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Multi-user Information Theory 2 December 20th, 2012

Lecture 7

Lecturer: Haim Permuter Scribe: Oron Sabag

|. DEGRADED MESSAGESET BROADCAST CHANNEL

We define a new setup as an extension for the BC channel. Ineip@ded message
set BC the encoder transmits 2 messafig, M;} over the channel), is decoded
in both decoders, i.e, common message ahdis decoded only at the first decoder. A

figure of this channel is described in Fig.1.
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Fig. 1. Broadcast channel with degraded message set.

We begin with some basic definitions related to this setting:

Definition 1 (Memoryless BC) A broadcast channel consists of an input alphaket
two outputs alphabetd;, and ), and a probability channel functiop(y;, y.|z). The

channel is called a memoryless channel if

Py, Yoale’ yi L us ) = (Y yol @) (1)

Definition 2 (Code for the message set degraded B@) ((2"% 2"1) n) code for the

degraded message set BC consists of two sets of integkrs- {1,2,---,2"%} and
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M =1{1,2,--- 2"} called the message sets. There is an encoding function:
fiMox My — X" (2)
and two decoding functions:

g1 V) = My x My 3)
g2 : V3 — Ma. (4)

Definition 3 (Average probability of error) The average probability of error is the
probability that one of the decoded messages is not equaletdaransmitted messages.
That is, P = Pr ({M1 £ VLY UM, # MQ}) ~ Pr ((Ml,Mg) ”] (MI,MZ)). We
assume that the messageéd,, M,) are distributed uniformly and independent of each

other over2nfo x onfi

Definition 4 (Achievable rate pair) A rate pair (R;, R,) is said to be achievable for
the degraded message set BC if there exists a sequen@@"f, 2"1) n) codes s.t

Pe(n) — 0 asn — oo.

Definition 5 (Capacity region) The capacity region is the closure of the union of all

achievable rate pairs.

Theorem 1 (Capacity region for the degraded message set BOhe capacity region

for the degraded message set BC is :

Ry < I(U;Y3)
Ri= U Ry + Ry < IX|U) +1(UYs) |- 5)
p(u,z)p(y1,y2|x) Ro+ Ry < [(X;Yl)

Lemma 1 (Equivalent achievabile rate region for degraded mesage set BC)or
the degraded message set BC the redRegns an achievable region ifR, is achievable
region.
Ry < I(U; Y3)
Ry, = U RlSI(X§Y1|U) : (6)
p(u,2)p(y1,y2|®) Ro+ Ry < I(X;Y7)
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Proof: (Equivalent achievable region) The first side of the prooblwious since
R, € R;. In order to prove the second direction of proof we can loolgi@phical

description of the regions in fig. I.

R A

I(X;1a|U)

Ry

The gray triangle is the gap between the regionsR:8R,. The pointA is achievable
if the point B is achievable since we can use time sharing to transfer rate R, to
R;. The convexity ofR, will be proven in appendix 1. [ |

Proof: (Achievability for theorem 1) We will prove the achievability for the region
R; and conclude thaR, is also achievable region by Lemma 1. Fix a joint distribatio
Px uviv, = Px,uPyi vsx, Where Py, v, x is given by the channel.

Codebook generation:
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1) Generate2"® independent codewords of length U(i) ,i € {1,2,...,2"F}

according toFP;.
2) For each codeword/", generate2" independent codewordsX"(s),s €

{1,2,...,2""} according toP,y,.
Encoding: The encoder sends sequen<é(u"(mq), my).
Decoding:
1) Decoder 1 looks for(rg,my) such that (v}, u"(mg), 2™ (u™(mg),m1)) €
2) Decoder 2 looks forn, such that(yh, u™(myg)) € A*(U,Y3).
Error analysis: Let us assume W.L.O.G that the messa@es, m;) = (1,1) were sent.
The error events are as follows:
1) Define F; for the event that the sequences were generated are not iygdical
set, i.e(yy, vy, 2™ (u"(1),1)) & AX(X,U, Y1, Ys). By using law of large numbers
and the fact that all sequences were generated i.i.d theapildip of this event is

small if n is large enough.
2) For the second decoder let’s define the event 3; # 1s.t(yy, u™(j)) € A (U, Ys).
We know by covering lemma that(E,) — 0 for n — oo if Ry < I(U;Y3) — €.
3) For the first decoder there are 3 different events for degothe wrong pair of

messages, for convenience we show each event and its éohatreording to the

covering lemma in a table.

