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Measuring Causality

Agent
(Y1, Y2, Y3, ..., Yi, ...)(X1, X2, X3, ..., Xi, ...)

Communication Actions
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Measuring Causality

Question: Are the actions Y i caused by the communication Xi?
not caused if P (yi|yi−1, xi) = P (yi|yi−1), e.g., Y i independent Xi.
caused if P (yi|yi−1, xi) 6= P (yi|yi−1), e.g., Yi = Xi & Xi ∼ i.i.d.
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Measuring Causality

Does the mutual information I(Xn; Y n) measure causality?

Agent
(Y1, Y2, Y3, ..., Yi, ...)(X1, X2, X3, ..., Xi, ...)

Unit delay

TX

Communication Actions

Example: Yi i.i.d Bernoulli(1
2 ) and Xi = Yi−1.

1

n
I(Xn; Y n) =

n − 1

n
−→ 1
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Measuring Causality

Does the mutual information I(Xn; Y n) measure causality? No.

Agent
(Y1, Y2, Y3, ..., Yi, ...)(X1, X2, X3, ..., Xi, ...)

Unit delay

TX

Communication Actions

Example: Yi i.i.d Bernoulli(1
2 ) and Xi = Yi−1.

1

n
I(Xn; Y n) =

n − 1

n
−→ 1
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Directed Information and Causal Conditioning

Directed Information [Marko73, Massey90]

I(Xn → Y n) , H(Y n) − H(Y n||Xn)

I(Xn; Y n) , H(Y n) − H(Y n|Xn)
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Directed Information and Causal Conditioning

Directed Information [Marko73, Massey90]
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Measuring Causality

Consider I(Xn → Y n) for measuring causality.

Agent
(Y1, Y2, Y3, ..., Yi, ...)(X1, X2, X3, ..., Xi, ...)

Unit delay

TX

Communication Actions

Example: Yi i.i.d Bernoulli(1
2 ) and Xi = Yi−1.

I(Xn → Y n) = H(Y n) − H(Y n||Xn)

=
n

∑

i=1

H(Yi|Y i−1) − H(Yi|Y i−1, Xi) = 0
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Finite State Channels

Message

Encoder

xi(m)
xi

Finite State Channel

P (yi, si|xi, si−1)
yim

Decoder

m̂(yN )

zi(yi) yi

Unit Delay Time-Invariant
Functionzi−1(yi−1)

m̂

Estimated
message

Finite State Channel(FSC) property:

P (yi, si|xi, si−1, yi−1) = P (yi, si|xi, si−1)
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Finite State Channels with and without feedback
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Finite State Channels with and without feedback

Message

Encoder

xi(m, zi−1)
xi

Finite State Channel

P (yi, si|xi, si−1)
yim

Decoder

m̂(yN )

zi(yi) yi

Unit Delay Time-Invariant
Functionzi−1(yi−1)

m̂

Estimated
message

Finite State Channel(FSC) property:

P (yi, si|xi, si−1, yi−1) = P (yi, si|xi, si−1)

Question: What is the channel capacity in this setting?
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Answer

Theorem

For any FSC without feedback [Gallager68]

CFB≥
1

n
max
P (xn)

min
s0

I(Xn; Y n|s0)−
log |S|

n

CFB≤
1

n
max
P (xn)

max
s0

I(Xn; Y n|s0)+
log |S|

n
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Answer

Theorem

For any FSC without feedback [Gallager68]

CFB≥
1

n
max
P (xn)

min
s0

I(Xn; Y n|s0)−
log |S|

n

CFB≤
1

n
max
P (xn)

max
s0

I(Xn; Y n|s0)+
log |S|

n

Theorem

For any FSC with feedback [P.&Weissman&Goldsmith06]

CFB≥ 1

n
max

P (xn||zn)
min
s0

I(Xn → Y n|s0)−
log |S|

n

CFB≤ 1

n
max

P (xn||zn)
max

s0
I(Xn → Y n|s0)+

log |S|
n
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Key properties

P (xn, yn) = P (xn||yn−1)P (yn||xn)

