Lecture 3

I. HAN-KOBAYASHI INNER BOUND

The Han-Kobayashi inner bound is the best-known bound on the capacity region of the discrete memoryless interference channel (DM-IC) [1]. It includes all the inner bounds we discussed so far, and is tight for all interference channels with known capacity regions. We consider the following characterization of this inner bound.

Theorem 1 (Han-Kobayashi Inner Bound) Let \mathcal{C} be the capacity region of the DMIC $P_{Y_{1}, Y_{2} \mid X_{1}, X_{2}}$. Let $\mathcal{R}_{H K}$ be the region defined by the union of all sets of rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ satisfying:

$$
\begin{align*}
& R_{1}<I\left(X_{1} ; Y_{1} \mid U_{2}, Q\right) \tag{1a}\\
& R_{2}<I\left(X_{2} ; Y_{2} \mid U_{1}, Q\right) \tag{1b}\\
& R_{1}+ R_{2}<I\left(X_{1}, U_{2} ; Y_{1} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid U_{1}, U_{2}, Q\right) \tag{1c}\\
& R_{1}+R_{2}<I\left(X_{2}, U_{1} ; Y_{2} \mid Q\right)+I\left(X_{1} ; Y_{1} \mid U_{1}, U_{2}, Q\right) \tag{1d}\\
& R_{1}+R_{2}<I\left(X_{1}, U_{2} ; Y_{1} \mid U_{1}, Q\right)+I\left(X_{2}, U_{1} ; Y_{2} \mid U_{2}, Q\right) \tag{1e}\\
& 2 R_{1}+R_{2}<I\left(X_{1}, U_{2} ; Y_{1} \mid Q\right)+I\left(X_{1} ; Y_{1} \mid U_{1}, U_{2}, Q\right)+I\left(X_{2}, U_{1} ; Y_{2} \mid U_{2}, Q\right) \tag{1f}\\
& R_{1}+2 R_{2}<I\left(X_{2}, U_{1} ; Y_{2} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid U_{1}, U_{2}, Q\right)+I\left(X_{1}, U_{2} ; Y_{1} \mid U_{1}, Q\right) \tag{1g}
\end{align*}
$$

where the union is taken over all joint distributions of the form $P_{Q} P_{U_{1}, X_{2} \mid Q} P_{U_{2}, X_{2} \mid Q}$, $\left|\mathcal{U}_{1}\right| \leq\left|\mathcal{X}_{1}\right|+4,\left|\mathcal{U}_{2}\right| \leq\left|\mathcal{X}_{2}\right|+4$, and $|\mathcal{Q}| \leq 6$. Then the the following inclusion holds:

$$
\begin{equation*}
\mathcal{R}_{H K} \subseteq \mathcal{C} \tag{2}
\end{equation*}
$$

Remark 1 The Han-Kobayashi inner bound reduces to the interference-as-noise inner bound by setting $U_{1}=U_{2}=\emptyset$. At the other extreme, the Han-Kobayashi inner bound
reduces to the simultaneous-nonunique-decoding inner bound by setting $U_{1}=X_{1}$ and $U_{2}=X_{2}$. Thus, the bound is tight for the class of DM-ICs with strong interference.

Remark 2 The Han-Kobayashi inner bound can be readily extended to the Gaussian IC with average power constraints and evaluated using Gaussian $\left(U_{j}, X_{j}\right), j \in\{1,2\}$. It is not known, however, if the restriction to the Gaussian distribution is sufficient.

Proof: The proof uses rate splitting. We represent each message $M_{j}, j \in\{1,2\}$, by independent "public" message $M_{j 0}$ at rate $R_{j 0}$ and "private" message $M_{j j}$ at rate $R_{j j}$. Thus, $R_{j}=R_{j 0}+R_{j j}$. These messages are sent via superposition coding, whereby the cloud center U_{j} represents the public message $M_{j 0}$ and the satellite codeword X_{j} represents the message pair $\left(M_{j 0}, M_{j j}\right)$. The public messages are to be recovered by both receivers, while each private message is to be recovered only by its intended receiver. We First show that the tuple $\left(R_{10}, R_{20}, R_{11}, R_{22}\right)$ is achievable if

$$
\begin{align*}
& R_{11}<I\left(X_{1} ; Y_{1} \mid U_{1}, U_{2}, Q\right), \tag{3a}\\
& R_{11}+R_{10}<I\left(X_{1} ; Y_{1} \mid U_{2}, Q\right), \tag{3b}\\
& R_{11}+R_{20}<I\left(X_{1}, U_{2} ; Y_{1} \mid U_{1}, Q\right), \tag{3c}\\
& R_{11}+R_{10}+R_{20}<I\left(X_{1}, U_{2} ; Y_{1} \mid Q\right), \tag{3d}\\
& R_{22}<I\left(X_{2} ; Y_{2} \mid U_{1}, U_{2}, Q\right), \tag{3e}\\
& R_{22}+R_{20}<I\left(X_{2} ; Y_{2} \mid U_{1}, Q\right), \tag{3f}\\
& R_{22}+R_{10}<I\left(X_{2}, U_{1} ; Y_{2} \mid U_{2}, Q\right), \tag{3g}\\
& R_{22}+R_{20}+R_{10}<I\left(X_{2}, U_{1} ; Y_{2} \mid Q\right), \tag{3h}
\end{align*}
$$

for some PMF $P_{Q} P_{U_{1}, X_{2} \mid Q} P_{U_{2}, X_{2} \mid Q}$.
Throughout this proof we denote a sequence of length n with symbol from the alphabet \mathcal{X} by a boldface letter, i.e., x .

