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I. HAN-KOBAYASHI INNER BOUND

The Han-Kobayashi inner bound is the best-known bound on thecapacity region of the

discrete memoryless interference channel (DM-IC) [1]. It includes all the inner bounds

we discussed so far, and is tight for all interference channels with known capacity regions.

We consider the following characterization of this inner bound.

Theorem 1 (Han-Kobayashi Inner Bound) Let C be the capacity region of the DM-

IC PY1,Y2|X1,X2
. Let RHK be the region defined by the union of all sets of rate pairs

(R1, R2) ∈ R
2
+ satisfying:

R1 < I(X1;Y1|U2, Q), (1a)

R2 < I(X2;Y2|U1, Q), (1b)

R1 +R2 < I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q), (1c)

R1 +R2 < I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q), (1d)

R1 +R2 < I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q), (1e)

2R1 +R2 < I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q), (1f)

R1 + 2R2 < I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q), (1g)

where the union is taken over all joint distributions of the form PQPU1,X2|QPU2,X2|Q,

|U1| ≤ |X1|+ 4, |U2| ≤ |X2|+ 4, and |Q| ≤ 6. Then the the following inclusion holds:

RHK ⊆ C. (2)

Remark 1 The Han-Kobayashi inner bound reduces to the interference-as-noise inner

bound by settingU1 = U2 = ∅. At the other extreme, the Han-Kobayashi inner bound
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reduces to the simultaneous-nonunique-decoding inner bound by settingU1 = X1 and

U2 = X2. Thus, the bound is tight for the class of DM-ICs with strong interference.

Remark 2 The Han-Kobayashi inner bound can be readily extended to theGaussian IC

with average power constraints and evaluated using Gaussian (Uj, Xj), j ∈ {1, 2}. It is

not known, however, if the restriction to the Gaussian distribution is sufficient.

Proof: The proof uses rate splitting. We represent each messageMj, j ∈ {1, 2},

by independent “public” messageMj0 at rateRj0 and “private” messageMjj at rate

Rjj. Thus,Rj = Rj0 +Rjj. These messages are sent via superposition coding, whereby

the cloud centerUj represents the public messageMj0 and the satellite codewordXj

represents the message pair(Mj0,Mjj). The public messages are to be recovered by both

receivers, while each private message is to be recovered only by its intended receiver.

We First show that the tuple(R10, R20, R11, R22) is achievable if

R11 < I(X1;Y1|U1, U2, Q), (3a)

R11 +R10 < I(X1;Y1|U2, Q), (3b)

R11 +R20 < I(X1, U2;Y1|U1, Q), (3c)

R11 +R10 +R20 < I(X1, U2;Y1|Q), (3d)

R22 < I(X2;Y2|U1, U2, Q), (3e)

R22 +R20 < I(X2;Y2|U1, Q), (3f)

R22 +R10 < I(X2, U1;Y2|U2, Q), (3g)

R22 +R20 +R10 < I(X2, U1;Y2|Q), (3h)

for some PMFPQPU1,X2|QPU2,X2|Q.

Throughout this proof we denote a sequence of lengthn with symbol from the alphabet

X by a boldface letter, i.e.,x.

Codebook Generation: Fix a PMF PQPU1,X2|QPU2,X2|Q and ǫ > 0. Generate a

sequenceq in an i.i.d. manner according toPQ. For j ∈ {1, 2}, randomly and

conditionally independently generate2nRj0 sequencesuj(mj0), mj0 ∈ {1, . . . , 2nRj0},
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TABLE I: The joint PMFs induced by different(m10,m20,m11) triples.

m10 m20 m11 Joint PMF Rate Bound

1 1 1 1 p(u1,x1)p(u2)p(y1|x1,u2) –

2 1 1 * p(u1,x1)p(u2)p(y1|u1,u2) R11 < I(X1;Y1|U1, U2, Q)

3 * 1 * p(u1,x1)p(u2)p(y1|u2) R10 +R11 < I(X1, U1;Y1|U2, Q)

4 * 1 1 p(u1,x1)p(u2)p(y1|u2) R10 < I(X1, U1;Y1|U2, Q)