Event| my My Constraint

Es 1 | #1| R <I(X;Vi|U)—e
Es | g #1 1 Ry <I(X:Y;)—e
Ess |mo#1|ny#1 | Ro+ R <I(U X;Y)) —¢

One can see in the third constraint that/, X;Y;) = I(X;Y;) sinceY; — X — U is a
markov chain. Therefore, we can remove the second conistiaite its region contained

in the third constraint region. By using the union bound we sae that:

P™ < Pr(Ey) + Pr(Ey) + Pr(Esy) + Pr(Esy) + Pr(Esz) — 0 7
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if
Ry < I(U;Ys) )
Ry < I(X;n|U) ©)
Ro+ Ry < I(UX;Y1) =1(X; V). (10)
u
(Proof of the converse for Theorem 1)We prove the converse for regidgy .
nRy 2 H(My) (11)
(0)
< I(YJ; My) + ne, (12)
= ) I(Ya My|Ys™") + me, (13)
=1
S 1(Vars My, Y3 + e (14)
=1
<Y I(Yai; Mo, Y37 Vi) A ey (15)
=1
DN 1(Yai U) + e (16)
=1

Where (a) follows from the uniform distribution dff, € [1, ..., 2"f] as defined in
Def.(3).

Where (b) follows from Fano’s inequality wheié(M,|Y3") < ne,.

Where (c) follows from independence ofYy;}!, over i which applies
H(Y5i| Mo, Yy ™') = H(Yas| M)

Where (d) follows from substituting/; = (M, Y5 ', Y")).

n(Ro+ R) ¥ H(M, M) (17)
(b)
< I(Mo, My Y{") + ney, (18)
9 1Mo, My, X" Y + e, (19)

DTV X + ne, (20)
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< Z H(YulYi™Y) = HYul X", Y7™) + ney (21)
(e)

< ZH (Yii) = H(Y3l Xi) + ne, (22)
= Z[ Y14, Xi) + ne, (23)

Where (a) follows from the uniform distribution a¥f, € [1,...,2"%] and M, €
[1,...,2""] as defined in Def.(3).

Where (b) follows from Fano’s inequality wheté (M, M;|Y]") < ne,.

Where (c) follows the fact thak™ is a function of (M, M).

Where (d) follows from Markov chaitiMy, M;) — X™ — Y}".

Where (e) follows from the given memoryless channel as defineDef.(1).

—
S
=

n(Ro+ R1) = H(My, M) (24)
= H(M|M,) + H(Mo) (25)
®)
< I(Ml;Y"\MO)+n€n+I(Y2”;MO)+n€ (26)
© -
< ZI (My; Yii| Mo, V!, ) + T(Yai; Mo|Y5™") + 2ne,, (27)
=1

@) 1. i—1

< ZI My, Y3t Yl Mo, Y7 ) + T(Yai; Mo, Y3 1) + 2ney, (28)
=1

= Z[ Yy Y Mo, YY) + (M Yig| My, Y,

=1

Y3 4+ I(Yai; My, Yo™t) + 2ne,

1+1’

= Zf (Y55 Yo Mo, Y77 ) + T(X s Yag| Mo, Yi Y3 ™0) 4 1 (Yai; Mo, Y3 1) + 2429)

1+17

=1

@ N 7 i .

LN T Yail Mo, YT + I(X YislUs) + I(Yai; Mo, Y3') + 2ne, (30)
=1

@ > I(Mo, Y57 Y 3 Yay) + 1(Xi; YiglU) + 2ney, (31)
i=1

OS5 IU Yai) + I(X3: YadlUy) + 206, (32)

i=1
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Where (a) follows from the uniform distribution aff, € [1,...,2"%] and M, €
[1,...,2"%] as defined in Def.(3).

Where (b) follows from Fano’s inequality whereH (M,|Y", M,) <
H(My, My|Y{) < né, and H(M,|Y]) < né,.

Where (c) follows from the chain rule and substituting, = maz{é,, €, }.
Where (d) follows from independence §¥>;}! , over: and the fact that mutual
information has a non-negative value.

Where (e) follows from the chain rule of mutual information.

Where (f) follows from the fact thak(; is a deterministic function of M, M ).
Where (g) follows from Csiszar sum identity and substitgfiih = (M, Yy !, i)
Where (h) follows from the chain rule of mutual information.

Where (i) follows from substituting/; = (M, Y5 ', Y",).

