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Mathematical methods in communication 27.05.2011

lecture 9

Lecturer: Haim Permuter Scribe: Racheli Hayun

In this lecture we will present:

1) Intuition for Gaussian channel capacityC = 1
2
log(P+N

N
).

2) Channel with state information.

I. I NTUITION FOR GAUSSIAN CHANNEL CAPACITY

The volume of sphere inRn with radius r is proportional torn.

r

r̄r̄
r̄

r̄ =
√
nN

r =
√

n(N + P )

Fig. 1. Sphere with radiusr that contains small spheres with radiusr̄, each represent a codewordX with noise

Reminder:

• Gaussian channel with inputX has a power constraint1
n

∑

i X
2
i ≤ P , therefore the

radius of the sphere isr =
√
∑

i X
2
i ≤

√
nP .

• Z is a Gaussian noise and is independent of the input signalX.

X

Z ∼ N(0, N)

Y
+

Fig. 2. Gaussian channel with noise

If we send a signalXn the output will be in a small sphere with radius
√
nN , the

variance ofY n:

var(Y n) =
√

n(N + P ) (1)
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The sphere where the output take place has a radiusr =
√

n(N + P ).

How many codeword we can broadcast without errors?

#codewords =
vol(output)

vol(noise)
=

α(
√

n(N + P ))n

α(
√
nN)n

=

(

√

N + P

N

)n

(2)

R is defined:

R =
1

n
log(#codewords) =

1

n
log

(

(P +N)
n

2

N
n

2

)

=
1

2
log

(

P +N

N

)

(3)

In achievability proof we saw that we generate the codewordsaccording toN(0, P ),

therefore all codewords are expected to be at the edge of the sphere.

r r̄
r̄
r̄

r̄r̄r̄r̄
r̄
r̄
r̄
r̄
r̄ r̄ r̄

r̄
r̄ r̄

Fig. 3. Sphere with codewords on the edge. For large dimension it turns out that we do not loos anything by placing

the codewords on the edge.

Example 1 : (Ratio between volumes -R2)

Consist two balls - one with radiusR and one with radiusr− ǫ. Lets calculate the ratio

between the volumes forn = 2:
(

r − ǫ

r

)2

→ 1 (4)

r
r − ǫ

Fig. 4. Two balls with about the same volume forn = 2
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The internal ball has the same volume as the external ring therefore it can’t include

more codewords.

Lets calculate the ratio between the volumes for a sphere of dimensionn, where n is

very large:
(

r − ǫ

r

)n

→ 0 ∀ǫ > 0 (5)

In this case all the volume is close to the edge, therefore allthe codewords are close to

the edge and if we will put some inside it will not improve the rate.

II. CHANNEL WITH STATE INFORMATION

In most cases, particularly wireless communication, the channels we use is varying

with time. Denote the channel stateS ∼ i.i.d with P (s) and independent of the messages.

Channel coding:

m = {1, 2, .., 2nR}
Encoder

Xn

PY |X

Y n

Decoder
Sn

C = max
p(x)

I(X;Y ) (6)

Fig. 5. Communication system without state information

Channel coding with Side Information:

Assuming:

P (si+1 | xi, yi−1, si) = P (si+1) (7)

P (yi | xi, si, yi−1) = P (yi | xi, si) (8)
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m = {1, 2, .., 2nR}
Encoder PY |X,S Decoder

m̂(Y n)

Sn Sn

switch1 switch2

Fig. 6. Communication system with side information available either at the encoder, or the decoder or both

which implies:

P (yi, si+1 | xi, yi−1, si)
(a)
= P (si+1 | xi, yi−1, si) · P (yi | xi, si, si+1)

= P (si+1) · P (yi | xi, si) (9)

where

(a) follows from chain rule.

discuss the following cases:

1) No state information is available - CSI (both switches in Fig. 6 are open).

2) CSI is available to the decoder (Only to the decoder, switch(1) in Fig. 6 is open).

3) CSI is available to the decoder and encoder (Both switches inFig. 6 are closed).

Case I : No State Information Is Available - CSI

Theorem 1: The capacity of a channel with no state information is

C = max
p(x)

I(X;Y ) (10)

Proof: This is the regular channel we discussed so far. A channel is memoryless if

P (yi|xi, yi−1) = P (yi|xi). Now let us show that a channel withi.i.d state is memoryless:

P (yi | xi, yi−1) =
∑

si

P (yi, si | xi, yi−1)



9-5

=
∑

si

P (si | xi, yi−1) · P (yi | si, xi, yi−1)

(a)
=

∑

P (si) · P (yi | si, xi)

(b)
=

∑

P (si | xi) · P (yi | si, xi)

= P (yi | xi) (11)

where

(a) follows fromS ∼ i.i.d and the second assumption.