5 1 * * p(u1,x1)p(u2)p(y1|u1) R20 +R11 < I(X1, U2;Y1|U1, Q)

6 * * 1 p(u1,x1)p(u2)p(y1) R10 +R20 < I(X1, U1, U2;Y1|Q)

7 * * * p(u1,x1)p(u2)p(y1) R10 +R20 +R11 < I(X1, U1, U2;Y1|Q)

8 1 * 1 p(u1,x1)p(u2)p(y1|x1) R20 < I(X1;Y1|U1, U2, Q)

each according to
∏n

i=1 PUj |Q(uji|qi). For eachmj0, randomly and conditionally inde-

pendently generate2nRjj sequencesxj(mj0,mjj), mjj ∈ {1, . . . , 2nRjj}, each according

to
∏n

i=1 PXj |Uj ,Q

(
xji|uji(mj0), qi

)
.

Encoding: To sendmj = (mj0,mjj), j ∈ {1, 2}, Encoderj transmitsxj(mj0,mjj).

Decoding: We use simultaneous nonunique decoding. Upon receiving

y1, Decoder 1 finds the unique message pair(m̂10, m̂11) such that

(q,u1(m̂10),u2(m20),x1(m̂10, m̂11),y1) ∈ T (n)
ǫ , for some m20 ∈ {1, . . . , 2nR20};

otherwise it declares an error. Decoder 2 finds the message pair (m̂20, m̂22) similarly.

Analysis of the Probability of Error: Assume message pair
(
(1, 1), (1, 1)) is sent.

We bound the average probability of error for each decoder. First consider Decoder 1. As

shown in Table I, we have eight cases to consider (here conditioning onq is suppressed).

Cases 3 and 4, and 6 and 7, respectively, share the same PMF, andcase 8 does not cause

an error. Thus, we are left with only five error events. Accordingly, Decoder 1 makes an

error only if one or more of the following events occur:

E10 =
{(

Q,U1(1),U2(1),X1(1, 1),Y1

)
/∈ T (n)

ǫ

}

, (4)

E11 =
{

∃m11 6= 1,
(
Q,U1(1),U2(1),X1(1,m11),Y1

)
∈ T (n)

ǫ

}

, (5)

E12 =
{

∃m10 6= 1,m11,
(
Q,U1(m10),U2(1),X1(m10,m11),Y1

)
∈ T (n)

ǫ

}

, (6)
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E13 =
{

∃m20 6= 1,m11 6= 1,
(
Q,U1(1),U2(m20),X1(1,m11),Y1

)
∈ T (n)

ǫ

}

, (7)

E14 =
{

∃m10 6= 1,m20 6= 1,m11,
(
Q,U1(m10),U2(m20),X1(m10,m11),Y1

)
∈ T (n)

ǫ

}

.

(8)

Hence, the average probability of error for Decoder 1 is upper bounded as

P
[
E1
]
≤

4∑

i=0

P
[
E1i

]
. (9)

We bound each term. By the LLN,P
[
E10

]
tends to zero asn → ∞. By the packing

lemma,P
[
E11

]
tends to zero asn → ∞ if R11 < I(X1;Y1|U1, U2, Q)−δ(ǫ). Similarly, by

the packing lemma,P
[
E12

]
, P

[
E13

]
andP

[
E14

]
tend to zero asn → ∞ if the conditions

R11 +R10 < I(X1;Y1|U2, Q)− δ(ǫ), R11 +R20 < I(X1, U2;Y1|U1, Q)− δ(ǫ), andR11 +

R10 + R20 < I(X1, U2;Y1|Q) − δ(ǫ) are satisfied, respectively. The average probability

of error for decoder 2 can be bounded similarly.

Finally, substitutingR11 = R1 − R10 and R22 = R2 − R20, and using the Fourier-

Motzkin procedure with the constraints0 ≤ Rj0 ≤ Rj, j ∈ {1, 2}, to eliminateR10 and

R20, we obtain the region given in Theorem 1. Furthermore, the cardinality bound on

Q can be proved using the convex cover method (see [2, AppendixC] for details). This

completes the proof of the HanKobayashi inner bound.

