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Measuring Causality

Agent
(Y1, Y2, Y3, ..., Yi, ...)(X1, X2, X3, ..., Xi, ...)

Communication Actions
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Measuring Causality

Question: Are the actions Y i caused by the communication Xi?
not caused if P (yi|yi−1, xi) = P (yi|yi−1), e.g., Y i independent Xi.
caused if P (yi|yi−1, xi) 6= P (yi|yi−1), e.g., Yi = Xi & Xi ∼ i.i.d.
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Measuring Causality

Does the mutual information I(Xn; Y n) measure causality?

Agent
(Y1, Y2, Y3, ..., Yi, ...)(X1, X2, X3, ..., Xi, ...)

Unit delay

TX

Communication Actions

Example: Yi i.i.d Bernoulli(1
2 ) and Xi = Yi−1.

1

n
I(Xn; Y n) =

n − 1

n
−→ 1
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Measuring Causality

Does the mutual information I(Xn; Y n) measure causality? No.

Agent
(Y1, Y2, Y3, ..., Yi, ...)(X1, X2, X3, ..., Xi, ...)

Unit delay

TX

Communication Actions

Example: Yi i.i.d Bernoulli(1
2 ) and Xi = Yi−1.

1

n
I(Xn; Y n) =

n − 1

n
−→ 1
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Directed Information and Causal Conditioning

Directed Information [Marko73, Massey90]

I(Xn → Y n) , H(Y n) − H(Y n||Xn)

I(Xn; Y n) , H(Y n) − H(Y n|Xn)
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Directed Information and Causal Conditioning

Directed Information [Marko73, Massey90]
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Causal Conditioning [Kramer98]
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Measuring Causality

Consider I(Xn → Y n) for measuring causality.

Agent
(Y1, Y2, Y3, ..., Yi, ...)(X1, X2, X3, ..., Xi, ...)

Unit delay

TX

Communication Actions

Example: Yi i.i.d Bernoulli(1
2 ) and Xi = Yi−1.

I(Xn → Y n) = H(Y n) − H(Y n||Xn)

=
n

∑

i=1

H(Yi|Y i−1) − H(Yi|Y i−1, Xi) = 0
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Finite State Channels

Message

Encoder

xi(m)
xi

Finite State Channel

P (yi, si|xi, si−1)
yim

Decoder

m̂(yN )

zi(yi) yi

Unit Delay Time-Invariant
Functionzi−1(yi−1)

m̂

Estimated
message

Finite State Channel(FSC) property:

P (yi, si|xi, si−1, yi−1) = P (yi, si|xi, si−1)
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Finite State Channels with and without feedback
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Finite State Channels with and without feedback

Message

Encoder

xi(m, zi−1)
xi

Finite State Channel

P (yi, si|xi, si−1)
yim

Decoder

m̂(yN )

zi(yi) yi

Unit Delay Time-Invariant
Functionzi−1(yi−1)

m̂

Estimated
message

Finite State Channel(FSC) property:

P (yi, si|xi, si−1, yi−1) = P (yi, si|xi, si−1)

Question: What is the channel capacity in this setting?
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Answer

Theorem

For any FSC without feedback [Gallager68]

CFB≥
1

n
max
P (xn)

min
s0

I(Xn; Y n|s0)−
log |S|

n

CFB≤
1

n
max
P (xn)

max
s0

I(Xn; Y n|s0)+
log |S|

n
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Answer

Theorem

For any FSC without feedback [Gallager68]

CFB≥
1

n
max
P (xn)

min
s0

I(Xn; Y n|s0)−
log |S|

n

CFB≤
1

n
max
P (xn)

max
s0

I(Xn; Y n|s0)+
log |S|

n

Theorem

For any FSC with feedback [P.&Weissman&Goldsmith06]

CFB≥ 1

n
max

P (xn||zn)
min
s0

I(Xn → Y n|s0)−
log |S|

n

CFB≤ 1

n
max

P (xn||zn)
max

s0
I(Xn → Y n|s0)+

log |S|
n
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Key properties

P (xn, yn) = P (xn||yn−1)P (yn||xn)