P (xn, yn) = P (xn)P (yn|xn)

H. Permuter (Stanford University) FSCs with and without feedback via directed information



Key properties

P (xn, yn) = P (xn||yn−1)P (yn||xn)

P (xn, yn) = P (xn)P (yn|xn)

1

n
|I(Xn → Y n) − I(Xn → Y n|S)| ≤ H(S)

n

1

n
|I(Xn; Y n) − I(Xn; Y n|S)| ≤ H(S)

n
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Gallager’s proof for the case of non-feedback

1 Randomly chosen codewords with distribution

P ∗(xn) = arg max
P (xn)

min
s0

I(Xn; Y n|s0).

2 Maximum likelihood decoder :

m∗ = arg max
m

P (yn|m) = arg max
m

P (yn|xn(m)).

3 Show that if

R <
∑

yn

∑

xn

P (xn) · P (yn|xn) ln
P (yn|xn)

∑

xn P (xn)P (yn|xn)
,

then Pe → 0.
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Proof for the case of time-invariant feedback

1 Randomly chosen codewords , with distribution

P ∗(xn) = arg max
P (xn)

min
s0

I(Xn; Y n|s0).
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Proof for the case of time-invariant feedback

1 Randomly chosen codetrees , with distribution

P ∗(xn||zn−1) = arg max
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Proof for the case of time-invariant feedback

1 Randomly chosen codetrees , with distribution

P ∗(xn||zn−1) = arg max
P (xn||zn−1)

min
s0

I(Xn→Y n|s0).

x1 = 0 x2 = 1 x3 = 1 x1 = 0
x 2

=
1

x
2 =

1

x3
=

0

x
3 = 1

x3
=

1

x
3 = 1

zi−1 = 0

zi−1 = 1

codeword code-tree
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Proof for the case of time-invariant feedback

1 Randomly chosen codetrees , with distribution
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m
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Did we get directed information?

Recall first property:

P (xn, yn) = P (xn||yn−1)P (yn||xn)

∑

xn,yn

P (xn||yn−1)·P (yn||xn) ln
P (yn||xn)

∑

xn P (xn||yn−1) · P (yn||xn)

?
= I(Xn → Y n)
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Did we get directed information?

Recall first property:

P (xn, yn) = P (xn||yn−1)P (yn||xn)

∑

xn,yn

P (xn, yn) ln
P (yn||xn)

∑

xn P (xn, yn)
= I(Xn → Y n).

Does always switching between P (xn) ↔ P (xn||yn−1) and
P (yn|xn) ↔ P (yn||xn) work?
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Did we get directed information?

Recall first property:

P (xn, yn) = P (xn||yn−1)P (yn||xn)

∑

xn,yn

P (xn, yn) ln
P (yn||xn)

∑

xn P (xn, yn)
= I(Xn → Y n).

Does always switching between P (xn) ↔ P (xn||yn−1) and
P (yn|xn) ↔ P (yn||xn) work?
No! For instance we have

∑

u

P (yn, u|xn) = P (yn|xn)

but in general
∑

u

P (yn, u||xn) 6= P (yn||xn)
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Capacity Results

For some cases the upper bound and the lower bound coincide.

1 Initial state has positive probability for all states.
2 Compound channel setting (infinitely many FSCs

Pθ(yi, si|xi, si−1), θ ∈ Θ).
3 Indecomposable FSC and no ISI.
4 The state is computable at the the encoder, and all states

are connected.
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The trapdoor channel

Introduced by David Blackwell in 1961. [Ash65], [Ahlswede &
Kaspi 87], [Ahlswede 98], [Kobayashi 02].

