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Multi-user Information Theory 2 December 20th, 2012

Lecture 7

Lecturer: Haim Permuter Scribe: Oron Sabag

I. DEGRADED MESSAGESET BROADCAST CHANNEL

We define a new setup as an extension for the BC channel. In the degraded message

set BC the encoder transmits 2 messages{M0,M1} over the channel.M0 is decoded

in both decoders, i.e, common message andM1 is decoded only at the first decoder. A

figure of this channel is described in Fig.1.
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Fig. 1. Broadcast channel with degraded message set.

We begin with some basic definitions related to this setting:

Definition 1 (Memoryless BC) A broadcast channel consists of an input alphabetX ,

two outputs alphabetsY1 and Y2, and a probability channel functionp(y1, y2|x). The

channel is called a memoryless channel if

p(y1,i, y2,i|x
i, yi−1

1 , yi−1
2 ) = p(y1,i, y2,i|xi). (1)

Definition 2 (Code for the message set degraded BC)A ((2nR0, 2nR1), n) code for the

degraded message set BC consists of two sets of integersM0 = {1, 2, · · · , 2nR0} and
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M1 = {1, 2, · · · , 2nR1}, called the message sets. There is an encoding function:

f : M0 ×M1 → X n (2)

and two decoding functions:

g1 : Y
n
1 → M0 ×M1 (3)

g2 : Y
n
2 → M0. (4)

Definition 3 (Average probability of error) The average probability of error is the

probability that one of the decoded messages is not equal to the transmitted messages.

That is, P (n)
e = Pr

(

{M1 6= M̂1} ∪ {M2 6= M̂2}
)

= Pr
(

(M1,M2) 6= (M̂1, M̂2)
)

. We

assume that the messages(M1,M2) are distributed uniformly and independent of each

other over2nR0 × 2nR1.

Definition 4 (Achievable rate pair) A rate pair (R1, R2) is said to be achievable for

the degraded message set BC if there exists a sequence of((2nR0 , 2nR1), n) codes s.t

P
(n)
e → 0 asn → ∞.

Definition 5 (Capacity region) The capacity region is the closure of the union of all

achievable rate pairs.

Theorem 1 (Capacity region for the degraded message set BC)The capacity region

for the degraded message set BC is :

R1 =
⋃

p(u,x)p(y1,y2|x)











R0 ≤ I(U ; Y2)

R0 +R1 ≤ I(X ; Y1|U) + I(U ; Y2)

R0 +R1 ≤ I(X ; Y1)











. (5)

Lemma 1 (Equivalent achievabile rate region for degraded message set BC)For

the degraded message set BC the regionR1 is an achievable region iffR2 is achievable

region.

R2 =
⋃

p(u,x)p(y1,y2|x)











R0 ≤ I(U ; Y2)

R1 ≤ I(X ; Y1|U)

R0 +R1 ≤ I(X ; Y1)











. (6)
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Proof: (Equivalent achievable region) The first side of the proof isobvious since

R2 ⊆ R1. In order to prove the second direction of proof we can look atgraphical

description of the regions in fig. I.

R0

R1

R2

I(U ; Y2)

I(X ; Y1|U)

A

B

The gray triangle is the gap between the regions i.e,R1\R2. The pointA is achievable

if the point B is achievable since we can use time sharing to transfer rate from R0 to

R1. The convexity ofR2 will be proven in appendix 1.

Proof: (Achievability for theorem 1) We will prove the achievability for the region

R1 and conclude thatR2 is also achievable region by Lemma 1. Fix a joint distribution

PX,U,Y1,Y2 = PX,UPY1,Y2|X , wherePY1,Y2|X is given by the channel.

Codebook generation:
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1) Generate2nR0 independent codewords of lengthn, U(i) ,i ∈ {1, 2, . . . , 2nR0}

according toPU .

2) For each codewordUn, generate2nR1 independent codewords,Xn(s), s ∈

{1, 2, . . . , 2nR1} according toPx|u.