Codebook Generation: Fix a PMF $P_{Q} P_{U_{1}, X_{2} \mid Q} P_{U_{2}, X_{2} \mid Q}$ and $\epsilon>0$. Generate a sequence \mathbf{q} in an i.i.d. manner according to P_{Q}. For $j \in\{1,2\}$, randomly and conditionally independently generate $2^{n R_{j 0}}$ sequences $\mathbf{u}_{j}\left(m_{j 0}\right), m_{j 0} \in\left\{1, \ldots, 2^{n R_{j 0}}\right\}$,

TABLE I: The joint PMFs induced by different $\left(m_{10}, m_{20}, m_{11}\right)$ triples.

	m_{10}	m_{20}	m_{11}	Joint PMF	Rate Bound
1	1	1	1	$p\left(\mathbf{u}_{1}, \mathbf{x}_{1}\right) p\left(\mathbf{u}_{2}\right) p\left(\mathbf{y}_{1} \mid \mathbf{x}_{1}, \mathbf{u}_{2}\right)$	-
2	1	1	$*$	$p\left(\mathbf{u}_{1}, \mathbf{x}_{1}\right) p\left(\mathbf{u}_{2}\right) p\left(\mathbf{y}_{1} \mid \mathbf{u}_{1}, \mathbf{u}_{2}\right)$	$R_{11}<I\left(X_{1} ; Y_{1} \mid U_{1}, U_{2}, Q\right)$
3	$*$	1	$*$	$p\left(\mathbf{u}_{1}, \mathbf{x}_{1}\right) p\left(\mathbf{u}_{2}\right) p\left(\mathbf{y}_{1} \mid \mathbf{u}_{2}\right)$	$R_{10}+R_{11}<I\left(X_{1}, U_{1} ; Y_{1} \mid U_{2}, Q\right)$
4	$*$	1	1	$p\left(\mathbf{u}_{1}, \mathbf{x}_{1}\right) p\left(\mathbf{u}_{2}\right) p\left(\mathbf{y}_{1} \mid \mathbf{u}_{2}\right)$	$R_{10}<I\left(X_{1}, U_{1} ; Y_{1} \mid U_{2}, Q\right)$
5	1	$*$	$*$	$p\left(\mathbf{u}_{1}, \mathbf{x}_{1}\right) p\left(\mathbf{u}_{2}\right) p\left(\mathbf{y}_{1} \mid \mathbf{u}_{1}\right)$	$R_{20}+R_{11}<I\left(X_{1}, U_{2} ; Y_{1} \mid U_{1}, Q\right)$
6	$*$	$*$	1	$p\left(\mathbf{u}_{1}, \mathbf{x}_{1}\right) p\left(\mathbf{u}_{2}\right) p\left(\mathbf{y}_{1}\right)$	$R_{10}+R_{20}<I\left(X_{1}, U_{1}, U_{2} ; Y_{1} \mid Q\right)$
7	$*$	$*$	$*$	$p\left(\mathbf{u}_{1}, \mathbf{x}_{1}\right) p\left(\mathbf{u}_{2}\right) p\left(\mathbf{y}_{1}\right)$	$R_{10}+R_{20}+R_{11}<I\left(X_{1}, U_{1}, U_{2} ; Y_{1} \mid Q\right)$
8	1	$*$	1	$p\left(\mathbf{u}_{1}, \mathbf{x}_{1}\right) p\left(\mathbf{u}_{2}\right) p\left(\mathbf{y}_{1} \mid \mathbf{x}_{1}\right)$	$R_{20}<I\left(X_{1} ; Y_{1} \mid U_{1}, U_{2}, Q\right)$

each according to $\prod_{i=1}^{n} P_{U_{j} \mid Q}\left(u_{j i} \mid q_{i}\right)$. For each $m_{j 0}$, randomly and conditionally independently generate $2^{n R_{j j}}$ sequences $\mathbf{x}_{j}\left(m_{j 0}, m_{j j}\right), m_{j} j \in\left\{1, \ldots, 2^{n R_{j j}}\right\}$, each according to $\prod_{i=1}^{n} P_{X_{j} \mid U_{j}, Q}\left(x_{j i} \mid u_{j i}\left(m_{j 0}\right), q_{i}\right)$.

Encoding: To send $m_{j}=\left(m_{j 0}, m_{j j}\right), j \in\{1,2\}$, Encoder j transmits $\mathbf{x}_{j}\left(m_{j 0}, m_{j j}\right)$.
Decoding: We use simultaneous nonunique decoding. Upon receiving \mathbf{y}_{1}, Decoder 1 finds the unique message pair $\left(\hat{m}_{10}, \hat{m}_{11}\right)$ such that $\left(\mathbf{q}, \mathbf{u}_{1}\left(\hat{m}_{10}\right), \mathbf{u}_{2}\left(m_{20}\right), \mathbf{x}_{1}\left(\hat{m}_{10}, \hat{m}_{11}\right), \mathbf{y}_{1}\right) \in \mathcal{T}_{\epsilon}^{(n)}$, for some $m_{20} \in\left\{1, \ldots, 2^{n R_{20}}\right\} ;$ otherwise it declares an error. Decoder 2 finds the message pair $\left(\hat{m}_{20}, \hat{m}_{22}\right)$ similarly.