II. THE SEMI-DETERMINISTIC INJECTIVE INTERFERENCE CHANNEL

Consider the semi-deterministic interference channel depicted in Figure 1. Here the

functionsy1 and y2 satisfy the condition that for everyx1 ∈ X1, y1(x1, t2) is a one-to-

one function oft2 and for everyx2 ∈ X2, y2(x2, t1) is a one-to-one function oft1. Note

that these conditions imply thatH(Y1|X1) = H(T2) andH(Y2|X2) = H(T1). The channel

is semi-deterministic in the sense that the mapping fromXi to Ti, wherei ∈ {1, 2}, is

random.

Note that if we assume the channel variables to be real-valued instead of finite, the

Gaussian IC becomes a special case of this semi-deterministic IC with by takingT1 =

g21X1 + Z2 andT2 = g12X2 + Z1.
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Fig. 1: Semi-deterministic interference channel.

Consider the following bound on the capacity region of the semi-deterministic IC [3].

Theorem 2 (Outer Bound) Let CSD be the capacity region of the semi-deterministic

IC. Let RO be the region defined by the union of all sets of rate pairs(R1, R2) ∈ R
2
+

satisfying:

R1 ≤ H(Y1|X2, Q)−H(T2|X2), (10a)

R2 ≤ H(Y2|X1, Q)−H(T1|X1), (10b)

R1 +R2 ≤ H(Y1|Q) +H(Y2|U2, X1, Q)−H(T1|X1)−H(T2|X2), (10c)

R1 +R2 ≤ H(Y1|U1, X2, Q) +H(Y2|Q)−H(T1|X1)−H(T2|X2), (10d)

R1 +R2 ≤ H(Y1|U1, Q) +H(Y2|U2, Q)−H(T1|X1)−H(T2|X2), (10e)

2R1 +R2 ≤ H(Y1|Q) +H(Y1|U1, X2, Q) +H(Y2|U2, Q)−H(T1|X1)− 2H(T2|X2),

(10f)

R1 + 2R2 ≤ H(Y2|Q) +H(Y2|U2, X1, Q) +H(Y1|U1, Q)− 2H(T1|X1)−H(T2|X2)

(10g)

where the union is taken over all joint distributions of the form

PQPX1|QPX2|QPU1|X1
PU2|X2

, where PUj |Xj
= PTj |Xj

for j ∈ {1, 2}. Then the the

following inclusion holds:

CSD ⊆ RO. (11)
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Proof: Consider a sequence of(2nR1 , 2nR2) codes with limn→∞ P
(n)
e = 0. Fur-

thermore, letXn
1 , Xn

2 , T n
1 , T n

2 , Y n
1 and Y n

2 denote the random variables resulting

from encoding and transmitting the independent messagesM1 and M2. Define the

random variablesUn
1 and Un

2 such thatUji is jointly distributed withXji according

to PTj |Xj
(uji|xji), conditionally independent ofTji given Xji for j ∈ {1, 2} and

i ∈ {1, . . . , n}. By Fanos inequality,

nRj = H(Mj)

≤ I(Mj;Y
n
j ) + nǫn

≤ I(Xn
j ;Y

n
j ) + nǫn (12)

Next, observe that

I(Xn
1 ;Y

n
1 ) = H(Y n

1 )−H(Y n
1 |X

n
1 )

(a)
= H(Y n

1 )−H(T n
2 |X

n
1 )

(b)
= H(Y n

1 )−H(T n
2 )

≤
n∑

i=1

H(Y1i)−H(T n
2 ) (13)

where (a) follows from the fact thatY n
1 andT n

2 are one-to-one givenXn
1 , while (b) follows

from the fact thatT n
2 is independent ofXn

1 . The second termH(T n
2 ), however, is not

easily upper-bounded in a single-letter form. Now considerthe following augmentation

I(Xn
1 ;Y

n
1 ) ≤ I(Xn

1 ;Y
n
1 , U

n
1 , X

n
2 )