Encoding: The encoder sends sequenceXn(un(m0), m1).

Decoding:

1) Decoder 1 looks for (m̂0, m̂1) such that (yn1 , u
n(m̂0), x

n(un(m̂0), m̂1)) ∈

A∗
ǫ (X,U, Y1).

2) Decoder 2 looks for̂m0 such that(yn2 , u
n(m̂0)) ∈ A∗

ǫ (U, Y2).

Error analysis: Let us assume W.L.O.G that the messages(m0, m1) = (1, 1) were sent.

The error events are as follows:

1) DefineE1 for the event that the sequences were generated are not in thetypical

set, i.e(yn1 , y
n
2 , x

n(un(1), 1)) 6∈ A∗
ǫ (X,U, Y1, Y2). By using law of large numbers

and the fact that all sequences were generated i.i.d the probability of this event is

small if n is large enough.

2) For the second decoder let’s define the eventE2 : ∃j 6= 1s.t(yn2 , u
n(j)) ∈ A∗

ǫ (U, Y2).

We know by covering lemma thatP (E2) → 0 for n → ∞ if R0 ≤ I(U ; Y2)− ǫ.

3) For the first decoder there are 3 different events for decoding the wrong pair of

messages, for convenience we show each event and its constraint according to the

covering lemma in a table.

Event m̂0 m̂1 Constraint

E31 1 m̂1 6= 1 R1 ≤ I(X ; Y1|U)− ǫ

E32 m̂0 6= 1 1 R0 ≤ I(X ; Y1)− ǫ

E33 m̂0 6= 1 m̂1 6= 1 R0 +R1 ≤ I(U,X ; Y1)− ǫ

One can see in the third constraint thatI(U,X ; Y1) = I(X ; Y1) sinceY1 −X − U is a

markov chain. Therefore, we can remove the second constraint since its region contained

in the third constraint region. By using the union bound we can see that:

P (n)
e ≤ Pr(E1) + Pr(E2) + Pr(E31) + Pr(E32) + Pr(E33) → 0 (7)
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if

R0 ≤ I(U ; Y2) (8)

R1 ≤ I(X ; Y1|U) (9)

R0 +R1 ≤ I(U,X ; Y1) = I(X ; Y1). (10)

(Proof of the converse for Theorem 1)We prove the converse for regionR1.

nR0
(a)
= H(M0) (11)
(b)

≤ I(Y n
2 ;M0) + nǫn (12)

=

n
∑

i=1

I(Y2i;M0|Y
i−1
2 ) + nǫn (13)

(c)
=

n
∑

i=1

I(Y2i;M0, Y
i−1
2 ) + nǫn (14)

≤
n

∑

i=1

I(Y2i;M0, Y
i−1
2 , Y n

i+1) + nǫn (15)

(d)
=

n
∑

i=1

I(Y2i;Ui) + nǫn (16)

Where (a) follows from the uniform distribution ofM0 ∈ [1, ..., 2nR0] as defined in

Def.(3).

Where (b) follows from Fano’s inequality whereH(M0|Y
n
2 ) ≤ nǫn.

Where (c) follows from independence of{Y2i}
n
i=1 over i which applies

H(Y2i|Mo, Y
i−1
2 ) = H(Y2i|Mo) .

Where (d) follows from substitutingUi = (M0, Y
i−1
2 , Y n

i+1).

n(R0 +R1)
(a)
= H(M0,M1) (17)
(b)

≤ I(M0,M1; Y
n
1 ) + nǫn (18)

(c)
= I(M0,M1, X

n; Y n
1 ) + nǫn (19)

(d)
= I(Y n

1 ;X
n) + nǫn (20)
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≤
n

∑

i=1

H(Y1i|Y
i−1
1 )−H(Y1i|X

n, Y i−1
1 ) + nǫn (21)

(e)

≤
n

∑

i=1

H(Y1i)−H(Y1i|Xi) + nǫn (22)

=
n

∑

i=1

I(Y1i;Xi) + nǫn (23)

Where (a) follows from the uniform distribution ofM0 ∈ [1, ..., 2nR0 ] and M1 ∈

[1, ..., 2nR1] as defined in Def.(3).