Analysis of the Probability of Error: Assume message pair $((1,1),(1,1))$ is sent. We bound the average probability of error for each decoder. First consider Decoder 1. As shown in Table I, we have eight cases to consider (here conditioning on \mathbf{q} is suppressed). Cases 3 and 4, and 6 and 7, respectively, share the same PMF, and case 8 does not cause an error. Thus, we are left with only five error events. Accordingly, Decoder 1 makes an error only if one or more of the following events occur:

$$
\begin{align*}
& \mathcal{E}_{10}=\left\{\left(\mathbf{Q}, \mathbf{U}_{1}(1), \mathbf{U}_{2}(1), \mathbf{X}_{1}(1,1), \mathbf{Y}_{1}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\right\} \tag{4}\\
& \mathcal{E}_{11}=\left\{\exists m_{11} \neq 1,\left(\mathbf{Q}, \mathbf{U}_{1}(1), \mathbf{U}_{2}(1), \mathbf{X}_{1}\left(1, m_{11}\right), \mathbf{Y}_{1}\right) \in \mathcal{T}_{\epsilon}^{(n)}\right\} \tag{5}\\
& \mathcal{E}_{12}=\left\{\exists m_{10} \neq 1, m_{11},\left(\mathbf{Q}, \mathbf{U}_{1}\left(m_{10}\right), \mathbf{U}_{2}(1), \mathbf{X}_{1}\left(m_{10}, m_{11}\right), \mathbf{Y}_{1}\right) \in \mathcal{T}_{\epsilon}^{(n)}\right\} \tag{6}
\end{align*}
$$

$$
\begin{align*}
& \mathcal{E}_{13}=\left\{\exists m_{20} \neq 1, m_{11} \neq 1,\left(\mathbf{Q}, \mathbf{U}_{1}(1), \mathbf{U}_{2}\left(m_{20}\right), \mathbf{X}_{1}\left(1, m_{11}\right), \mathbf{Y}_{1}\right) \in \mathcal{T}_{\epsilon}^{(n)}\right\} \tag{7}\\
& \mathcal{E}_{14}=\left\{\exists m_{10} \neq 1, m_{20} \neq 1, m_{11},\left(\mathbf{Q}, \mathbf{U}_{1}\left(m_{10}\right), \mathbf{U}_{2}\left(m_{20}\right), \mathbf{X}_{1}\left(m_{10}, m_{11}\right), \mathbf{Y}_{1}\right) \in \mathcal{T}_{\epsilon}^{(n)}\right\} \tag{8}
\end{align*}
$$

Hence, the average probability of error for Decoder 1 is upper bounded as

$$
\begin{equation*}
\mathbb{P}\left[\mathcal{E}_{1}\right] \leq \sum_{i=0}^{4} \mathbb{P}\left[\mathcal{E}_{1 i}\right] \tag{9}
\end{equation*}
$$

We bound each term. By the $\operatorname{LLN}, \mathbb{P}\left[\mathcal{E}_{10}\right]$ tends to zero as $n \rightarrow \infty$. By the packing lemma, $\mathbb{P}\left[\mathcal{E}_{11}\right]$ tends to zero as $n \rightarrow \infty$ if $R_{11}<I\left(X_{1} ; Y_{1} \mid U_{1}, U_{2}, Q\right)-\delta(\epsilon)$. Similarly, by the packing lemma, $\mathbb{P}\left[\mathcal{E}_{12}\right], \mathbb{P}\left[\mathcal{E}_{13}\right]$ and $\mathbb{P}\left[\mathcal{E}_{14}\right]$ tend to zero as $n \rightarrow \infty$ if the conditions $R_{11}+R_{10}<I\left(X_{1} ; Y_{1} \mid U_{2}, Q\right)-\delta(\epsilon), R_{11}+R_{20}<I\left(X_{1}, U_{2} ; Y_{1} \mid U_{1}, Q\right)-\delta(\epsilon)$, and $R_{11}+$ $R_{10}+R_{20}<I\left(X_{1}, U_{2} ; Y_{1} \mid Q\right)-\delta(\epsilon)$ are satisfied, respectively. The average probability of error for decoder 2 can be bounded similarly.

Finally, substituting $R_{11}=R_{1}-R_{10}$ and $R_{22}=R_{2}-R_{20}$, and using the FourierMotzkin procedure with the constraints $0 \leq R_{j 0} \leq R_{j}, j \in\{1,2\}$, to eliminate R_{10} and R_{20}, we obtain the region given in Theorem 1 . Furthermore, the cardinality bound on \mathcal{Q} can be proved using the convex cover method (see [2, Appendix C] for details). This completes the proof of the HanKobayashi inner bound.