= I(Xn
1 ;U

n
1 ) + I(Xn

1 ;X
n
2 |U

n
1 ) + I(Xn

1 ;Y
n
1 |U

n
1 , X

n
2 )

(a)
= H(Un

1 )−H(Un
1 |X

n
1 ) +H(Y n

1 |U
n
1 , X

n
2 )−H(Y n

1 |X
n
1 , U

n
1 , X

n
2 )

(b)
= H(T n

1 )−H(Un
1 |X

n
1 ) +H(Y n

1 |U
n
1 , X

n
2 )−H(T n

2 |X
n
2 )

≤ H(T n
1 )−

n∑

i=1

[

H(U1i|X1i) +H(Y1i|U1i, X2i)−H(T2i|X2i)
]

(14)
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First, note that (a) follows from the fact by the choice of thejoint distribution in Theorem

2, T n
1 and Un

1 are identically distributed and the fact that(Xn
1 , X

n
2 ) are independent

conditioned onUn
1 . To see that (b) holds consider the fact that the second and fourth

terms in (b) represent the output of a memoryless channel given its input; thus, they

readily single-letterize with equality. The third term in (b) can be upper-bounded in a

single-letter form. The first termH(T n
1 ) will be used to cancel terms likeH(T n

2 ) in (13).

Similarly, we can write

I(Xn
1 ;Y

n
1 ) ≤ I(Xn

1 ;Y
n
1 , U

n
1 )

= I(Xn
1 ;U

n
1 ) + I(Xn

1 ;Y
n
1 |U

n
1 )

= H(Un
1 )−H(Un

1 |X
n
1 ) +H(Y n

1 |U
n
1 )−H(Y n

1 |X
n
1 , U

n
1 )

= H(T n
1 )−H(Un

1 |X
n
1 ) +H(Y n

1 |U
n
1 )−H(T n

2 )

= H(T n
1 )−H(T n

2 )−
n∑

i=1

[

H(U1i|X1i) +H(Y1i|U1i)
]

(15)

and

I(Xn
1 ;Y

n
1 ) ≤ I(Xn

1 ;Y
n
1 , X

n
2 )

= I(Xn
1 ;X

n
2 ) + I(Xn

1 ;Y
n
1 |X

n
2 )

= H(Y n
1 |X

n
2 )−H(Y n

1 |X
n
1 , X

n
2 )

= H(Y n
1 |X

n
2 )−H(T n

2 |X
n
2 )

=
n∑

i=1

[

H(Y1i|X2i) +H(T2i|X2i)
]

(16)

By symmetry, similar bounds can be established forI(Xn
2 ;Y

n
2 ), namely,

I(Xn
2 ;Y

n
2 ) ≤

n∑

i=1

H(Y2i)−H(T n
1 ), (17)

I(Xn
2 ;Y

n
2 ) ≤ H(T n

2 )−
n∑

i=1

[

H(U2i|X2i) +H(Y2i|U2i, X1i)−H(T1i|X1i)
]

, (18)



3-8

I(Xn
2 ;Y

n
2 ) ≤ H(T n

2 )−H(T n
1 )−

n∑

i=1

[

H(U2i|X2i) +H(Y2i|U2i)
]

, (19)

I(Xn
2 ;Y

n
2 ) ≤

n∑

i=1

[

H(Y2i|X1i) +H(T1i|X1i)
]

. (20)

Finally, consider linear combinations of the inequalitiesin (13)-(20) where all the

multi-letter terms, namelyH(T n
1 ) andH(T n

2 ), are canceled. Combining them with the

bounds in (12) and using a time-sharing variableQ ∼ U{1, . . . , n} completes the proof

of the outer bound.

Having the result of Theorem 2, recall the Han-Kobayashi inner bound. By introducing

the restriction thatPU1,U2|Q,X1,X2
= PT1|X1

PT2|X2
, the HK region in (1) reduces to the one

presented subsequently, which gives rise to the following corollary.