Where (b) follows from Fano’s inequality whereH(M0,M1|Y
n
1 ) ≤ nǫn.

Where (c) follows the fact thatXn is a function of(M0,M1).

Where (d) follows from Markov chain(M0,M1)−Xn − Y n
1 .

Where (e) follows from the given memoryless channel as defined in Def.(1).

n(R0 +R1)
(a)
= H(M0,M1) (24)

= H(M1|M0) +H(M0) (25)
(b)

≤ I(M1; Y
n
1 |M0) + nǫ̂n + I(Y n

2 ;M0) + nǫ̃ (26)

(c)

≤
n

∑

i=1

I(M1; Y1i|M0, Y
n
1i+1

) + I(Y2i;M0|Y
i−1
2 ) + 2nǫn (27)

(d)

≤
n

∑

i=1

I(M1, Y
i−1
2 ; Y1i|M0, Y

n
1i+1

) + I(Y2i;M0, Y
i−1
2 ) + 2nǫn (28)

(e)
=

n
∑

i=1

I(Y i−1
2 ; Y1i|M0, Y

n
1i+1

) + I(M1; Y1i|M0, Y
n
1i+1

, Y i−1
2 ) + I(Y2i;M0, Y

i−1
2 ) + 2nǫn

(f)
=

n
∑

i=1

I(Y i−1
2 ; Y1i|M0, Y

n
1i+1

) + I(X1; Y1i|M0, Y
n
1i+1

, Y i−1
2 ) + I(Y2i;M0, Y

i−1
2 ) + 2nǫn(29)

(g)
=

n
∑

i=1

I(Y n
1i+1

; Y2i|M0, Y
i−1
2 ) + I(Xi; Y1i|Ui) + I(Y2i;M0, Y

i−1
2 ) + 2nǫn (30)

(h)
=

n
∑

i=1

I(M0, Y
i−1
2 , Y n

1i+1
; Y2i) + I(Xi; Y1i|Ui) + 2nǫn (31)

(i)
=

n
∑

i=1

I(Ui; Y2i) + I(Xi; Y1i|Ui) + 2nǫn (32)
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Where (a) follows from the uniform distribution ofM0 ∈ [1, ..., 2nR0 ] and M1 ∈

[1, ..., 2nR1] as defined in Def.(3).

Where (b) follows from Fano’s inequality whereH(M1|Y
n
1 ,M0) ≤

H(M0,M1|Y
n
1 ) ≤ nǫ̂n andH(M0|Y

n
2 ) ≤ nǫ̃n.

Where (c) follows from the chain rule and substitutingnǫn = max{ǫ̂n, ǫ̃n}.

Where (d) follows from independence of{Y2i}
n
i=1 over i and the fact that mutual

information has a non-negative value.

Where (e) follows from the chain rule of mutual information.

Where (f) follows from the fact thatXi is a deterministic function of(M0,M1).

Where (g) follows from Csiszar sum identity and substitutingUi = (M0, Y
i−1
2 , Y n

i+1).

Where (h) follows from the chain rule of mutual information.

Where (i) follows from substitutingUi = (M0, Y
i−1
2 , Y n

i+1).

II. GENERAL UPPER BOUND FOR THEBROADCAST CHANNEL

Theorem 2 (General upper bound for the Broadcast Channel)We want to proceed

and develop an upper bound for the general broadcast channel. The upper bound for the

general BC is as follows:

R1 ≤ I(U1; Y1) (33)

R2 ≤ I(U2; Y2) (34)

R1 +R2 ≤ I(U2; Y2) + I(X ; Y1|U2) (35)

R1 +R2 ≤ I(U1; Y1) + I(X ; Y2|U1) (36)

Proof: In this proof we will use the converse we proved for the message set degraded

