

log2

(

fX

(y

a

))

d
(y

a

)

+ log2(|a|)

= h(X) + log2(|a|). (29)
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Lemma 4 h(AX) = h(X) + log2(|det(A)|) (Left as an exercise for the reader).1

Lemma 5 (Maximum entropy) Let X ∼ fX(x) be a random variable with E(X) = 0

and E(X2) = σ2 then h(X) ≤ 1
2
log2 2πeσ

2 and equality holds iff X ∼ N(0, σ2)

Proof:

Let g(x) = 1√
2πσ2

e−
x
2

2σ2

0 ≤ D(fX‖gX) =

∫

x∈S
fX(x) log2

fX(x)

gX(x)
dx

=

∫

x∈S
fX(x) log2 fX(x) dx−

∫

x∈S
fX(x)[log2

1√
2πσ2

− log2 e
x
2

2σ2 ] dx

= −h(X) +
1

2
log2 2πσ

2 +
1

2
log2 e = −h(X) + log2 2πeσ

2

⇓

h(X) ≤ 1
2
log2 2πeσ

2. (30)

Lemma 6 for any random variable X and estimator X̂

E[(X − X̂)2] ≥ 22h(X)

2πe
. (31)

Proof: from last lemma we derive σ2 ≥ 22h(X)

2πe
so

E[(X − X̂)2]
(a)

≥ E[(X − E(X))2] = var(X). (32)

(a) follows from the fact that E[X ] is the best estimator of X .

B. Gaussian Channel

The most important continuous alphabet channel is the Gaussian channel depicted in

Figure (1). This is a discrete time channel with output Yi at time i, where Yi is the sum

of the input Xi and the white noise Zi. The noise Zi is drawn i.i.d from a Gaussian

distribution with variance σ2
z . Thus,

1when we talk about h(x,y) we assume that f(x,y) exits
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Yi = Xi + Zi, Zi ∼ N (0, σ2
z). (33)

The noise Zi is assumed to be independent of the signal Xi. The most common limitation

on the input is an energy or power constraint. We assume an average power constraint.

For any codeword xn = (x1, x2, ..., xn) transmitted over the channel, we require that

1

n
E[

n
∑

i=1

x2
i ] ≤ P. (34)

m = {1, 2, .., 2nR}
Encoder

Xn
∑ Y n

Decoder
m̂

Zn ∼ N (0, σ2
z)

Fig. 1. Communication system with AWGN

• Enc :
{

1, 2, .., 2nR
}

→ R
n.

• Dec : Rn →
{

1, 2, .., 2nR
}

.

We now define the (information) capacity of the channel as the maximum of the mutual

information between the input and output over all distributions on the input that satisfy

the power constraint.

Definition 7 (Achievable Rate) A rate R is said to be achievable if there exists a

sequence of (2nR, n) codes such that Pr(M 6= M̂) → 0.

Definition 8 (Operational Capacity) Operational capacity C is the supremum over all

achievable rates.
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Definition 9 (Information Capacity) The information capacity of the Gaussian channel

with power constraint P is

C = max
f(x):E[X2]≤P

I(X ; Y ). (35)

Example 3 Let us compute C for the Gaussian case:

I(X ; Y ) = h(Y )− h(Y |X)

= h(Y )− h(Y −X|X)

= h(Y )− h(Z|X)

= h(Y )− h(Z)

(a)

≤ 1

2
log2 2πe(σ

2
z + P )− 1

2
log2 2πe(σ

2
z)

=
1

2
log2(

σ2
z + P

σ2
z

)

=
1

2
log2(1 + SNR). (36)

where step (a) follows from the fact that X is independent of Z therefore E[Y 2] =

E[X2] + E[Z2]. In addition the differential entropy is bounded according to Lemma 5.

Finally, note that the upper bound in (36) is achieved with equality if X ∼ N (0, P ).


