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Mathematical methods in communication 27.05.2011

lecture 9

Lecturer: Haim Permuter Scribe: Racheli Hayun

In this lecture we will present:
1) Intuition for Gaussian channel capacity= 1 log(££Y).

2) Channel with state information.

[. INTUITION FOR GAUSSIAN CHANNEL CAPACITY

The volume of sphere iR" with radius r is proportional te™.

»
@@ ® r=+/n(N+ P)
r=+vnN

Fig. 1. Sphere with radius that contains small spheres with radifiseach represent a codewaoid with noise

Reminder:

. Gaussian channel with inpuf has a power constraifty ", X? < P, therefore the

radius of the sphere is= />, X? < VnP.

« Z is a Gaussian noise and is independent of the input signal

% ~ N(0, N)

v

Fig. 2. Gaussian channel with noise

If we send a signalX”™ the output will be in a small sphere with radiyénN, the
variance ofY":
var(Y") = +/n(N + P) 1)
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The sphere where the output take place has a radias/n(N + P).

How many codeword we can broadcast without errors?

_wol(output)  a(y/n(N + P))" N+iP\
#codewords = vol(noise) (/)" = ( N ) (2)
R is defined:
1 P+ N)2 1 P+ N
e () e (TY) @

1
R= - log(#codewords)

In achievability proof we saw that we generate the codewasording toN (0, P),

therefore all codewords are expected to be at the edge optieres

T r8

@ &

B FT >
P e

Fig. 3. Sphere with codewords on the edge. For large dimension it tutrthat we do not loos anything by placing

the codewords on the edge.

Example 1 : (Ratio between volumesR?)
Consist two balls - one with radiu8 and one with radius — €. Lets calculate the ratio

between the volumes fot = 2:
(4)

Fig. 4. Two balls with about the same volume for= 2
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The internal ball has the same volume as the external ringfitre it can't include
more codewords.
Lets calculate the ratio between the volumes for a spheranoértsionn, where n is

very large:

<T_€)n%0 Ve > 0 (5)

T
In this case all the volume is close to the edge, thereforéhallcodewords are close to

the edge and if we will put some inside it will not improve tlree.

II. CHANNEL WITH STATE INFORMATION

In most cases, particularly wireless communication, thenokels we use is varying

with time. Denote the channel stafe~ i.i.d with P(s) and independent of the messages.

Channel coding:

m={1,2,., 2%} X" yn n
»  Encoder > Py x | Decoder S—>

C=max[(X;Y) (6)

p(z)

Fig. 5. Communication system without state information

Channel coding with Side Information:

Assuming:

P(sis | 2",y s") = P(sit1) (7)

Py | ',s',y'™") = P(y; | @i, i) (8)
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Decoder | — "~

\ 4

o nRk
m={12 .2 »| Encoder > Prixs

switchl switch?2

S S

Fig. 6. Communication system with side information available either at thedencor the decoder or both

which implies:
P(yi, sip1 | 78,971, 8%) @ P(sipr | 2y 71 8Y) - Py | @', si, Sit1)
= P<3i+1) ) P(yi | T, Si) 9)

where
(a) follows from chain rule.

discuss the following cases:
1) No state information is available - CSI (both switches ig.F are open).

2) CSl is available to the decoder (Only to the decoder, switg¢hn Fig. 6 is open).
3) CSl is available to the decoder and encoder (Both switch&sgin6 are closed).

Case | : No State Information Is Available - CSI

Theorem 1. The capacity of a channel with no state information is
C = rn(aicl(X; Y) (10)
p(x
Proof: This is the regular channel we discussed so far. A channekisaryless if

P(y;|zt, y*~1) = P(y;|x;). Now let us show that a channel with.d state is memoryless:

P(yz | miayi_l) = Zp(yzvsz ‘ xi7yi_1)
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= ZP(&' |2 y' ™) - Plyi | si 2’y

@ > P(si) - Py | 56, 1)
® ZP(si | i) - P(yi | si,24)
= Ply| =) ()

where
(a) follows from S ~ i.i.d and the second assumption.