II. THE SEMI-DETERMINISTIC INJECTIVE INTERFERENCE CHANNEL

Consider the semi-deterministic interference channel depicted in Figure 1. Here the functions y_{1} and y_{2} satisfy the condition that for every $x_{1} \in \mathcal{X}_{1}, y_{1}\left(x_{1}, t_{2}\right)$ is a one-toone function of t_{2} and for every $x_{2} \in \mathcal{X}_{2}, y_{2}\left(x_{2}, t_{1}\right)$ is a one-to-one function of t_{1}. Note that these conditions imply that $H\left(Y_{1} \mid X_{1}\right)=H\left(T_{2}\right)$ and $H\left(Y_{2} \mid X_{2}\right)=H\left(T_{1}\right)$. The channel is semi-deterministic in the sense that the mapping from X_{i} to T_{i}, where $i \in\{1,2\}$, is random.

Note that if we assume the channel variables to be real-valued instead of finite, the Gaussian IC becomes a special case of this semi-deterministic IC with by taking $T_{1}=$ $g_{21} X_{1}+Z_{2}$ and $T_{2}=g_{12} X_{2}+Z_{1}$.

Fig. 1: Semi-deterministic interference channel.

Consider the following bound on the capacity region of the semi-deterministic IC [3].
Theorem 2 (Outer Bound) Let $\mathcal{C}_{S D}$ be the capacity region of the semi-deterministic IC. Let \mathcal{R}_{O} be the region defined by the union of all sets of rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ satisfying:

$$
\begin{align*}
R_{1} & \leq H\left(Y_{1} \mid X_{2}, Q\right)-H\left(T_{2} \mid X_{2}\right), \tag{10a}\\
R_{2} & \leq H\left(Y_{2} \mid X_{1}, Q\right)-H\left(T_{1} \mid X_{1}\right), \tag{10b}\\
R_{1}+R_{2} & \leq H\left(Y_{1} \mid Q\right)+H\left(Y_{2} \mid U_{2}, X_{1}, Q\right)-H\left(T_{1} \mid X_{1}\right)-H\left(T_{2} \mid X_{2}\right), \tag{10c}\\
R_{1}+R_{2} & \leq H\left(Y_{1} \mid U_{1}, X_{2}, Q\right)+H\left(Y_{2} \mid Q\right)-H\left(T_{1} \mid X_{1}\right)-H\left(T_{2} \mid X_{2}\right), \tag{10d}\\
R_{1}+R_{2} & \leq H\left(Y_{1} \mid U_{1}, Q\right)+H\left(Y_{2} \mid U_{2}, Q\right)-H\left(T_{1} \mid X_{1}\right)-H(T 2 \mid X 2), \tag{10e}\\
2 R_{1}+R_{2} & \leq H\left(Y_{1} \mid Q\right)+H\left(Y_{1} \mid U_{1}, X_{2}, Q\right)+H\left(Y_{2} \mid U_{2}, Q\right)-H\left(T_{1} \mid X_{1}\right)-2 H\left(T_{2} \mid X_{2}\right), \tag{10f}
\end{align*}
$$

$R_{1}+2 R_{2} \leq H\left(Y_{2} \mid Q\right)+H\left(Y_{2} \mid U_{2}, X_{1}, Q\right)+H\left(Y_{1} \mid U_{1}, Q\right)-2 H\left(T_{1} \mid X_{1}\right)-H\left(T_{2} \mid X_{2}\right)$
where the union is taken over all joint distributions of the form $P_{Q} P_{X_{1} \mid Q} P_{X_{2} \mid Q} P_{U_{1} \mid X_{1}} P_{U_{2} \mid X_{2}}$, where $P_{U_{j} \mid X_{j}}=P_{T_{j} \mid X_{j}}$ for $j \in\{1,2\}$. Then the the following inclusion holds:

$$
\begin{equation*}
\mathcal{C}_{S D} \subseteq \mathcal{R}_{O} . \tag{11}
\end{equation*}
$$

Proof: Consider a sequence of $\left(2^{n R_{1}}, 2^{n R_{2}}\right)$ codes with $\lim _{n \rightarrow \infty} P_{e}^{(n)}=0$. Furthermore, let $X_{1}^{n}, X_{2}^{n}, T_{1}^{n}, T_{2}^{n}, Y_{1}^{n}$ and Y_{2}^{n} denote the random variables resulting from encoding and transmitting the independent messages M_{1} and M_{2}. Define the random variables U_{1}^{n} and U_{2}^{n} such that $U_{j i}$ is jointly distributed with $X_{j i}$ according to $P_{T_{j} \mid X_{j}}\left(u_{j i} \mid x_{j i}\right)$, conditionally independent of $T_{j i}$ given $X_{j i}$ for $j \in\{1,2\}$ and $i \in\{1, \ldots, n\}$. By Fanos inequality,

$$
\begin{align*}
n R_{j} & =H\left(M_{j}\right) \\
& \leq I\left(M_{j} ; Y_{j}^{n}\right)+n \epsilon_{n} \\
& \leq I\left(X_{j}^{n} ; Y_{j}^{n}\right)+n \epsilon_{n} \tag{12}
\end{align*}
$$

