NOKIA Bell Labs

Al-Native Air Interface: Learning Receivers and Waveforms

Dani Korpi March 2022 With contributions by: Mikko Honkala Janne Huttunen Esha Wang Harish Viswanathan Mikko Uusitalo Faycal Ait Aoudia Jakob Hoydis

DeepRx: Fully learned MIMO receiver

2 © 2022 Nokia

Introduction

Starting point

- What is the best way to take advantage of ML in the physical layer?
 - Higher performance
 - Higher flexibility
 - Reduced algorithm design effort

Our approach:

• Learn the whole receiver

System Model

- In SIMO cases without spatial multiplexing, good performance was achieved by simply applying a large ResNet-type CNN¹
- However, such a pure CNN architecture is not sufficient for MIMO detection
- Learning efficient MIMO detection requires some expert knowledge!

¹M. Honkala, D. Korpi, and J. Huttunen, "DeepRx: Fully convolutional deep learning receiver," IEEE Transactions on Wireless Communications, 2021.

DeepRx MIMO Version 1: MRC-based transformation

- In order to help the learning task, we can utilize maximum ratio combining (MRC) as a preprocessing layer
- It performs *very* coarse equalization
- Performance can be increased by utilizing so-called virtual layers

Maximum Ratio Combining (MRC)

- For subcarrier *i* at OFDM symbol *j*:
 - Channel estimate: $\hat{\mathbf{H}}_{ij} \in \mathbb{C}^{N_R \times N_T}$ (interpolated with nearest neighbor method)
 - Received sample: $\mathbf{y}_{ii} \in \mathbb{C}^{N_R \times 1}$
 - MRC transformation: $\mathbf{y}_{ij,MRC} = \mathbf{S} \widehat{\mathbf{H}}_{ij}^H \mathbf{y}_{ij} \in \mathbb{C}^{N_T \times 1}$
 - Where **S** is a $N_T \times N_T$ diagonal matrix for scaling the channel gains, and $\hat{\mathbf{h}}_{ij,k}$ denotes the *k*th column of $\hat{\mathbf{H}}_{ij}$

DeepRx MIMO Version 2: Fully learned multiplicative transformation

- Inspired by the MRC-based processing, we then developed a fully learned multiplicative transformation
 - It contains expert knowledge via facilitating multiplication between inputs
- It consists of:
 - 1. Sparse selection of inputs for multiplication (multiplication of the input channels with matrix **W**₁, regularized to be sparse)
 - 2. Learned scaling of the imaginary component (element wise multiplication of the imaginary part with vector \mathbf{w}_2)
 - 3. Element wise multiplication between inputs
- Main principle of operation: learn to select the proper inputs to multiply and complex conjugate
- 7 © 2022 Nokia

DeepRx MIMO Training procedure

- Training is based on weighted cross entropy loss:
 - $L_q(\boldsymbol{\theta}) = \log_2(1 + snr_q)CE_q(\boldsymbol{\theta})$
- This ensures that samples with low SNR do not dominate the loss term
- When using the fully learned multiplicative transformation, the regularization term $\alpha || \mathbf{W}_1 ||_{L_1}$ is added to $L_q(\boldsymbol{\theta})$ to ensure that \mathbf{W}_1 is sparse
- Training is done with a total batch size of 96, using LAMB optimizer with a base learning rate of $3.5\cdot10^{-3}$

Layer	MRC-based		Fully learned	
Input 1	RX signal: $\mathbf{Y} \in \mathbb{C}$			
Input 2	Raw interpolated channel estimate: $\widehat{\mathbf{H}} \in \mathbb{C}$			
	PreDeepRx1	PreDeepRx2	PreDeepRx	
	3 Resnet blocks, 3x3 convs (C), 64–384 channels			
PreDeepRx	1x1 conv (\mathbb{C}), 16 channels	Output: 384 channels	Output: 128 channels	
	Output: 16 channels	represented as 24×16 array		
Transformation	MRC, output has 24 channels		Fully learned, $M_{\rm in} = 128, M_{\rm ex} = 240,$ output has 160 channels	
DeepRx	CNN consisting of 11 ResNet blocks and depthwise- separable 2D convolutional layers (\mathbb{R}), following the same architecture as in [1] but with quadruple channel count (although limiting the maximum number of channels to 512).			