[I. GENERAL UPPER BOUND FOR THEBROADCAST CHANNEL

Theorem 2 (General upper bound for the Broadcast ChannelWe want to proceed
and develop an upper bound for the general broadcast charmelupper bound for the

general BC is as follows:

Ry < I(U; YY) (33)
Ry < I(UyY2) (34)
Ri+ Ry < I(Uy;Ys)+ I(X;Y1|Us) (35)
Ri+ Ry < I(Uy; Y1)+ 1(X;Ys|Uh) (36)

Proof: In this proof we will use the converse we proved for the messsj degraded

BC. First, we defin€ auxiliary r.v's
Ui & (M, Y51 Y) (37)
Uy = (M, Y5 1Y) (38)

Inequality (33) can be derived by replacia®/,, U;) with (M, Uy;) in the converse of the
message set degraded in (11)-(16). Inequality (34) can beedeby replacing(M,, U;)
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with (M,, Uy;) in the converse of the message set degraded in (11)-(1&udtigy (35)
can be derived by replacingM,, U;) with (M,, Uy;) in the converse of the message
set degraded in (24)-(32). The last inequality, i.e (36)prsved by following a similar

steps as the converse in (24)-(32). For some convenienceldvéha proof but with no

arguments.
n(Ry + Ry) = H (M, Ms) (39)

= H(M|M,) + H(M,) (40)

(b)

< I(Ma; Y3 [My) + nén + I(Mq; Y1) + neé (41)

0 & .

< Z I(My; Yai| Mo, Y3 71) + I(My; Yli‘Y17:+1) + 2ne, (42)
i=1

@ & - §

< O (Mo, Y75 Yo My, Y37Y)  I(My, YT 5 Vi) + 2ne, (43)
=1

) Z I(YY, 5 Yo My, Yool + I(Ma; Yoi | My, Yo Y, Vi) + I(My, YY?, 5 V) + 2ne,
=1

DS I Yl ML YY) + TG YaolUv) + (ML YT 3 V) + 2ney (44)
=1

< ZI(Yii§M17Y;_17Y1?+1)+I(Xz‘;lez‘|U1i)+2n€n (45)
=1

YOS I(YVie Un) + 1(X5 Yiil Uns) + 2ne, (46)
i=1

|

[1l. SEMI DETERMINISTIC BROADCAST CHANNEL

The semi-deterministic channel is a broadcast channel eviieris a determinis-
tic function of X, therefore its joint distribution can be written a®(z,y1,y2) =
p(x)p(y2|r)ly,—4(x). This channel is an example for overlapping between theriand
outer bound we have developed. The capacity region will bemdousing Marton inner

bound as proved in Lec .6 and the general upper bound distpsseiously.
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Definition 6 Define the region,

Ry < H(V1)
Reemi = U Ry < I(U; Y2) .4
p(W)p(z|u)ly; =g(x)P(y2|z) Ri+ Ry < HVA|U) + [(U; Ys)
Theorem 3 The capacity region for the semi-deterministic BC chana@4d.,,;.

Proof: First we show that this region is achievable, substituting= Y; andU, = U

into Marton’s inner bound yields the following region:

Ry = <IY1;Y1)=HM) (48)
Ri+Ry, < HY1)+I(U;Ys)—I(U;Y1) = HM|U) + I(U;Y3). (50)

Now we need to prove that the outer bound overlaps with theribound,

Ry < I(UyY:) < H(Y) (51)
Ry < I(UyYs) (52)

Where the last inequality holds sin&g is a function of X, thereforeH (Y;|X, U;) = 0.
u
For further reading attached are references for the olligeygers, the general broadcast
channel was first introduced in 1972 by cover in [5]. Korned aiarton found the
capacity region of the degraded message set BC in [2]. Thergkapper bound which
we showed is a direct consequence from [3] by El Gamal. Thaagpregion of the

semi deterministic BC was solved by Marton in [4].

APPENDIX A

CONVEXITY OF THE REGIONR,

In appendix A we complete the proof of Lemma.l by showing #mgian convexity

of Ry. The proof begins with introducing a new region and show aisvexity and then



7-10
we proceed to show that that the new region equals to thersshuegionRR,. Let us
define the region:

Ry < I(U;Y3|Q)
o — U Ry < I(X;Y1|U,Q) : (54)
r@plualopi el \ B R < [(XY4Q)

We define two rate pairéR;', R{), (RF, RP) € C’ which corresponds t@(u,z) and

pe(u, z) respectively. The region is convex if a convex combinatian ,
(R, RY) = a(Rg, R) + a(Ry, RY) Va € [0,1] (55)

holds
(Rg,RY) € C'. (56)

Let us substitute into the the rate pairs into the region uaéties so we get:

Ry < I(U;Y5|Q = A) RY < I(U;Y2|Q = B) (57)
R} < I(X;Vi|U,Q = A) RP <I(X;Vi|U,Q=DB) (58)
R} + R} < I(X;V3|Q = A) RE 4+ RE < I(X;Y1|Q = B) (59)