Next, observe that

$$
\begin{align*}
I\left(X_{1}^{n} ; Y_{1}^{n}\right) & =H\left(Y_{1}^{n}\right)-H\left(Y_{1}^{n} \mid X_{1}^{n}\right) \\
& \stackrel{(a)}{=} H\left(Y_{1}^{n}\right)-H\left(T_{2}^{n} \mid X_{1}^{n}\right) \\
& \stackrel{(b)}{=} H\left(Y_{1}^{n}\right)-H\left(T_{2}^{n}\right) \\
& \leq \sum_{i=1}^{n} H\left(Y_{1 i}\right)-H\left(T_{2}^{n}\right) \tag{13}
\end{align*}
$$

where (a) follows from the fact that Y_{1}^{n} and T_{2}^{n} are one-to-one given X_{1}^{n}, while (b) follows from the fact that T_{2}^{n} is independent of X_{1}^{n}. The second term $H\left(T_{2}^{n}\right)$, however, is not easily upper-bounded in a single-letter form. Now consider the following augmentation

$$
\begin{align*}
I\left(X_{1}^{n} ; Y_{1}^{n}\right) & \leq I\left(X_{1}^{n} ; Y_{1}^{n}, U_{1}^{n}, X_{2}^{n}\right) \\
& =I\left(X_{1}^{n} ; U_{1}^{n}\right)+I\left(X_{1}^{n} ; X_{2}^{n} \mid U_{1}^{n}\right)+I\left(X_{1}^{n} ; Y_{1}^{n} \mid U_{1}^{n}, X_{2}^{n}\right) \\
& \stackrel{(a)}{=} H\left(U_{1}^{n}\right)-H\left(U_{1}^{n} \mid X_{1}^{n}\right)+H\left(Y_{1}^{n} \mid U_{1}^{n}, X_{2}^{n}\right)-H\left(Y_{1}^{n} \mid X_{1}^{n}, U_{1}^{n}, X_{2}^{n}\right) \\
& \stackrel{(b)}{=} H\left(T_{1}^{n}\right)-H\left(U_{1}^{n} \mid X_{1}^{n}\right)+H\left(Y_{1}^{n} \mid U_{1}^{n}, X_{2}^{n}\right)-H\left(T_{2}^{n} \mid X_{2}^{n}\right) \\
& \leq H\left(T_{1}^{n}\right)-\sum_{i=1}^{n}\left[H\left(U_{1 i} \mid X_{1 i}\right)+H\left(Y_{1 i} \mid U_{1 i}, X_{2 i}\right)-H\left(T_{2 i} \mid X_{2 i}\right)\right] \tag{14}
\end{align*}
$$

First, note that (a) follows from the fact by the choice of the joint distribution in Theorem $2, T_{1}^{n}$ and U_{1}^{n} are identically distributed and the fact that $\left(X_{1}^{n}, X_{2}^{n}\right)$ are independent conditioned on U_{1}^{n}. To see that (b) holds consider the fact that the second and fourth terms in (b) represent the output of a memoryless channel given its input; thus, they readily single-letterize with equality. The third term in (b) can be upper-bounded in a single-letter form. The first term $H\left(T_{1}^{n}\right)$ will be used to cancel terms like $H\left(T_{2}^{n}\right)$ in (13). Similarly, we can write

$$
\begin{align*}
I\left(X_{1}^{n} ; Y_{1}^{n}\right) & \leq I\left(X_{1}^{n} ; Y_{1}^{n}, U_{1}^{n}\right) \\
& =I\left(X_{1}^{n} ; U_{1}^{n}\right)+I\left(X_{1}^{n} ; Y_{1}^{n} \mid U_{1}^{n}\right) \\
& =H\left(U_{1}^{n}\right)-H\left(U_{1}^{n} \mid X_{1}^{n}\right)+H\left(Y_{1}^{n} \mid U_{1}^{n}\right)-H\left(Y_{1}^{n} \mid X_{1}^{n}, U_{1}^{n}\right) \\
& =H\left(T_{1}^{n}\right)-H\left(U_{1}^{n} \mid X_{1}^{n}\right)+H\left(Y_{1}^{n} \mid U_{1}^{n}\right)-H\left(T_{2}^{n}\right) \\
& =H\left(T_{1}^{n}\right)-H\left(T_{2}^{n}\right)-\sum_{i=1}^{n}\left[H\left(U_{1 i} \mid X_{1 i}\right)+H\left(Y_{1 i} \mid U_{1 i}\right)\right] \tag{15}
\end{align*}
$$

and

$$
\begin{align*}
I\left(X_{1}^{n} ; Y_{1}^{n}\right) & \leq I\left(X_{1}^{n} ; Y_{1}^{n}, X_{2}^{n}\right) \\
& =I\left(X_{1}^{n} ; X_{2}^{n}\right)+I\left(X_{1}^{n} ; Y_{1}^{n} \mid X_{2}^{n}\right) \\
& =H\left(Y_{1}^{n} \mid X_{2}^{n}\right)-H\left(Y_{1}^{n} \mid X_{1}^{n}, X_{2}^{n}\right) \\
& =H\left(Y_{1}^{n} \mid X_{2}^{n}\right)-H\left(T_{2}^{n} \mid X_{2}^{n}\right) \\
& =\sum_{i=1}^{n}\left[H\left(Y_{1 i} \mid X_{2 i}\right)+H\left(T_{2 i} \mid X_{2 i}\right)\right] \tag{16}
\end{align*}
$$