P (xn, yn) = P (xn)P (yn|xn)

H. Permuter (Stanford University) FSCs with and without feedback via directed information



Key properties

P (xn, yn) = P (xn||yn−1)P (yn||xn)

P (xn, yn) = P (xn)P (yn|xn)

1

n
|I(Xn → Y n) − I(Xn → Y n|S)| ≤ H(S)

n

1

n
|I(Xn; Y n) − I(Xn; Y n|S)| ≤ H(S)

n
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Gallager’s proof for the case of non-feedback

1 Randomly chosen codewords with distribution

P ∗(xn) = arg max
P (xn)

min
s0

I(Xn; Y n|s0).

2 Maximum likelihood decoder :

m∗ = arg max
m

P (yn|m) = arg max
m

P (yn|xn(m)).

3 Show that if

R <
∑

yn

∑

xn

P (xn) · P (yn|xn) ln
P (yn|xn)

∑

xn P (xn)P (yn|xn)
,

then Pe → 0.
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Proof for the case of time-invariant feedback

1 Randomly chosen codewords , with distribution

P ∗(xn) = arg max
P (xn)

min
s0

I(Xn; Y n|s0).
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Proof for the case of time-invariant feedback
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P (xn||zn−1)

min
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Proof for the case of time-invariant feedback

1 Randomly chosen codetrees , with distribution

P ∗(xn||zn−1) = arg max
P (xn||zn−1)

min
s0

I(Xn→Y n|s0).

x1 = 0 x2 = 1 x3 = 1 x1 = 0
x 2

=
1

x
2 =

1

x3
=

0

x
3 = 1

x3
=

1

x
3 = 1

zi−1 = 0

zi−1 = 1

codeword code-tree
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Proof for the case of time-invariant feedback

1 Randomly chosen codetrees , with distribution
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m
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Did we get directed information?

Recall first property:

P (xn, yn) = P (xn||yn−1)P (yn||xn)

∑

xn,yn

P (xn||yn−1)·P (yn||xn) ln
P (yn||xn)

∑

xn P (xn||yn−1) · P (yn||xn)

?
= I(Xn → Y n)
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Did we get directed information?

Recall first property:

P (xn, yn) = P (xn||yn−1)P (yn||xn)

∑

xn,yn

P (xn, yn) ln
P (yn||xn)

∑

xn P (xn, yn)
= I(Xn → Y n).

Does always switching between P (xn) ↔ P (xn||yn−1) and
P (yn|xn) ↔ P (yn||xn) work?
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Did we get directed information?

Recall first property:

P (xn, yn) = P (xn||yn−1)P (yn||xn)

∑

xn,yn

P (xn, yn) ln
P (yn||xn)

∑

xn P (xn, yn)
= I(Xn → Y n).

Does always switching between P (xn) ↔ P (xn||yn−1) and
P (yn|xn) ↔ P (yn||xn) work?
No! For instance we have

∑

u

P (yn, u|xn) = P (yn|xn)

but in general
∑

u

P (yn, u||xn) 6= P (yn||xn)
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Capacity Results

For some cases the upper bound and the lower bound coincide.

1 Initial state has positive probability for all states.
2 Compound channel setting (infinitely many FSCs

Pθ(yi, si|xi, si−1), θ ∈ Θ).
3 Indecomposable FSC and no ISI.
4 The state is computable at the the encoder, and all states

are connected.
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The trapdoor channel

Introduced by David Blackwell in 1961. [Ash65], [Ahlswede &
Kaspi 87], [Ahlswede 98], [Kobayashi 02].