(a) Ash book (b) D. Blackwell
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The Trapdoor Channel

0
1    

OutputInput
Channel

 
1 0

st = st−1 + xt − yt

s0 = 0
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The Trapdoor Channel

0
   

OutputInput
Channel

 
1

1 0

st = st−1 + xt − yt

s0 = 0
x1 = 1,
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The Trapdoor Channel

 

OutputInput
Channel

 
1

1
0

0 0 

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
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The Trapdoor Channel

 

OutputInput
Channel

 
1

1
0

0 0 

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
x2 = 0,
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The Trapdoor Channel

OutputInput
Channel

 
1

1
0

0 00 

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
x2 = 0, s2 = 1, y2 = 0,
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The Trapdoor Channel

OutputInput
Channel

 
1

1 0 00
1

 

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
x2 = 0, s2 = 1, y2 = 0,
x3 = 1,
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The Trapdoor Channel

OutputInput
Channel

 
1

1 0 00
1

1

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
x2 = 0, s2 = 1, y2 = 0,
x3 = 1, s3 = 1, y3 = 1.
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The Trapdoor Channel

OutputInput
Channel

 
1

1 0 00
1

1

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
x2 = 0, s2 = 1, y2 = 0,
x3 = 1, s3 = 1, y3 = 1.

Biochemical Interpretation [Berger 71]
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Solving the trapdoor channel

Initial state doesn’t matter; upper and lower bounds
become equal.

CFB = lim
N→∞

1

N
max

P (xN ||yN−1)
I(XN → Y N )

Converting it into a dynamic program. [Yang, Kavc̆ić and

Tatikonda05].

Use value iteration algorithm to solve numerically the
dynamic program.

Verify the optimal solution through Bellman equation.
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Solving the dynamic programming

Executed 20 value iterations: Jk+1 = T ◦ Jk

CFB ≈ 0.694 bits
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Solving the dynamic programming

Executed 20 value iterations: Jk+1 = T ◦ Jk

CFB ≈ 0.694 bits

HW question posed in Prof. Cover’s class

Entropy rate. Find the maximum entropy rate of the following
two-state Markov chain:

BA

1 − pp

1
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Solving the dynamic programming

Executed 20 value iterations: Jk+1 = T ◦ Jk

CFB ≈ 0.694 bits

HW question posed in Prof. Cover’s class

Entropy rate. Find the maximum entropy rate of the following
two-state Markov chain:

BA

1 − pp

1

Solution: H(X ) = log φ = 0.6942... bits (Golden Ratio: φ =
√

5+1
2 )
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Dynamic programming- Bellman equation

Theorem

(Bellman Equation.) If there exists a function J(β) and a
constant ρ that satisfy

J(β) = T ◦ J(β) − ρ

then ρ is the optimal infinite horizon average reward.
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Dynamic programming- Bellman equation

Theorem

(Bellman Equation.) If there exists a function J(β) and a
constant ρ that satisfy

J(β) = T ◦ J(β) − ρ

then ρ is the optimal infinite horizon average reward.

By constructing J(β) and ρ = log
√

5+1
2 that satisfies the

Bellman equation we conclude that

Cfb = log

√
5 + 1

2
.
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A scheme that achieves capacity

Let rn denotes a sequences of length n with no two
consecutive 1’s.

00101010100101...

A simple scheme

Encoder: Map each message m to a sequence [rn(m)].
Decoder: The decoder decodes the sequence backward!

ri = 1 ⇒ ri−1 = 0

ri = 0 ⇒ ri−1 = yi ⊕ yi−1

[P.&Cuff&Van-Roy&Weissman06]
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MAC with time-invariant feedback

Encoder 1

x1,i(m1, z
i−1
1 )

Encoder 2

x2,i(m2, z
i−1
2 )

m1

∈ {1, ..., 2nR1}

m2

∈ {1, ..., 2nR2}

Finite State MAC

P (yi, si|x1,i, x2,i, si−1)

Time-Invariant

Time-Invariant

Function

Function

z2,i(yi)

z1,i(yi)

z2,i−1

z1,i−1

Decoder

Unit

Unit

Delay

Delay

m̂1(y
N )

m̂2(y
N )

m̂1, m̂2

yi

yi
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Finite State MAC

Let

Rn =
⋃











R1 ≤ mins0
1
n
I(Xn

1 → Y n||Xn
2 , s0) − log |S|

n
,

R2 ≤ mins0
1
n
I(Xn

2 → Y n||Xn
1 , s0) − log |S|

n
,

R1 + R2 ≤ mins0
1
n
I((X1, X2)

n → Y n|s0) − log |S|
n

,

the union is over input distribution P (xn
1 ||zn−1

1 )P (xn
2 ||zn−1

2 ).