By symmetry, similar bounds can be established for $I\left(X_{2}^{n} ; Y_{2}^{n}\right)$, namely,

$$
\begin{align*}
& I\left(X_{2}^{n} ; Y_{2}^{n}\right) \leq \sum_{i=1}^{n} H\left(Y_{2 i}\right)-H\left(T_{1}^{n}\right) \tag{17}\\
& I\left(X_{2}^{n} ; Y_{2}^{n}\right) \leq H\left(T_{2}^{n}\right)-\sum_{i=1}^{n}\left[H\left(U_{2 i} \mid X_{2 i}\right)+H\left(Y_{2 i} \mid U_{2 i}, X_{1 i}\right)-H\left(T_{1 i} \mid X_{1 i}\right)\right], \tag{18}
\end{align*}
$$

$$
\begin{align*}
& I\left(X_{2}^{n} ; Y_{2}^{n}\right) \leq H\left(T_{2}^{n}\right)-H\left(T_{1}^{n}\right)-\sum_{i=1}^{n}\left[H\left(U_{2 i} \mid X_{2 i}\right)+H\left(Y_{2 i} \mid U_{2 i}\right)\right] \tag{19}\\
& I\left(X_{2}^{n} ; Y_{2}^{n}\right) \leq \sum_{i=1}^{n}\left[H\left(Y_{2 i} \mid X_{1 i}\right)+H\left(T_{1 i} \mid X_{1 i}\right)\right] . \tag{20}
\end{align*}
$$

Finally, consider linear combinations of the inequalities in (13)-(20) where all the multi-letter terms, namely $H\left(T_{1}^{n}\right)$ and $H\left(T_{2}^{n}\right)$, are canceled. Combining them with the bounds in (12) and using a time-sharing variable $Q \sim \mathrm{U}\{1, \ldots, n\}$ completes the proof of the outer bound.

Having the result of Theorem 2, recall the Han-Kobayashi inner bound. By introducing the restriction that $P_{U_{1}, U_{2} \mid Q, X_{1}, X_{2}}=P_{T_{1} \mid X_{1}} P_{T_{2} \mid X_{2}}$, the HK region in (1) reduces to the one presented subsequently, which gives rise to the following corollary.

Corollary 1 (Han-Kobayashi Inner Bound for the Semi-Deterministic IC) Let $\mathcal{C}_{S D}$ be the capacity region of the semi-deterministic IC. Let \mathcal{R}_{I} be the region defined by the union of all sets of rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ satisfying:

$$
\begin{align*}
R_{1} & \leq H\left(Y_{1} \mid U_{2}, Q\right)-H\left(T_{2} \mid U_{2}, Q\right), \\
R_{2} & \leq H\left(Y_{2} \mid U_{1}, Q\right)-H\left(T_{1} \mid U_{1}, Q\right), \\
R_{1}+R_{2} & \leq H\left(Y_{1} \mid Q\right)+H\left(Y_{2} \mid U_{1}, U_{2}, Q\right)-H\left(T_{1} \mid U_{1}, Q\right)-H\left(T_{2} \mid U_{2}, Q\right), \\
R_{1}+R_{2} & \leq H\left(Y_{1} \mid U_{1}, U_{2}, Q\right)+H\left(Y_{2} \mid Q\right)-H\left(T_{1} \mid U_{1}, Q\right)-H\left(T_{2} \mid U_{2}, Q\right), \\
R_{1}+R_{2} & \leq H\left(Y_{1} \mid U_{1}, Q\right)+H\left(Y_{2} \mid U_{2}, Q\right)-H\left(T_{1} \mid U_{1}, Q\right)-H\left(T_{2} \mid U_{2}, Q\right), \\
2 R_{1}+R_{2} & \leq H\left(Y_{1} \mid Q\right)+H\left(Y_{1} \mid U_{1}, U_{2}, Q\right)+H\left(Y_{2} \mid U_{2}, Q\right)-H\left(T_{1} \mid U_{1}, Q\right)-2 H\left(T_{2} \mid U_{2}, Q\right), \tag{21f}\\
R_{1}+2 R_{2} & \leq H\left(Y_{2} \mid Q\right)+H\left(Y_{2} \mid U_{1}, U_{2}, Q\right)+H\left(Y_{1} \mid U_{1}, Q\right)-2 H\left(T_{1} \mid U_{1}, Q\right)-H\left(T_{2} \mid U_{2}, Q\right), \tag{21~g}
\end{align*}
$$

where the union is taken over all joint distributions of the form $P_{Q} P_{X_{1} \mid Q} P_{X_{2} \mid Q} P_{U_{1} \mid X_{1}} P_{U_{2} \mid X_{2}}$, where $P_{U_{j} \mid X_{j}}=P_{T_{j} \mid X_{j}}$ for $j \in\{1,2\}$. Then the the following inclusion holds:

$$
\begin{equation*}
\mathcal{R}_{I} \subseteq \mathcal{C}_{S D} \tag{22}
\end{equation*}
$$

The inner bound in (21) is obtained by substituting the joint distribution

$$
\begin{equation*}
P_{Q} P_{X_{1} \mid Q} \underbrace{P_{U_{1} \mid X_{1}}}_{=P_{T_{1} \mid X_{1}}} P_{X_{2} \mid Q} \underbrace{P_{U_{2} \mid X_{2}}}_{=P_{T_{2} \mid X_{2}}} P_{T_{1} \mid X_{1}} P_{T_{2} \mid X_{2}} \quad\left\{Y_{1}=y_{1}\left(T_{1}, X_{1}\right)\right\} \quad\left\{Y_{2}=y_{2}\left(T_{2}, X_{2}\right)\right\}, \tag{23}
\end{equation*}
$$

with the one stated in Theorem 1.
For a fixed $\left(Q, X_{1}, X_{2}\right) \sim P_{Q} P_{X_{1} \mid Q} P_{X_{2} \mid Q}$, let $\mathcal{R}_{O}\left(Q, X_{1}, X_{2}\right)$ be the region defined by the set of inequalities in (10), and let $\mathcal{R}_{I}\left(Q, X_{1}, X_{2}\right)$ denote the closure of the region defined by the set of inequalities in (21).