Corollary 1 (Han-Kobayashi Inner Bound for the Semi-Deterministic IC) Let CSD

be the capacity region of the semi-deterministic IC. LetRI be the region defined by

the union of all sets of rate pairs(R1, R2) ∈ R
2
+ satisfying:

R1 ≤ H(Y1|U2, Q)−H(T2|U2, Q), (21a)

R2 ≤ H(Y2|U1, Q)−H(T1|U1, Q), (21b)

R1 +R2 ≤ H(Y1|Q) +H(Y2|U1, U2, Q)−H(T1|U1, Q)−H(T2|U2, Q), (21c)

R1 +R2 ≤ H(Y1|U1, U2, Q) +H(Y2|Q)−H(T1|U1, Q)−H(T2|U2, Q), (21d)

R1 +R2 ≤ H(Y1|U1, Q) +H(Y2|U2, Q)−H(T1|U1, Q)−H(T2|U2, Q), (21e)

2R1 +R2 ≤ H(Y1|Q) +H(Y1|U1, U2, Q) +H(Y2|U2, Q)−H(T1|U1, Q)− 2H(T2|U2, Q),

(21f)

R1 + 2R2 ≤ H(Y2|Q) +H(Y2|U1, U2, Q) +H(Y1|U1, Q)− 2H(T1|U1, Q)−H(T2|U2, Q),

(21g)

where the union is taken over all joint distributions of the form

PQPX1|QPX2|QPU1|X1
PU2|X2

, where PUj |Xj
= PTj |Xj

for j ∈ {1, 2}. Then the the

following inclusion holds:

RI ⊆ CSD. (22)
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The inner bound in (21) is obtained by substituting the jointdistribution

PQPX1|Q PU1|X1

︸ ︷︷ ︸

=PT1|X1

PX2|Q PU2|X2

︸ ︷︷ ︸

=PT2|X2

PT1|X1
PT2|X2 {Y1=y1(T1,X1)} {Y2=y2(T2,X2)}, (23)

with the one stated in Theorem 1.

For a fixed(Q,X1, X2) ∼ PQPX1|QPX2|Q, let RO(Q,X1, X2) be the region defined by

the set of inequalities in (10), and letRI(Q,X1, X2) denote the closure of the region

defined by the set of inequalities in (21).

Lemma 1 (Gap Between the Inner and Outer Bounds [3]) If (R1, R2) ∈

RO(Q,X1, X2), then
(

R1 − I(X2;T2|U2, Q) , R2 − I(X1;T1|U1, Q)
)

∈ RI(Q,X1, X2).

The result of lemma 1 straightforwardly follows from the structure of the rate bounds

in (10) and the fact thatH(Yj|Uj , Q) ≥ H(Yj|Xj, Q), for j ∈ {1, 2}.

A. Half-Bit Theorem for the Gaussian IC

We show that the outer bound in Theorem 2, when specialized tothe Gaussian IC, is

achievable within half a bit per dimension. For the GaussianIC, the auxiliary random

variables in the outer bound can be expressed as

U1 = g21X1 + Z ′
2 (24a)

U2 = g12X2 + Z ′
1, (24b)

where Z ′
1 and Z ′

2 are N (0, 1), independent of each other and of(X1, X2, Z1, Z2).

Substituting in the outer bound in Theorem 2, we obtain an outer boundRG
O on the

capacity region of the Gaussian IC that consists of all rate pairs (R1, R2) ∈ R
2
+ such that

R1 ≤ C(S1), (25a)

R2 ≤ C(S2), (25b)

R1 +R2 ≤ C

(
S1

1 + I2

)

+ C(I2 + S2), (25c)

R1 +R2 ≤ C

(
S2

1 + I1

)

+ C(I1 + S1), (25d)
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R1 +R2 ≤ C

(
S1 + I1 + I1I2

1 + I2

)

+ C

(
S2 + I2 + I1I2

1 + I1

)

, (25e)

2R1 +R2 ≤ C

(
S1

1 + I2

)

+ C(I1 + S1)C

(
S2 + I2 + I1I2

1 + I1

)

, (25f)

R1 + 2R2 ≤ C

(
S2

1 + I1

)

+ C(I2 + S2)C

(
S1 + I1 + I1I2

1 + I2

)

, (25g)

whereC(x) = 1
2
log(1 + x).

Now we show thatRG
O is achievable with half a bit.