(a) Ash book (b) D. Blackwell
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The Trapdoor Channel

0
1    

OutputInput
Channel

 
1 0

st = st−1 + xt − yt

s0 = 0
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The Trapdoor Channel

0
   

OutputInput
Channel

 
1

1 0

st = st−1 + xt − yt

s0 = 0
x1 = 1,
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The Trapdoor Channel

 

OutputInput
Channel

 
1

1
0

0 0 

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
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The Trapdoor Channel

 

OutputInput
Channel

 
1

1
0

0 0 

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
x2 = 0,
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The Trapdoor Channel

OutputInput
Channel

 
1

1
0

0 00 

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
x2 = 0, s2 = 1, y2 = 0,
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The Trapdoor Channel

OutputInput
Channel

 
1

1 0 00
1

 

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
x2 = 0, s2 = 1, y2 = 0,
x3 = 1,
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The Trapdoor Channel

OutputInput
Channel

 
1

1 0 00
1

1

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
x2 = 0, s2 = 1, y2 = 0,
x3 = 1, s3 = 1, y3 = 1.
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The Trapdoor Channel

OutputInput
Channel

 
1

1 0 00
1

1

st = st−1 + xt − yt

s0 = 0
x1 = 1, s1 = 1, y1 = 0,
x2 = 0, s2 = 1, y2 = 0,
x3 = 1, s3 = 1, y3 = 1.

Biochemical Interpretation [Berger 71]
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Solving the trapdoor channel

Initial state doesn’t matter; upper and lower bounds
become equal.

CFB = lim
N→∞

1

N
max

P (xN ||yN−1)
I(XN → Y N )

Converting it into a dynamic program. [Yang, Kavc̆ić and

Tatikonda05].

Use value iteration algorithm to solve numerically the
dynamic program.

Verify the optimal solution through Bellman equation.

H. Permuter (Stanford University) FSCs with and without feedback via directed information



Solving the dynamic programming

Executed 20 value iterations: Jk+1 = T ◦ Jk

CFB ≈ 0.694 bits
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Solving the dynamic programming

Executed 20 value iterations: Jk+1 = T ◦ Jk

CFB ≈ 0.694 bits

HW question posed in Prof. Cover’s class

Entropy rate. Find the maximum entropy rate of the following
two-state Markov chain:

BA

1 − pp

1
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Solving the dynamic programming

Executed 20 value iterations: Jk+1 = T ◦ Jk

CFB ≈ 0.694 bits

HW question posed in Prof. Cover’s class

Entropy rate. Find the maximum entropy rate of the following
two-state Markov chain:

BA

1 − pp

1

Solution: H(X ) = log φ = 0.6942... bits (Golden Ratio: φ =
√

5+1
2 )
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Dynamic programming- Bellman equation

Theorem

(Bellman Equation.) If there exists a function J(β) and a
constant ρ that satisfy

J(β) = T ◦ J(β) − ρ

then ρ is the optimal infinite horizon average reward.
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Dynamic programming- Bellman equation

Theorem

(Bellman Equation.) If there exists a function J(β) and a
constant ρ that satisfy

J(β) = T ◦ J(β) − ρ

then ρ is the optimal infinite horizon average reward.

By constructing J(β) and ρ = log
√

5+1
2 that satisfies the

Bellman equation we conclude that

Cfb = log

√
5 + 1

2
.

H. Permuter (Stanford University) FSCs with and without feedback via directed information



A scheme that achieves capacity

Let rn denotes a sequences of length n with no two
consecutive 1’s.

00101010100101...

A simple scheme

Encoder: Map each message m to a sequence [rn(m)].
Decoder: The decoder decodes the sequence backward!

ri = 1 ⇒ ri−1 = 0

ri = 0 ⇒ ri−1 = yi ⊕ yi−1

[P.&Cuff&Van-Roy&Weissman06]
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MAC with time-invariant feedback

Encoder 1

x1,i(m1, z
i−1
1 )

Encoder 2

x2,i(m2, z
i−1
2 )

m1

∈ {1, ..., 2nR1}

m2

∈ {1, ..., 2nR2}

Finite State MAC

P (yi, si|x1,i, x2,i, si−1)

Time-Invariant

Time-Invariant

Function

Function

z2,i(yi)

z1,i(yi)

z2,i−1

z1,i−1

Decoder

Unit

Unit

Delay

Delay

m̂1(y
N )

m̂2(y
N )

m̂1, m̂2

yi

yi
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Finite State MAC

Let

Rn =
⋃











R1 ≤ mins0
1
n
I(Xn

1 → Y n||Xn
2 , s0) − log |S|

n
,

R2 ≤ mins0
1
n
I(Xn

2 → Y n||Xn
1 , s0) − log |S|

n
,

R1 + R2 ≤ mins0
1
n
I((X1, X2)

n → Y n|s0) − log |S|
n

,

the union is over input distribution P (xn
1 ||zn−1

1 )P (xn
2 ||zn−1

2 ).