Theorem

For any FS-MAC with time invariant feedback, Rn is an
inner bound.
The outer bound is given in terms of limit. P.&Weissman&Chen07
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An Ingredient of the Proof: Sup-additivity

Let an be a bounded sequence of real numbers.
If nan is sup-additive, i.e., for all n > k

nan ≥ kak + (n − k)an−k,

aN ≥ k

n
ak +

(n − k)

n
an−k,

then

lim
n→∞

an = sup
n

an.
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An Ingredient of the Proof: Sup-additivity

Let an be a bounded sequence of real numbers.
If nan is sup-additive, i.e., for all n > k

nan ≥ kak + (n − k)an−k,

an ≥ k

n
ak +

(n − k)

n
an−k,

then

lim
n→∞

an = sup
n

an.
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An Ingredient of the Proof: Sup-additivity

Let An be a bounded sequence of 2D sets.
If nAn is sup-additive, i.e., for all n > k

nAn ⊇ kAk + (n − k)An−k,

An ⊇ k

n
Ak +

(n − k)

n
An−k,

then

lim
n→∞

An =
⋃

n≥1

An.
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An Ingredient of the Proof: Sub-additivity

Let An be a bounded sequence of 2D convex sets.
If nAn is sub-additive, i.e., for all n > k

nAn ⊆ kAk + (n − k)An−k,

An ⊆ k

n
Ak +

(n − k)

n
An−k,

then

lim
n→∞

An =
⋂

n≥1

An.
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Applications

R = 0 ⇐⇒ Rfb = 0
The proof is based on the fact that

max
Q(xn||yn−1)

I(Xn → Y n) = 0 ⇐⇒ max
Q(xn)

I(Xn; Y n) = 0

Gillbert-Elliot MAC.

y y

α

1 − α

β

1 − β

G B

X1X1

X2X2

Vi ∼ Bern(pG) Vi ∼ Bern(pB)

feedback does not increase capacity.
source-channel separation theorem holds for the lossless
case.
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Portfolio Theory

Consider a horse-race market

Xi - the horse that wins at time i.

Yi - side information available at time i.
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Portfolio Theory

Consider a horse-race market

Xi - the horse that wins at time i.

Yi - side information available at time i.

(Xi, Yi), i.i.d Kelly[56]

The optimal strategy is to invest the capital proportional to
P (x|y). The increase in the growth rate due to side information
Y is

∆W = nI(X; Y ).
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Portfolio Theory

Consider a horse-race market

Xi - the horse that wins at time i.

Yi - side information available at time i.

(Xi, Yi), i.i.d Kelly[56]

The optimal strategy is to invest the capital proportional to
P (x|y). The increase in the growth rate due to side information
Y is

∆W = nI(X; Y ).

(Xi, Yi) general processes [P.&Kim&Weissman08]

The optimal strategy is to invest the capital proportional to
P (xi|xi−1, yi). The increase in the growth rate due to side
information is

∆W = I(Y n → Xn).
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Summary

Intuition

I(Xn; Y n) amount of uncertainty about Y n reduced by knowing
Xn

I(Xn → Y n) amount of uncertainty about Y n reduced by
knowing Xn causally.

Results

capacity of point-to-point FSC (e.g., trapdoor channel)

capacity of FS-MAC (e.g., Gilbert-Elliot MAC)

the increase in growth rate due to side information
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Other results with directed information

[Marko73] [Massey90]
[Kramer98] [Tatikonda00]
[Chen/Berger05] [Yang/Kavcic/Tatikonda05]
[Tatikonda/Mitter07] [Kim07]
[Venkataramanan/Pradhan07]
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Academic advisors
Tsachy Weissman

Tom Cover

Collaborators
Jun Chen, Paul Cuff, Young-Han Kim, Andrea Goldsmith,

Brooke Shrader, Benjamin Van-Roy.
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