BC. First, we define2 auxiliary r.v’s

U1i , (M1, Y
i−1
2 , Y n

i+1) (37)

U2i , (M2, Y
i−1
2 , Y n

i+1) (38)

Inequality (33) can be derived by replacing(M0, Ui) with (M1, U1i) in the converse of the

message set degraded in (11)-(16). Inequality (34) can be derived by replacing(M0, Ui)
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with (M2, U2i) in the converse of the message set degraded in (11)-(16). Inequality (35)

can be derived by replacing(M0, Ui) with (M2, U2i) in the converse of the message

set degraded in (24)-(32). The last inequality, i.e (36), isproved by following a similar

steps as the converse in (24)-(32). For some convenience we add the proof but with no

arguments.

n(R1 +R2)
(a)
= H(M1,M2) (39)

= H(M2|M1) +H(M1) (40)
(b)

≤ I(M2; Y
n
2 |M1) + nǫ̂n + I(M1; Y

n
1 ) + nǫ̃ (41)

(c)

≤
n

∑

i=1

I(M2; Y2i|M0, Y
i−1
2 ) + I(M1; Y1i|Y

n
1i+1

) + 2nǫn (42)

(d)

≤
n

∑

i=1

I(M2, Y
n
1i+1

; Y2i|M1, Y
i−1
2 ) + I(M1, Y

n
1i+1

; Y1i) + 2nǫn (43)

(e)
=

n
∑

i=1

I(Y n
1i+1

; Y2i|M1, Y
i−1
2 ) + I(M2; Y2i|M1, Y

i−1
2 , Y n

1i+1
) + I(M1, Y

n
1i+1

; Y1i) + 2nǫn

(f)
=

n
∑

i=1

I(Y i−1
2 ; Y1i|M1, Y

n
1i+1

) + I(Xi; Y2i|U1i) + I(M1, Y
n
1i+1

; Y1i) + 2nǫn (44)

(g)
=

n
∑

i=1

I(Y1i;M1, Y
i−1
2 , Y n

1i+1
) + I(Xi; Y1i|U1i) + 2nǫn (45)

(h)
=

n
∑

i=1

I(Y1i;U1i) + I(Xi; Y1i|U1i) + 2nǫn (46)

III. SEMI DETERMINISTIC BROADCAST CHANNEL

The semi-deterministic channel is a broadcast channel where Y1 is a determinis-

tic function of X, therefore its joint distribution can be written as:P (x, y1, y2) =

p(x)p(y2|x)1Y1=g(X). This channel is an example for overlapping between the inner and

outer bound we have developed. The capacity region will be found using Marton inner

bound as proved in Lec .6 and the general upper bound discussed previously.



7-9

Definition 6 Define the region,

RSemi =
⋃

p(u)p(x|u)1Y1=g(X)p(y2|x)











R1 ≤ H(Y1)

R2 ≤ I(U ; Y2)

R1 +R2 ≤ H(Y1|U) + I(U ; Y2)











. (47)

Theorem 3 The capacity region for the semi-deterministic BC channel is RSemi.

Proof: First we show that this region is achievable, substitutingU1 = Y1 andU2 = U

into Marton’s inner bound yields the following region:

R1 = ≤ I(Y1; Y1) = H(Y1) (48)

R2 ≤ I(U ; Y2) (49)

R1 +R2 ≤ H(Y1) + I(U ; Y2)− I(U ; Y1) = H(Y1|U) + I(U ; Y2). (50)

Now we need to prove that the outer bound overlaps with the inner bound,

R1 ≤ I(U1; Y1) ≤ H(Y1) (51)

R2 ≤ I(U2; Y2) (52)

R1 +R2 ≤ I(U2; Y2) + I(X ; Y1|U2) = I(U2; Y2) +H(Y1|U2) (53)

Where the last inequality holds sinceY1 is a function ofX, thereforeH(Y1|X,U2) = 0.

