Mathematical methods in communication

June 23th, 2009

Lecture 11

Lecturer: Haim Permuter

Scribe: Amit Toren and Liran Mishali

I. STRONG TYPICALITY SET

We define Weak Typicality set as: (Weak typicality)

$$A_{\epsilon}^{(n)} = \left\{ x^n \in \mathcal{X}^n : \left| -\frac{1}{n} log P(x^n) - H(X) \right| \le \epsilon \right\}. \tag{1}$$

The expression $N(a|x^n)$ = is defined as the number of appearances of symbol a in the sequence x^n Example: $x^n = 01011110 => N(0|x^n) = 3$, $N(1|x^n) = 5$

Definition 1 (Strong Typicality) A sequence $x^n \in \S^n$ is said to be $\epsilon - strongly \ typical$ with respect to a distribution P(x) on \mathcal{X} if:

• For all $a \in \mathcal{X}$ with $P_X(a) > 0$, we have:

$$\left| \frac{N(a|x^n)}{n} - P_X(a) \right| \le \frac{\epsilon}{|\mathcal{X}|} \tag{2}$$

• For all $a \in \mathcal{X}$ with $P_X(a) = 0$, $N(a|x^n) = 0$.

Lemma 1 For $X \sim i.i.d.$ and the expression : $\frac{N(a|x^n)}{n}$ if we take $n \to \infty$ then we get:

$$\frac{N(a|x^n)}{n} \to P_X(a)$$

Proof:

$$N(a|x^{n}) = \sum_{i=1}^{n} 1_{a}(x_{i})$$
(3)

$$1_a(X_i) = \begin{cases} 1 & X_i = a \\ 0 & X_i \neq a \end{cases} \tag{4}$$

By the Law of large numbers , for any $\delta \geq 0$, $\epsilon > 0$ $\exists n \text{ s.t}$

$$\Pr\left(\left|\frac{N(a|x^n)}{n} - P_X(a)\right| < \epsilon\right) \ge 1 - \delta$$

Theorem 1 The typical set T_{ϵ}^n has the following properties

1) If $x^n \in T_{\epsilon}^{(n)}(x)$ then:

$$H(X) - \epsilon_1 \le -\frac{1}{n} log P(x^n) \le H(X) + \epsilon_1 \tag{5}$$

2) For all $\delta \geq 0$ exists n sufficiently large s.t $\Pr(x^n \in T^{(n)}_\epsilon(x)) \geq 1 - \delta$

3)
$$2^{n(H(x)-\epsilon_2)} \le \left| T_{\epsilon}^{(n)}(x) \right| \le 2^{n(H(x)+\epsilon_2)}$$

Proof (1):

$$-\frac{1}{n}logP_X(x^n) \stackrel{X \leadsto i.i.d}{=} -\frac{1}{n}log\prod_{i=1}^n P_X(x^n)$$

$$= -\frac{1}{n}\sum_{i=1}^n logP_X(x^n)$$

$$= -\frac{1}{n}\sum_{a \in \mathcal{X}} N(a|x^n)logP_X(x^n)$$

Example 1 For the series $x^n = 0001011$ with probabilities: $P(0) = \frac{1}{4}$, $P(1) = \frac{3}{4}$

$$N(0|x^n) = 4, N(1|x^n) = 3$$

Instead of summing $\log \frac{1}{4} + \log \frac{1}{4} + \log \frac{1}{4} + \log \frac{3}{4} + \log \frac{1}{4} + \ldots$

We will multiply the number of zeroes and ones in the the corresponded entropy

$$\begin{split} N(0|x^n)log\frac{1}{4} + N(1|x^n)log\frac{3}{4} &= \left| -H(X) - \frac{1}{n}logP_X(x^n) \right| \\ &= \left| \Sigma_{a \in \mathcal{X}} P_X(a)logP_X(a) - \frac{1}{n}logP_X(x^n) \right| \\ &= \left| \Sigma_{a \in \mathcal{X}} (P_X(a) - \frac{N(a|x^n)}{n}) - logP_X(a) \right| \\ &\leq \frac{\epsilon}{|X|} \Sigma_{a \in \mathcal{X}} |logP_X(a)| = \epsilon_1 \end{split}$$

Explanation of (3):

Lets assume that our series is a series with the length of N

A,A,A,A,A	B,B,B,B,B	C,C,C,C,C
$nP_X(A)$	$nP_{X}(B)$	$nP_{X}(C)$

Fig. 1. All possible sequences

$$\left(\frac{n!}{nP_x(a)!nP_x(b)!nP_x(c)!)}\right) = \frac{\log n!}{n\log n}$$

$$= \frac{n\log n - n + \frac{1}{2}\log 2\Pi n}{n\log n} \xrightarrow{n \to \infty} 1$$

$$\# = \frac{n^n}{(nP_x(a))^{nP(a)}(nP_x(b))^{nP(b)}(nP_x(c))^{nP(c)}} = K$$

K - Number of sequences

$$logK = -nP_x(a)\log P_x(a) - nP_x(b)\log P_x(b) - nP_x(c)\log P_x(c) = nH(X)$$

Definition 2 (Joint Typical Set)

$$T_{\epsilon}^{(n)}(X,Y) = \{x^n, y^n : \left| \frac{N(a,b|x^n, y^n)}{n} - P_{XY}(a,b) \right| \le \frac{\epsilon}{|X||Y|} \}$$
 (6)