Theorem

For any FS-MAC with time invariant feedback, Rn is an
inner bound.
The outer bound is given in terms of limit. P.&Weissman&Chen07
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An Ingredient of the Proof: Sup-additivity

Let an be a bounded sequence of real numbers.
If nan is sup-additive, i.e., for all n > k

nan ≥ kak + (n − k)an−k,

aN ≥ k

n
ak +

(n − k)

n
an−k,

then

lim
n→∞

an = sup
n

an.
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An Ingredient of the Proof: Sup-additivity

Let an be a bounded sequence of real numbers.
If nan is sup-additive, i.e., for all n > k

nan ≥ kak + (n − k)an−k,

an ≥ k

n
ak +

(n − k)

n
an−k,

then

lim
n→∞

an = sup
n

an.
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An Ingredient of the Proof: Sup-additivity

Let An be a bounded sequence of 2D sets.
If nAn is sup-additive, i.e., for all n > k

nAn ⊇ kAk + (n − k)An−k,

An ⊇ k

n
Ak +

(n − k)

n
An−k,

then

lim
n→∞

An =
⋃

n≥1

An.
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An Ingredient of the Proof: Sub-additivity

Let An be a bounded sequence of 2D convex sets.
If nAn is sub-additive, i.e., for all n > k

nAn ⊆ kAk + (n − k)An−k,

An ⊆ k

n
Ak +

(n − k)

n
An−k,

then

lim
n→∞

An =
⋂

n≥1

An.
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Applications

R = 0 ⇐⇒ Rfb = 0
The proof is based on the fact that

max
Q(xn||yn−1)

I(Xn → Y n) = 0 ⇐⇒ max
Q(xn)

I(Xn; Y n) = 0

Gillbert-Elliot MAC.

y y

α

1 − α

β

1 − β

G B

X1X1

X2X2

Vi ∼ Bern(pG) Vi ∼ Bern(pB)

feedback does not increase capacity.
source-channel separation theorem holds for the lossless
case.
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Portfolio Theory

Consider a horse-race market

Xi - the horse that wins at time i.

Yi - side information available at time i.
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Portfolio Theory

Consider a horse-race market

Xi - the horse that wins at time i.

Yi - side information available at time i.

(Xi, Yi), i.i.d Kelly[56]

The optimal strategy is to invest the capital proportional to
P (x|y). The increase in the growth rate due to side information
Y is

∆W = nI(X; Y ).
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Portfolio Theory

Consider a horse-race market

Xi - the horse that wins at time i.

Yi - side information available at time i.

(Xi, Yi), i.i.d Kelly[56]

The optimal strategy is to invest the capital proportional to
P (x|y). The increase in the growth rate due to side information
Y is

∆W = nI(X; Y ).

(Xi, Yi) general processes [P.&Kim&Weissman08]

The optimal strategy is to invest the capital proportional to
P (xi|xi−1, yi). The increase in the growth rate due to side
information is

∆W = I(Y n → Xn).
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Summary

Intuition

I(Xn; Y n) amount of uncertainty about Y n reduced by knowing
Xn

I(Xn → Y n) amount of uncertainty about Y n reduced by
knowing Xn causally.

Results

capacity of point-to-point FSC (e.g., trapdoor channel)

capacity of FS-MAC (e.g., Gilbert-Elliot MAC)

the increase in growth rate due to side information
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Other results with directed information

[Marko73] [Massey90]
[Kramer98] [Tatikonda00]
[Chen/Berger05] [Yang/Kavcic/Tatikonda05]
[Tatikonda/Mitter07] [Kim07]
[Venkataramanan/Pradhan07]
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Academic advisors
Tsachy Weissman

Tom Cover

Collaborators
Jun Chen, Paul Cuff, Young-Han Kim, Andrea Goldsmith,

Brooke Shrader, Benjamin Van-Roy.
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