(b) follows from S;, X; are independent.

|
Case Il : CSI Available For The Decoder We define the problem:
Encoder : f{1,2,.., 2" — X"
Decoder : g: Y™ s" — {1,2,..,2"%}
S™ ~p(s) id.i.d
Theorem 2: The capacity of a CSI available for the decoder channel is:
C=maxI(X;Y,S) =max I(X;Y]5) (12)

p(z) p(z)
Proof: The channel output is the vectdl’, S)”, denote a new output a§ =
(Y, S)". The channel capacity i6' = max, ) I(X; Y) = max,;) /(X;Y,S). The joint
distribution is P(z) P(s)P(y|x, s) and thereforeX is independent af:
C = maxI(X;Y.,9)
p(z)

= max [I[(X;S)+ 1(X;Y | 9)]

p(z)

= max[(X;Y]9) (13)

p(z)

where
(a) follows from chain rule.

(b) follows from X, S independent.
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Case Il : CSI available for the Decoder and Encoder We define the problem

Encoder : f:{1,2,..., 2"} 8" — X"
Decoder : ¢:Y™,S" — {1,2,.. 2"%

(14)

Theorem 3: The capacity where CSI is available at the decoder and encbdemnel is:

C = maxp(w‘s)I(X; Y | S)
= MATp(a|s) ZP(S =s5)-I(X;Y |S=y5s) (15)
(16)

Proof: We will split the messagél1, 2,...,2"%} : {1,2,..., 2"} x {1,2, ..., 2"}

Ro=I(X;Y|S = 0) (17)
Ry =I(X;Y|S=1) (18)
(19)

Doing that we split the channel into two separate channels:

m0:{1,2,..,2”RO X"(m, Yyn A n
’} Encoder (mo Pyixs—o [ ™| Decoder MDZ

my = {1,2, .., 2" X"(m yn g (VT

Py |x,5-1 | Decoder

Encoder

Fig. 7. Splitted Channel



such that:

Ry = n-p(S=0)I(X;Y|S=0)

BlockSize(S =0) = n-p(S=0)

R = n(S=DIX;Y|S=1)

BlockSize(S=1) = n-p(S=1)

Calculating the total rate of the channel:

R %[np(S —O)I(X: V]S = 0) + np(S = DI(X: V]S = 1)] = I(X:Y]S)

Converse :
nR =
(@)
(b)
<
()
<
<
(@ S"1LM

(b) Fano inequality
(c) Chain rule

H(M)

H(M|S™)

H(M|S™) — H(M|S™,Y™) + H(M|S", Y™
I(M;Y™[S™) + ney

I(M, X"™(M,S™); Y"|S™) + ne,

H(Y™|S™) — H(Y"|S™, X", M) + ne,,

S CHY|Y'T S — HYi[Y'™!, 8", X", M) + ne,
=1

> H(Yi|S:) — H(Yi|S:, Xi) + ne,

=1

> I(Y: Xi[S) + ney,
=1

[rx(12|1>§](Y; X|[5) + €,)n
p(x|s

9-7

(20)

(21)



9-8

Example 2 :Channel with side information

S~ B(3)
0 0
S =0
0 0
S=1 b
1 1

Fig. 8. Example - channel with CSI. Fof = 0 the channel is perfect and f¢éf = 1 we get a BSC channel with
probability b

. If the decoder and encoder don’'t know the state, the equivaleannel is BSC:

BSC:

ANl /

Fig. 9. Example - equivalent channel where CSI is not available foddw®der and encoder

Therefore,C' = max,) [(X;Y) =1— H(%)

. If the state is available only for the decoder akdS independent

Ca = m(aicl(X;Y | S)
p(x

= max[P(S=0)-I(X;Y |S=0)+P(S=1)-I(X;YV |S=1)]

p(x)
— %-H—%(l—H(b))
. %H(b) (22)

Who is biggerH (%) or 1H(b)?



Fig. 10. Calculating the entropy & = b, X = g

We knowt (-) is convex withA = 1,

Therefore,H (3b + 30) > $H(b) +

_1
2

A
sH(0) = 3H(b)
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