If
$$P_{X,Y}(a,b) = 0, N(a,b|x^n, y^n) = 0$$

Definition 3 (Conditional strongly typical set)

Let $y^n \in T_{\epsilon}^{(n)}(Y)$ then:

$$T(X|y^n) = \{x^n : (x^n, y^n) \in T_{\epsilon}^{(n)}(X, Y)\}$$
(7)

$$|T(X|y^n)| = 2^{nH(X|Y)}$$

$$T(Y|x^n) = \{y^n : (y^n, x^n) \in T_{\epsilon}^{(n)}(X, Y)\}$$
 (8)

$$|T(Y|x^n)| = 2^{nH(Y|X)}$$

$$|T_{\epsilon}^{n}(X,Y)| = 2^{nH(Y,X)} |T_{\epsilon}^{n}(X|Y)| = 2^{nH(X|Y)}$$

$$\tag{9}$$

Fig. 2. Noisy Typewriter From X to Y

Example 2 We will show that $|T_{\epsilon}^{\ n}(Y|X)| = 2^{nH(Y|X)}$

The channel transfer a to d/e according to the channel noise , b to f/g etc.

Fig. 3. Example 2

The amount of series for all inputs:

$$|T_{\epsilon}^{n}(Y|X)| = \binom{nP_{X}(a)}{nP_{X,Y}(a,d)nP_{X,Y}(a,e)} \binom{nP_{X}(b)}{nP_{X,Y}(b,f)nP_{X,Y}(b,g)} \binom{nP_{X}(c)}{nP_{X,Y}(c,h)nP_{X,Y}(c,i)}$$

Lets use the approximation : $n! \approx n^n$ and operate log, and each binom will be:

$$-H(X) + H(Y,X) = H(Y|X)$$

Applying it to the whole expression we will get: $|T_{\epsilon}^{n}(Y|X)| = 2^{nH(Y|X)}$

II. RATE DISTORTION

Fig. 4. Communication system

Definition 4 (Distortion function) A distortion function or distortion measure is a mapping

$$d: \mathcal{X} \times \hat{\mathcal{X}} \to \mathcal{R}^+ \tag{10}$$

from the set of source alphabet-reproduction alphabet pairs into the set of nonnegative real numbers. The distortion $d(x,\hat{x})$ is a measure of the cost of representing the symbol x by the symbol \hat{x} .

Definition 5 (Distortion Bound) A distortion measure is said to be bounded if the maximum value of the distortion is finite:

$$d_{max} \stackrel{def}{=} \max_{x \in \mathcal{X}, \hat{x} \in \hat{\mathcal{X}}} d(x, \hat{x}) < \infty. \tag{11}$$

In most cases, the reproduction alphabet $\hat{\mathcal{X}}$ is the same as the source alphabet \mathcal{X} .

Example 3: Examples of common distortion function are:

$$d(X_i, \hat{X}_i) = X_i \oplus \hat{X}_i - Hamming \ Distance$$

$$d(X_i, \hat{X}_i) = (X_i - \hat{X}_i)^2 - Mean \ Square \ Error$$

Definition 6 (Distortion between sequences) The distortion between sequences x^n and $\hat{x^n}$ is defined by:

$$D(X^{n}, \hat{X}^{n}) = \frac{1}{n} \sum_{i=1}^{n} d(X_{i}, \hat{X}_{i})$$
(12)

So the distortion for a sequence is the average of the per symbol distortion of the elements of the sequence.

Definition 7 $((2^{nR}, n)$ -rate distortion code)

A $(2^{nR}, n)$ -rate distortion code consists of:

Encoder: $f(X^n): X^n \rightarrowtail (1,2,3,,,2^{nR})$

Decoder:
$$g(f(X^n)): X^n \rightarrow (1,2,3,,,2^{nR})$$

The distortion associated with the $(2^{nR},n)$ code is defined as $\bar{D}(X^n,\hat{X^n}) = \frac{1}{n} \sum_{i=1}^n d(X_i,\hat{X_i})$

Definition 8 (Achivable Rate)

A rate distortion pair (R,D) is achivable if \exists a sequence of $(n,2^{nR})$ codes s.t : $\lim_{n\to\inf}\bar{D}(X^n,\hat{X^n})\leq D$ $R(D)^{(I)}=\min_{P(\hat{x}|x):E(d(x,\hat{x}))\leq D}I(X;\hat{X})$

Where the minimization is over all conditional distributions $P(\hat{x}|x)$ for which the joint distribution $P(x|\hat{x}) = P(x)P(\hat{x}|x)$ satisfies the expected distortion constrained.