Theorem 3 (Half-Bit Theorem [4]) For the Gaussian IC, if(R1, R2) ∈ RG
O, then

(
R1 −

1
2
, R2 −

1
2

)
is achievable.

Proof: To prove Theorem 3, consider Lemma 1 for the Gaussian IC with the auxiliary

random variables in (24). Then, forj ∈ {1, 2}, consider

I(Xj;Tj|Uj , Q) = h(Tj|Uj, Q)− h(Tj|Uj, Xj , Q)

= h(Tj|Uj)− h(Tj|Xj)

= h(Tj|Uj)− h(Zj)

(a)

≤ h(Tj − Uj)− h(Zj)

= h(Zj − Z ′
j)− h(Zj)

=
1

2

where (a) follows from the fact that conditioning reduces entropy.

III. DEGREE OF FREEDOM

Consider the symmetric Gaussian IC withS1 = S2 = S and I1 = I2 = I . Note that

S andI fully characterize the channel. Define thesymmetric capacity of the channel as

Csym = max
{

R : (R,R) ∈ C
}

and thenormalized symmetric capacity as

dsym =
Csym
C(S)

.

We find thesymmetric degrees of freedom (DoF) d∗sym, which is the limit ofdsym as
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the SNR and INR approach infinity. Note that in taking the limit, we are considering a

sequence of channels rather than any particular channel. This limit, however, sheds light

on the optimal coding strategies under different regimes ofhigh SNR/INR.

Specializing the outer boundRG
O in (25) to the symmetric case yields

Csym ≤ C̄sym

= min

{

C(S),
1

2
C

(
S

1 + I

)

+
1

2
C(S + I), C

(
S + I + I2

1 + I

)

,
2

3
C

(
S

1 + I

)

+
1

3
C(S + 2I + I2)

}

.

(26)

By the half-bit theorem,
C̄sym
C(S)

−
1

2
≤ dsym ≤

C̄sym
C(S)

. (27)

Thus, the difference between the upper and lower bounds converges to zero asS → ∞, and the

normalized symmetric capacity converges to the degrees of freedomd∗sym. This limit, however, depends

on howI scales asS → ∞. Since it is customary to measure SNR and INR in decibels (dBs), we consider

the limit for a constant ratio between the logarithms of the INR and SNR

α =
log I

logS
, (28)

or equivalently,I = Sα. Then, asS → ∞, the normalized symmetric capacitydsym converges to

d∗sym(α) = lim
S→∞

C̄sym

∣
∣
∣
I=Sα

C(S)

= min

{

1, max
{α

2
, 1−

α

2

}

, max {α, 1− α} , max

{
2

3
,
2α

3

}

+max

{
1

3
,
2α

3

}

−
2α

3

}

.

Since the fourth bound inside the minimum is redundant, we have

d∗sym(α) = min
{

1, max
{α

2
, 1−

α

2

}

, max {α, 1− α}
}

. (29)

The symmetric DoF as a function ofα is plotted in Figure 2. Note the unexpected W (instead of V)

shape of the DoF curve. When interference is negligible (α ≤ 1/2), the DoF is1− α and corresponds to

the limit of the normalized rates achieved by treating interference as noise. For strong interference (α ≥ 1),

the DoF ismin
{
1, α

2

}
and corresponds to simultaneous decoding. In particular, when interference is very

strong (α ≥ 2), it does not impair the DoF. For moderate interference (1 1

2
≤ α ≤ 1), the DoF corresponds

to the Han-Kobayashi rate splitting. However, the DoF first increases untilα = 2

3
and then decreases to1

2

asα is increased to1. Note that forα = 1

2
andα = 1, time division is also optimal.
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Fig. 2: Degrees of freedom for symmetric Gaussian IC versusα = log I
logS

.

Remark 3 In the above analysis, we scaled the channel gains under a fixed power constraint. Alternatively,

we can fix the channel gains and scale the powerP to infinity. It is not difficult to see that under this

high power regime,limP→∞ d∗ = 1

2
, regardless of the values of the channel gains. Thus time division is

asymptotically optimal.
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