Lemma 1 (Gap Between the Inner and Outer Bounds [3]) If $\quad\left(R_{1}, R_{2}\right) \quad \in$ $\mathcal{R}_{O}\left(Q, X_{1}, X_{2}\right)$, then $\left(R_{1}-I\left(X_{2} ; T_{2} \mid U_{2}, Q\right), R_{2}-I\left(X_{1} ; T_{1} \mid U_{1}, Q\right)\right) \in \mathcal{R}_{I}\left(Q, X_{1}, X_{2}\right)$.

The result of lemma 1 straightforwardly follows from the structure of the rate bounds in (10) and the fact that $H\left(Y_{j} \mid U_{j}, Q\right) \geq H\left(Y_{j} \mid X_{j}, Q\right)$, for $j \in\{1,2\}$.

A. Half-Bit Theorem for the Gaussian IC

We show that the outer bound in Theorem 2, when specialized to the Gaussian IC, is achievable within half a bit per dimension. For the Gaussian IC, the auxiliary random variables in the outer bound can be expressed as

$$
\begin{align*}
U_{1} & =g_{21} X_{1}+Z_{2}^{\prime} \tag{24a}\\
U_{2} & =g_{12} X_{2}+Z_{1}^{\prime} \tag{24b}
\end{align*}
$$

where Z_{1}^{\prime} and Z_{2}^{\prime} are $\mathcal{N}(0,1)$, independent of each other and of $\left(X_{1}, X_{2}, Z_{1}, Z_{2}\right)$. Substituting in the outer bound in Theorem 2, we obtain an outer bound \mathcal{R}_{O}^{G} on the capacity region of the Gaussian IC that consists of all rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}$ such that

$$
\begin{align*}
R_{1} & \leq C\left(S_{1}\right), \tag{25a}\\
R_{2} & \leq C\left(S_{2}\right) \tag{25b}\\
R_{1}+R_{2} & \leq C\left(\frac{S_{1}}{1+I_{2}}\right)+C\left(I_{2}+S_{2}\right), \tag{25c}\\
R_{1}+R_{2} & \leq C\left(\frac{S_{2}}{1+I_{1}}\right)+C\left(I_{1}+S_{1}\right), \tag{25d}
\end{align*}
$$

$$
\begin{gather*}
R_{1}+R_{2} \leq C\left(\frac{S_{1}+I_{1}+I_{1} I_{2}}{1+I_{2}}\right)+C\left(\frac{S_{2}+I_{2}+I_{1} I_{2}}{1+I_{1}}\right) \tag{25e}\\
2 R_{1}+R_{2} \leq C\left(\frac{S_{1}}{1+I_{2}}\right)+C\left(I_{1}+S_{1}\right) C\left(\frac{S_{2}+I_{2}+I_{1} I_{2}}{1+I_{1}}\right) \tag{25f}\\
R_{1}+2 R_{2} \leq C\left(\frac{S_{2}}{1+I_{1}}\right)+C\left(I_{2}+S_{2}\right) C\left(\frac{S_{1}+I_{1}+I_{1} I_{2}}{1+I_{2}}\right) \tag{25~g}
\end{gather*}
$$

where $C(x)=\frac{1}{2} \log (1+x)$.
Now we show that \mathcal{R}_{O}^{G} is achievable with half a bit.
Theorem 3 (Half-Bit Theorem [4]) For the Gaussian IC, if $\left(R_{1}, R_{2}\right) \in \mathcal{R}_{O}^{G}$, then $\left(R_{1}-\frac{1}{2}, R_{2}-\frac{1}{2}\right)$ is achievable.

Proof: To prove Theorem 3, consider Lemma 1 for the Gaussian IC with the auxiliary random variables in (24). Then, for $j \in\{1,2\}$, consider

$$
\begin{aligned}
I\left(X_{j} ; T_{j} \mid U_{j}, Q\right) & =h\left(T_{j} \mid U_{j}, Q\right)-h\left(T_{j} \mid U_{j}, X_{j}, Q\right) \\
& =h\left(T_{j} \mid U_{j}\right)-h\left(T_{j} \mid X_{j}\right) \\
& =h\left(T_{j} \mid U_{j}\right)-h\left(Z_{j}\right) \\
& \stackrel{(a)}{\leq} h\left(T_{j}-U_{j}\right)-h\left(Z_{j}\right) \\
& =h\left(Z_{j}-Z_{j}^{\prime}\right)-h\left(Z_{j}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

where (a) follows from the fact that conditioning reduces entropy.