One can see that the terms of regiGhcan be written as:
HUY3]Q) = P(Q=AIU:Y2|Q = A) + P(Q = BI(U:Y,|Q=B)  (60)
IX;n|U,Q) = P(Q=A)I(X;Y1|U,Q=A)+ P(Q=B)I(X;W1|U,Q = B61)
I(X;n)Q) = P(@=A)IX;n|Q=A)+P(@=B)I(X;V1Q=B) (62)

By choosing distribution of) with @ = {A, B}, P(Q = A) = a and P(Q = B) = &
and using the inequalities we developed we get:

IU;Y2|Q) = al(U;Y2|Q = A) +al(U;Y2|Q = B) (63)
< aR}+aRry (64)
= RS. (65)

IX|U,Q) = oI(XiViU,Q = A)+al(X:Vi|U,Q=B)  (66)
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< aR!+aR? (67)

= RY. (68)
I(Xi1|Q) = ol(X;N[Q = A) +al(X;Y3|Q = B) (69)
< Ry +RY +a(RE +RP) (70)
= (RS + RY). (71)

Thus we showed thatR$, RY) € C’ and the region is convex. In order to complete
the proof thatR, is convex we show thaR, = C’. First we notice thatC’ O R, by

substituting@ = 0. Then we show thaR, D C’, consider

IN

I(U;Y2|Q) I(U,Q;Y2) 2 ](U Y2) (72)

[(X;N|U,Q) = I(X;vi|U) (73)

—
N

—
=

I(X;n|Q) = HW|Q) - HW|X) < HY) - HWN[X) = I(X;Y1)  (74)

(a) follows from choosing new auxiliary r.¥ = (U, Q).
(b) follows from the markov chaid) — X — Y;.

APPENDIX B

ALTERNATIVE CONVERSE FORGELFAND PINSKER MODEL

Appendix B provides a proof for the "Telescoping Identityhieh was introduced in
[1] and its use for an alternative proof of the converse folf&el Pinsker model. Then
we proceed and prove an extended version of Telescopingitidertnich is used to prove

Csiszar sum identity.

Lemma 2 (Telescoping ldentity) Led™ and B™ be any sequences of random variables,

then
Z I(A% B ) — (A7 B =0 (75)

Proof: We expand the series as follows:

Z[ (A B ) — (A7 Br) = (76)
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i=1 I(AY“B})—I(A% B+ .. (77)
i=2 I(A%BD) —I(AY,BY)+ --- (78)
i=n I(A";Br,)—I(A"%BY) = (79)
—I(A% BY) + I(A"; By,,) = 0. (80)

|

Alternative proof of converse for Gelfand-Pinsker model:

Fix a code(n, 2") with an average probability of errd?™. Now consider,

nR = H(M) (81)

(a)

< I(M;Y™) + ne, (82)

O 1M Y™ - 1M S™) + ne,, (83)

© S I(M, S YY) = I(M, 8P YY) + e, (84)
=1

2 D H(M, S Y ) + I(M, 7 YY) = I(M, S YY) = 1(S5 YU ST, M) + ney
=1

= > I(M,SEYilY'™) = (S5 Y S, M) + ne, (85)
=1

— Z HY;|Y"™") = HY' Y, M, S — (H(S:|SP, M) + H(S;|Y'™'SP,, M)) + ne, (86)
=1

() & o ‘

< Y H(Y) = HY'|Y'™', M,S},) — (H(S;) + H(S[Y7'S,,, M) + ney, (87)
=1

= > I(Yi YL M SE,) = IS5 YIS M) + ne, (88)
=1

& Z 1Y Up) = 1(S3; Us) + ney (89)
=1

Where (a) follows from Fano’s inequality.
Where (b) follows from independence of side informatihand messag#/. item[]
Where (c) follows from substitutingl” = Y™ and B" = (M, S™) in lemma.2, one
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can see that the only arguments are not equal to zero conggpondicesi = 1, n.
Where (d) follows from chain rule of mutual information.
Where (e) follows from conditioning reduces entropy.
Where (f) follows from substituting/; = (Y*~', M, SZ, ).
|

Lemma 3 Let A", B", C™ and D™ be any sequences of random variables, then
ZI (A% B |Cl, DY) = I(AT L BR|CF, D) =0 (90)

We don’t provide an explicit proof since it follows from expaon of the series again.
Alternative proof for Csiszar sum identity:

The proof follows from the chain rule of mutual informationdasubstituting the results

into lemma.2.
](Ai§ zn—l—l) = (AZ g Bz—l—l)—'_I(AZ’BH—l Ai_l) (91)
(A5 BY) = I(A™Y Bl + I(Bi; AY L |BL) (92)
[ |
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