For further reading attached are references for the original papers, the general broadcast

channel was first introduced in 1972 by cover in [5]. Korner and Marton found the

capacity region of the degraded message set BC in [2]. The general upper bound which

we showed is a direct consequence from [3] by El Gamal. The capacity region of the

semi deterministic BC was solved by Marton in [4].

APPENDIX A

CONVEXITY OF THE REGIONR2

In appendix A we complete the proof of Lemma.1 by showing the region convexity

of R2. The proof begins with introducing a new region and show its convexity and then



7-10

we proceed to show that that the new region equals to the required regionR2. Let us

define the region:

C
′ =

⋃

p(q)p(u,x|q)p(y1,y2|x)











R0 ≤ I(U ; Y2|Q)

R1 ≤ I(X ; Y1|U,Q)

R0 +R1 ≤ I(X ; Y1|Q)











. (54)

We define two rate pairs(RA
0 , R

A
1 ), (R

B
0 , R

B
1 ) ∈ C ′ which corresponds topA(u, x) and

pB(u, x) respectively. The region is convex if a convex combination ,i.e

(RC
0 , R

C
1 ) = α(RA

0 , R
A
1 ) + ᾱ(Rb

0, R
B
1 ) ∀α ∈ [0, 1] (55)

holds

(RC
0 , R

C
1 ) ∈ C

′. (56)

Let us substitute into the the rate pairs into the region inequalities so we get:

RA
0 ≤ I(U ; Y2|Q = A) RB

0 ≤ I(U ; Y2|Q = B) (57)

RA
1 ≤ I(X ; Y1|U,Q = A) RB

1 ≤ I(X ; Y1|U,Q = B) (58)

RA
0 +RA

1 ≤ I(X ; Y1|Q = A) RB
0 +RB

1 ≤ I(X ; Y1|Q = B) (59)

One can see that the terms of regionC′ can be written as:

I(U ; Y2|Q) = P (Q = A)I(U ; Y2|Q = A) + P (Q = B)I(U ; Y2|Q = B) (60)

I(X ; Y1|U,Q) = P (Q = A)I(X ; Y1|U,Q = A) + P (Q = B)I(X ; Y1|U,Q = B)(61)

I(X ; Y1|Q) = P (Q = A)I(X ; Y1|Q = A) + P (Q = B)I(X ; Y1|Q = B) (62)

By choosing distribution ofQ with Q = {A,B}, P (Q = A) = α andP (Q = B) = ᾱ

and using the inequalities we developed we get:

I(U ; Y2|Q) = αI(U ; Y2|Q = A) + ᾱI(U ; Y2|Q = B) (63)

≤ αRA
0 + ᾱRB

0 (64)

= RC
0 . (65)

I(X ; Y1|U,Q) = αI(X ; Y1|U,Q = A) + ᾱI(X ; Y1|U,Q = B) (66)
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≤ αRA
1 + ᾱRB

1 (67)

= RC
1 . (68)

I(X ; Y1|Q) = αI(X ; Y1|Q = A) + ᾱI(X ; Y1|Q = B) (69)

≤ α(RA
0 +RA

1 ) + ᾱ(RB
0 +RB

1 ) (70)

= (RC
0 +RC

1 ). (71)

Thus we showed that(RC
0 , R

C
1 ) ∈ C′ and the region is convex. In order to complete

the proof thatR2 is convex we show thatR2 = C′. First we notice thatC′ ⊇ R2 by

substitutingQ = ∅. Then we show thatR2 ⊇ C′, consider

I(U ; Y2|Q) ≤ I(U,Q; Y2)
(a)
= I(Ũ ; Y2) (72)

I(X ; Y1|U,Q)
(a)
= I(X ; Y1|Ũ) (73)

I(X ; Y1|Q)
(b)
= H(Y1|Q)−H(Y1|X) ≤ H(Y1)−H(Y1|X) = I(X ; Y1) (74)

(a) follows from choosing new auxiliary r.ṽU = (U,Q).

(b) follows from the markov chainQ−X − Y1.