(b) follows from Si, Xi are independent.

Case II : CSI Available For The Decoder We define the problem:

Encoder : f : {1, 2, ..., 2nR} → Xn

Decoder : g : Y n, Sn → {1, 2, ..., 2nR}

Sn ∼ p(s) i.i.d

Theorem 2: The capacity of a CSI available for the decoder channel is:

C = max
p(x)

I(X;Y, S) = max
p(x)

I(X;Y |S) (12)

Proof: The channel output is the vector(Y, S)n, denote a new output as̃Y =

(Y, S)n. The channel capacity isC = maxp(x) I(X; Ỹ ) = maxp(x) I(X;Y, S). The joint

distribution isP (x)P (s)P (y|x, s) and thereforeX is independent atS:

C = max
p(x)

I(X;Y, S)

(a)
= max

p(x)
[I(X;S) + I(X;Y | S)]

(b)
= max

p(x)
I(X;Y |S) (13)

where

(a) follows from chain rule.

(b) follows fromX,S independent.
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Case III : CSI available for the Decoder and Encoder We define the problem:

Encoder : f : {1, 2, ..., 2nR}, Sn → Xn

Decoder : g : Y n, Sn → {1, 2, ..., 2nR}

(14)

Theorem 3: The capacity where CSI is available at the decoder and encoderchannel is:

C = maxp(x|s)I(X;Y | S)

= maxp(x|s)

∑

si

P (S = s) · I(X;Y | S = s) (15)

(16)

Proof: We will split the message{1, 2, ..., 2nR} : {1, 2, ..., 2nR0} x {1, 2, ..., 2nR1}

R0 = I(X;Y |S = 0) (17)

R1 = I(X;Y |S = 1) (18)

(19)

Doing that we split the channel into two separate channels:

m0 = {1, 2, .., 2nR0}
Encoder

Xn(m0)
PY |X,S=0

Y n

Decoder
m̂0(Y

n)

m1 = {1, 2, .., 2nR1}
Encoder

Xn(m1)
PY |X,S=1

Y n

Decoder
m̂1(Y

n)

Fig. 7. Splitted Channel



9-7

such that:

R0 = n · p(S = 0)I(X;Y |S = 0)

BlockSize(S = 0) = n · p(S = 0)

R1 = n· (S = 1)I(X;Y |S = 1)

BlockSize(S = 1) = n · p(S = 1)

Calculating the total rate of the channel:

R =
1

n
[np(S = 0)I(X;Y |S = 0) + np(S = 1)I(X;Y |S = 1)] = I(X;Y |S) (20)

Converse :

nR = H(M) (21)

(a)
= H(M |Sn)

= H(M |Sn)−H(M |Sn, Y n) +H(M |Sn, Y n)

(b)

≤ I(M ;Y n|Sn) + nǫn

= I(M,Xn(M,Sn);Y n|Sn) + nǫn

= H(Y n|Sn)−H(Y n|Sn, Xn,M) + nǫn

(c)
=

n
∑

i=1

H(Yi|Y i−1, Sn)−H(Yi|Y i−1, Sn, Xn,M) + nǫn

≤
n
∑

i=1

H(Yi|Si)−H(Yi|Si, Xi) + nǫn

=
n
∑

i=1

I(Yi;Xi|Si) + nǫn

≤ [max
p(x|s)

I(Y ;X|S) + ǫn]n

(a) Sn⊥M

(b) Fano inequality

(c) Chain rule
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Example 2 :Channel with side information

S ∼ B(1
2
)

0

1

0

1

0

1

0

1

S = 0

S = 1 b

Fig. 8. Example - channel with CSI. ForS = 0 the channel is perfect and forS = 1 we get a BSC channel with

probability b

• If the decoder and encoder don’t know the state, the equivalent channel is BSC:

0

1

0

1

b
2BSC:

Fig. 9. Example - equivalent channel where CSI is not available for thedecoder and encoder

Therefore,C = maxp(x) I(X;Y ) = 1−H( b
2
)

• If the state is available only for the decoder andX,S independent

Cd = max
p(x)

I(X;Y | S)

= max
p(x)

[P (S = 0) · I(X;Y | S = 0) + P (S = 1) · I(X;Y | S = 1)]

=
1

2
· 1 + 1

2
(1−H(b))

= 1− 1

2
H(b) (22)

Who is biggerH( b
2
) or 1

2
H(b)?
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H(b)

X
b
2 b

H( b
2
)

H(b)
2

H( b
2
) ≥ H(b)

2

1

Fig. 10. Calculating the entropy atX = b, X =
b

2

We knowH(·) is convex withλ̄ = 1
2
, λ = 1

2

Therefore,H(1
2
b+ 1

2
0) ≥ 1

2
H(b) + 1

2
H(0) = 1

2
H(b)