III. DEGREE OF FREEDOM

Consider the symmetric Gaussian IC with $S_{1}=S_{2}=S$ and $I_{1}=I_{2}=I$. Note that S and I fully characterize the channel. Define the symmetric capacity of the channel as $\mathcal{C}_{\text {sym }}=\max \{R:(R, R) \in \mathcal{C}\}$ and the normalized symmetric capacity as

$$
d_{s y m}=\frac{\mathcal{C}_{\text {sym }}}{C(S)} .
$$

We find the symmetric degrees of freedom (DoF) $d_{s y m}^{*}$, which is the limit of $d_{\text {sym }}$ as
the SNR and INR approach infinity. Note that in taking the limit, we are considering a sequence of channels rather than any particular channel. This limit, however, sheds light on the optimal coding strategies under different regimes of high SNR/INR.

Specializing the outer bound \mathcal{R}_{O}^{G} in (25) to the symmetric case yields

$$
\begin{align*}
& \mathcal{C}_{\text {sym }} \leq \overline{\mathcal{C}}_{\text {sym }} \\
& \quad=\min \left\{C(S), \frac{1}{2} C\left(\frac{S}{1+I}\right)+\frac{1}{2} C(S+I), C\left(\frac{S+I+I^{2}}{1+I}\right), \frac{2}{3} C\left(\frac{S}{1+I}\right)+\frac{1}{3} C\left(S+2 I+I^{2}\right)\right\} . \tag{26}
\end{align*}
$$

By the half-bit theorem,

$$
\begin{equation*}
\frac{\overline{\mathcal{C}}_{\text {sym }}}{C(S)}-\frac{1}{2} \leq d_{\text {sym }} \leq \frac{\overline{\mathcal{C}}_{\text {sym }}}{C(S)} \tag{27}
\end{equation*}
$$

Thus, the difference between the upper and lower bounds converges to zero as $S \rightarrow \infty$, and the normalized symmetric capacity converges to the degrees of freedom $d_{s y m}^{*}$. This limit, however, depends on how I scales as $S \rightarrow \infty$. Since it is customary to measure SNR and INR in decibels (dBs), we consider the limit for a constant ratio between the logarithms of the INR and SNR

$$
\begin{equation*}
\alpha=\frac{\log I}{\log S} \tag{28}
\end{equation*}
$$

or equivalently, $I=S^{\alpha}$. Then, as $S \rightarrow \infty$, the normalized symmetric capacity $d_{s y m}$ converges to

$$
\begin{aligned}
d_{s y m}^{*}(\alpha) & =\lim _{S \rightarrow \infty} \frac{\left.\overline{\mathcal{C}}_{s y m}\right|_{I=S^{\alpha}}}{C(S)} \\
& =\min \left\{1, \max \left\{\frac{\alpha}{2}, 1-\frac{\alpha}{2}\right\}, \max \{\alpha, 1-\alpha\}, \max \left\{\frac{2}{3}, \frac{2 \alpha}{3}\right\}+\max \left\{\frac{1}{3}, \frac{2 \alpha}{3}\right\}-\frac{2 \alpha}{3}\right\} .
\end{aligned}
$$

Since the fourth bound inside the minimum is redundant, we have

$$
\begin{equation*}
d_{s y m}^{*}(\alpha)=\min \left\{1, \max \left\{\frac{\alpha}{2}, 1-\frac{\alpha}{2}\right\}, \max \{\alpha, 1-\alpha\}\right\} . \tag{29}
\end{equation*}
$$

The symmetric DoF as a function of α is plotted in Figure 2. Note the unexpected W (instead of V) shape of the DoF curve. When interference is negligible ($\alpha \leq 1 / 2$), the DoF is $1-\alpha$ and corresponds to the limit of the normalized rates achieved by treating interference as noise. For strong interference ($\alpha \geq 1$), the DoF is $\min \left\{1, \frac{\alpha}{2}\right\}$ and corresponds to simultaneous decoding. In particular, when interference is very strong ($\alpha \geq 2$), it does not impair the DoF. For moderate interference ($1 \frac{1}{2} \leq \alpha \leq 1$), the DoF corresponds to the Han-Kobayashi rate splitting. However, the DoF first increases until $\alpha=\frac{2}{3}$ and then decreases to $\frac{1}{2}$ as α is increased to 1 . Note that for $\alpha=\frac{1}{2}$ and $\alpha=1$, time division is also optimal.

Fig. 2: Degrees of freedom for symmetric Gaussian IC versus $\alpha=\frac{\log I}{\log S}$.

Remark 3 In the above analysis, we scaled the channel gains under a fixed power constraint. Alternatively, we can fix the channel gains and scale the power P to infinity. It is not difficult to see that under this high power regime, $\lim _{P \rightarrow \infty} d^{*}=\frac{1}{2}$, regardless of the values of the channel gains. Thus time division is asymptotically optimal.

References

[1] T. S. Han and K. Kobayashi. A new achievable rate region for the interference channe. IEEE Trans. Inf. Theory, 27(1):49-60, 1981.
[2] A. El Gamal and Y.-H. Kim. Network Information Theory. Cambridge University Press, 2011.
[3] I. E. Telatar and D. N. C. Tse. Bounds on the capacity region of a class of interference channels. In in Proc. IEEE International Symposium on Information Theory, Nice, France, June 2007.
[4] R. Etkin, D. Tse, and H. Wang. Gaussian interference channel capacity to within one bit. IEEE Trans. Inf. Theory, 54(12):5534-5562, Dec. 2008.