Data

- Data is generated using a PUSCH link simulator, implemented with Matlab 5G Toolbox
- In total, 500 000 TTIs are generated, 60% of which is used for training
- Two different DMRS configurations are present in the data

Parameter	Training	Validation	Randomization
Carrier frequency	2.6 GHz		None
Channel model	TDL-B, TDL-C, TDL-D	TDL-A, TDL-E	Uniform
Spatial correlation	Low		Uniform
RMS delay spread	10 ns – 300 ns		Uniform
Maximum Doppler shift	0 Hz – 325 Hz		None
SNR	-4 dB – 32 dB		None
Number of PRBs	26	26	
Subcarrier spacing	30 kHz		None
OFDM symbol duration	35.7 µs		None
TTI length	14 OFDM symbols		None
Modulation scheme	16-QAM		None
Code rate	658/1024		None
No. of RX antennas	16		None
No. of TX antennas	4		None
No. of MIMO layers	4		None
DMRS configuration	1 or 2 pilots with FD-CDM2		Uniform

Fully learned transformation

- Both architecture variants achieve excellent performance ٠
- On par with LMMSE having perfect channel knowledge ٠

Fully learned transformation: TDL-A (NLOS)

- Under NLOS channel conditions, DeepRx MIMO achieves high performance with most SNRs
- When SNR approaches 20 dB, it seems to encounter an error floor
- The gains translate to coded BER, indicating that also the magnitudes of the LLR estimates are accurate

Simulation Results Fully learned transformation: TDL-E (LOS)

- No error floor is encountered under LOS conditions, where the BERs are higher
- Again, the performance gains are visible also after LDPC decoding

Related Publications

- M. Honkala, D. Korpi, and J. M. J. Huttunen, "DeepRx: Fully convolutional deep learning receiver," *IEEE Transactions on Wireless Communications*, vol. 20, no. 6, pp. 3925–3940, Jun. 2021.
- D. Korpi, M. Honkala, J. M. J. Huttunen, and V. Starck, "DeepRx MIMO: Convolutional MIMO detection with learned multiplicative transformations," in *Proc. IEEE International Conference on Communications (ICC)*, Jun. 2021.
- J. Pihlajasalo, D. Korpi, M. Honkala, J. M. J. Huttunen, T. Riihonen, J. Talvitie, M. A. Uusitalo, and M. Valkama, "Deep learning based OFDM physical-layer receiver for extreme mobility," in *Proc. Asilomar Conference on Signals, Systems, and Computers (ASILOMAR)*, Nov. 2021.
- J. Pihlajasalo, D. Korpi, M. Honkala, J. M. J. Huttunen, T. Riihonen, J. Talvitie, A. Brihuega, M. A. Uusitalo, and M. Valkama, "HybridDeepRx: Deep learning receiver for high-EVM signals," in *Proc. IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),* Sep. 2021.

Waveform learning for minimizing out-of-band emissions

Background & Idea

- Is it possible to learn a TX waveform that
 - 1. Is more resistant to PA-induced distortion?
 - 2. Results in lower out-of-band emissions?
- Training procedure is the key:
 - Reward for low reception error rate
 - Penalize for emissions

System Model

- Supervised end-to-end training
 - All blocks are differentiable
- Loss has two components:
 - Cross-entropy between TX and RX bits
 - Energy emitted outside the designated band

Training

• Loss consists of cross entropy and emissions

Binary cross entropy

• $L(\boldsymbol{\theta}) = \sum_{q=1}^{Q} \log_2(1 + snr_q) CE_q(\boldsymbol{\theta}) + W_E \ln(\sum_{q=1}^{Q} E_q(\boldsymbol{\theta}))$

Emission power at PA output

- Supervised learning task
 - End-to-end training
- Randomized PA response to prevent fitting to a single PA model
- Adam optimizer with a specific learning rate schedule
 - Warm-up period and reducing learning rate to zero at the end

- Simulator implemented in TensorFlow
- Relying on Quadriga channel models
- Fully differentiable from end-to-end

Parameter	Value	Randomization
Carrier frequency	3.5 GHz	None
Channel model	UMi LOS, UMi NLOS	Uniform
PA model	Polynomial, $P = 17$	Dithered coefficients
UE velocity	0 m/s – 25 m/s	Uniform
SNR	0 dB – 30 dB	Uniform
Number of subcarriers (N_f)	144	None
TX oversampling factor	2	None
Subcarrier spacing	30 kHz	None
OFDM symbol duration	35.7 µs	None
CP duration	2.7 μs	None
TTI length (N_s)	14 OFDM symbols	None
Bits per symbol (Q_m)	6	None

NOKIA Bell Labs

19 © 2022 Nokia

SNR fixed at 24 dB

Conclusions

- The proposed approach can limit emissions while improving link performance
- Facilitates either higher TX powers or more efficient PA modules

Related Publications

- Dani Korpi, Mikko Honkala, Janne Huttunen, Faycal Ait Aoudia, Jakob Hoydis, "Waveform Learning for Reduced Out-of-Band Emissions Under a Nonlinear Power Amplifier," submitted to *EUCNC 2022*.
- Mathieu Goutay, Fayçal Ait Aoudia, Jakob Hoydis, Jean-Marie Gorce, "Learning OFDM Waveforms with PAPR and ACLR Constraints," submitted to *IEEE Transactions on Wireless Communications*, 2021.
- F. A. Aoudia and J. Hoydis, "Trimming the Fat from OFDM: Pilot- and CP-less Communication with End-to-end Learning," in *Proc. IEEE International Conference on Communications Workshops (ICC Workshops)*, Jun. 2021.