Definition 9 (Rate Distortion lower bound)

The rate distortion function R(D) is the infimum of all R that are achievable with Distortion D

Definition 10 (Distortion Rate lower bound)

The distortion rate function D(R) is the infimum of all distortion D such that (R, D) is in the rate distortion region of the source for a given rate R.

Theorem 2 The rate distortion function for an i.i.d. source X with distribution p(x) and bounded distortion function $d(x,\hat{x})$ is equal to the associated rate distortion function. Thus,

$$R(D) = R(D)^{(I)} = \min_{P(\hat{x}|x): \sum_{(x,\hat{x})} P(x)P(\hat{x}|x)d(x,\hat{x}) \le D} I(X;\hat{X})$$
(13)

A. CALCULATION OF THE RATE DISTORTION FUNCTION

1) Binary Source:

Theorem 3 (The rate distortion function for a Bernoulli(p) source with Hamming distortion)

$$X \sim \text{Ber}(p), p \leq \frac{1}{2}, D \leq \frac{1}{2}$$

 $d(X_i, \hat{X}_i) = X_i \oplus \hat{X}$
 $R(D) = ?$

Proof

$$R(D) = \begin{cases} H_b(p) - H(D) & p > D \\ 0 & p < D \end{cases}$$

If
$$D = 0$$
 $X_i = \hat{X}_i \Rightarrow R = H_b(p)$

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= H(X) - H(X \oplus \hat{X}_i|\hat{X})$$

$$\geq H(X) - H(X \oplus \hat{X}_i)$$

$$H_b(p) - H_b(D)$$

We demand:
$$E[d(X_i, \hat{X}_i)] \leq D$$
, $P_r[X_i \oplus \hat{X}_i = 1] \leq D$

We will achive it with:

$$X \backsim Ber(p), \ X = \hat{X} \oplus Z, \ Z \backsim Ber(p), \ Z \perp \hat{X}$$

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$= H(X) - H(X \oplus \hat{X}_i|\hat{X})$$

$$\geq H(X) - H(Z)$$

$$H_b(p) - H_b(D)$$

Fig. 5. Rate distortion function for a Bernoulli $(\frac{1}{2})$ source.

Theorem 4 (The rate distortion function for a $\mathcal{N}(0,\sigma^2)$ source with squred-error distortion)

$$R(D) = \begin{cases} \frac{1}{2}log\frac{\sigma^2}{D} & 0 \le D \le \sigma^2 \\ 0 & D \ge \sigma^2 \end{cases}$$

Proof: Let X be $\backsim \mathcal{N}(0, \sigma^2)$. By the rate distortion theorem extended to continuous alphabets, we have

$$R(D) = \min_{f(\hat{x}|x): E(\hat{X}-X)^2 \le D} I(X; \hat{X}).$$
 (14)

First we should find the lower bound for the rate distortion function and prove that this is achievable.

$$\begin{split} I(X;\hat{X}) &= h(X) - h(X|\hat{X}) \\ &= \frac{1}{2}log(2\pi\epsilon)\sigma^2 - h(X - \hat{X}|\hat{X}) \\ &\geq \frac{1}{2}log(2\pi\epsilon)\sigma^2 - h(X - \hat{X}) \\ &\geq \frac{1}{2}log(2\pi\epsilon)\sigma^2 - h(\mathcal{N}(0, E(X - \hat{X})^2)) \\ &= \frac{1}{2}log(2\pi\epsilon)\sigma^2 - \frac{1}{2}log(2\pi\epsilon)E(X - \hat{X})^2 \end{split}$$

$$\geq \frac{1}{2}log(2\pi\epsilon)\sigma^2 - \frac{1}{2}log(2\pi\epsilon)D$$
$$= \frac{1}{2}log\frac{\sigma^2}{D}$$

Conclusion:

$$R(D) \ge \frac{1}{2} log \frac{\sigma^2}{D} \tag{15}$$

If $D \le \sigma^2$ we choose

$$X = \hat{X} + Z, \hat{X} \backsim \mathcal{N}(0, \sigma^2 - D), Z \backsim \mathcal{N}(0, D)$$

where \hat{X} and Z are independent. For this joint distribution, we calculate

$$I(X; \hat{X}) = \frac{1}{2} log \frac{\sigma^2}{D} \tag{16}$$

and $E(X-\hat{X})^2=D$, thus achieving the bound. If $D>\sigma^2$, we choose $\hat{X}=0$ with probability 1, achieving R(D)=0. Hence, the rate distortion function for the Gaussian source with squared-error distortion is

$$R(D) = \begin{cases} \frac{1}{2}log\frac{\sigma^2}{D} & 0 \le D \le \sigma^2 \\ 0 & D \ge \sigma^2 \end{cases}$$

We can rewrite R(D) as D(R) : $D(R) = \sigma^2 2^{-2R}$.

Fig. 6. Rate distortion function for a Gaussian source.