APPENDIX B

ALTERNATIVE CONVERSE FORGELFAND PINSKER MODEL

Appendix B provides a proof for the ”Telescoping Identity” which was introduced in

[1] and its use for an alternative proof of the converse for Gelfand Pinsker model. Then

we proceed and prove an extended version of Telescoping Identity which is used to prove

Csiszar sum identity.

Lemma 2 (Telescoping Identity) LetAn andBn be any sequences of random variables,

then
n

∑

i=1

I(Ai;Bn
i+1)− I(Ai−1;Bn

i ) = 0 (75)

Proof: We expand the series as follows:
n

∑

i=1

I(Ai;Bn
i+1)− I(Ai−1;Bn

i ) = (76)



7-12

i = 1 I(A1;Bn
2 )− I(A0;Bn

1 )+ · · · (77)

i = 2 I(A2;Bn
3 )− I(A1;Bn

2 )+ · · · (78)

...

i = n I(An;Bn
n+1)− I(An−1;Bn

n) = (79)

−I(A0;Bn
1 ) + I(An;Bn

n+1) = 0. (80)

Alternative proof of converse for Gelfand-Pinsker model:

Fix a code(n, 2nR) with an average probability of errorP (n)
ǫ . Now consider,

nR = H(M) (81)
(a)

≤ I(M ; Y n) + nǫn (82)

(b)
= I(M ; Y n)− I(M ;Sn) + nǫn (83)

(c)
=

n
∑

i=1

I(M,Sn
i+1; Y

i)− I(M,Sn
i ; Y

i−1) + nǫn (84)

(d)
=

n
∑

i=1

I(M,Sn
i+1; Y

i−1) + I(M,Sn
i+1; Y

i|Y i−1)− I(M,Sn
i+1; Y

i−1)− I(Si; Y
i−1|Sn

i+1,M) + nǫn

=

n
∑

i=1

I(M,Sn
i+1; Yi|Y

i−1)− I(Si; Y
i−1|Sn

i+1,M) + nǫn (85)

=
n

∑

i=1

H(Yi|Y
i−1)−H(Y i|Y i−1,M, Sn

i+1)− (H(Si|S
n
i+1,M) +H(Si|Y

i−1Sn
i+1,M)) + nǫn (86)

(e)

≤
n

∑

i=1

H(Yi)−H(Y i|Y i−1,M, Sn
i+1)− (H(Si) +H(Si|Y

i−1Sn
i+1,M)) + nǫn (87)

=

n
∑

i=1

I(Yi; Y
i−1,M, Sn

i+1)− I(Si; Y
i−1Sn

i+1,M) + nǫn (88)

(f)
=

n
∑

i=1

I(Yi;Ui)− I(Si;Ui) + nǫn (89)

Where (a) follows from Fano’s inequality.

Where (b) follows from independence of side informationSn and messageM . item[]

Where (c) follows from substitutingAn = Y n andBn = (M,Sn) in lemma.2, one
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can see that the only arguments are not equal to zero correspond to indicesi = 1, n.

Where (d) follows from chain rule of mutual information.

Where (e) follows from conditioning reduces entropy.

Where (f) follows from substitutingUi = (Y i−1,M, Sn
i+1).

�

Lemma 3 Let An, Bn, Cn andDn be any sequences of random variables, then
n

∑

i=1

I(Ai;Bn
i+1|C

n
i+1, D

i−1)− I(Ai−1;Bn
i |C

n
i+1, D

i−1) = 0 (90)

We don’t provide an explicit proof since it follows from expansion of the series again.

Alternative proof for Csiszar sum identity:

The proof follows from the chain rule of mutual information and substituting the results

into lemma.2.

I(Ai;Bn
i+1) = I(Ai−1;Bn

i+1) + I(Ai;B
n
i+1|A

i−1) (91)

I(Ai−1;Bn
i ) = I(Ai−1;Bn

i+1) + I(Bi;A
n
i−1|B

n
i+1) (92)

�
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