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Multi-user Information Theory October 23rd, 2018

Lecture 1

Lecturer: Haim Permuter Scribe: Oron Sabag

. INTRODUCTION

This lecture gives an overall review and motivation for théetference Channel(IC).
The interference channel is based on a network consistiitg general formV senders
and N receivers. Specifically, in our class we study the case whete 2. There exists
a one-to-one correspondence between senders and rec&welssender only wants to
communicate with its corresponding receiver, and eachivecenly cares about the
information form its corresponding sender. However, edwdnaoel interferes the others.

Motivation for this model can be found in satellite commuation. For instance,
two satellites send information to its corresponding grbwstation simultaneously.
Each ground station can receive the signals from both of W gatellites and its
communication is interfered by the other pair's communaratThe interference channel
models also a wireless communication and a wired commuaicain atwisted pair
due to e.

The IC was first studied in 1974 by Ahlswede in [1], where inard outer bounds
were derived. Later, Han and Kobayashi derived in [2] theé keswn-inner bound on the
capacity region of the DM-IC. This inner bound was found tdigat for any any special
case which has a capacity region; such that deterministianic strong interference IC.
However, this channel has not been solved in general caseievbe general Gaussian
case.

In this lecture note, Section Il describes the problem dbimiof the IC, and Section

lll includes 3 capacity regions regarding th@&ognitive IC including detailed proofs.

[I. PROBLEM DEFINITION

The IC is described in Fig. 1. The DM-IC modet:, X, Py, v, x,,x,, Vi, V2), cONnsists

of four finite alphabetsY;, X>,Y;,), and a collection of conditional pmf8y, y; x, x,
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on Y, Vs.

W X7 (Wh) Y Wi
—— > FEncoderl Decoderl ———>

Y
Y

PY17Y2|X1,X2

W. X(W- Y #
—2 Encoder2 £ (V) > 2 Decoder2 L

A
\ 4

Fig. 1. Interference Channel for two users.

Definition 1 (Code for the IC) A (2% 27 p) code for the interference channel
consists of:

« Two message sefg) = {1,...,2""} andW, = {1, ..., 2"}

« Encoding functiong; : W; — X", for j = 1,2

. Decoding functions; : Y* — W, for j = 1,2
We assume that the message pélif;, 1W,) is uniformly distributed ovef1, ..., 2"} x
{1,...,2"%2}, The average probability of error is defined asP™ = Pr((Wh, Wy) #
(W1, Ws)). A rate pair(R;, R,) is said to beachievable for the DM-IC if there exists a
sequence of2" 2n%2 p) codes such thdim,, .. P — .

Thecapacity region is defined as the closure of the set of achievable rate p&irsRs).

[Il. COGNITIVE INTERFERENCECHANNEL
A. Deterministic Cognitive Interference Channel

In this section we study a special case for the IC, Dieeerministic-Cognitive IC. The
setup is described in Fig. 2. In this model we assume that th&sagdl; is known at

both encoders. Moreover, the channel is memoryless ancéddby two deterministic
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function f; and f, with the input argument§X, X,), thatis,Py, v,|x,,x, = Lyi=p (x,,x0)"

IlY2=f2(X1,X2)'

Wi, Wy X (W, Wa) e Wi
— > FEncoderl > Decoderl ——— >

Y

PYl«,Yz\XL,XZ =
Lyyi=f1 (0. x0)"
]lyzi:fQ(Xl-,XZ)

W X(W- Y
—2 Encoder2 2 (1W2) > 2 Decoder2 L

\ 4

Fig. 2. Deterministic Cognitive Interference Channel faptusers.

Theorem 1 (Capacity Region for the Deterministic-Cognitive IC) The capacity re-
gion is the set of rate pairsR;, R»), such that:

Ry < HM1|Xy),
Ry < H(Y3|Xz) + 1(X2;Ya),
Ry + Ry < H(Y1, Y| Xo) + I(Xy; Ya), 1)
for some joint distributionPx, x, 1y, —, (x,,x2) Lva=fa(x1,X2)-

Proof:

Achievability: The achievability comprises of two steps; first, we use tleeddtermin-
istic broadcast channel (BC) coding scheme to transmit facoderl at rates(R;, R)),
then encoder transmits additional information at rat®,. Combining both steps, we
conclude that the rate pajiz,, R, + R}) is achievable.

Let us remind to the reader the capacity region of the detestic BC where non-

causal side informatio®™ is given to the encoder:
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Ry + Ry < H(Y3,Y5|5).

Encoderl is using the coding scheme of the deterministic BC at ratestes(R;, R,),
but where the considered Sl ’s}. Then, we use a simple point to point result for the
rate can be achieved from encodeto decoder,i.e. R) < I(X5;Y>). Combining these

two coding schemes, we achieve the region:

Ry < H(Y1|Xo), ()
Ry < H(Y,|X,) + (X3 Ya), 3)
Ry + Ry < H(Y1, Ya| Xa) + I(Xa; Va). (4)

Converse: For the converse part, we assume that there exists a @yde, 2% n)
such thatlim,, ,., P = 0.

For the rateR;, consider

nRky = H(W)
< (W W)
& (W Wy, X3)
< W, Y| Wa, X3)

= H(Y"'|W2, X3) + H(Wi[Y)*, Wa, X3)
(d)
< ZH(YMX%) + ne,

=1
where:
(a) follows from the fact that the messagés and 1V, are independent;
(b) follows from the fact thatX}' is a deterministic function ofV/;;
(c) follows from the deterministic channel characteriaafi
(d) follows from Fano’s inequality, i.eH (W;|Y", Wy, XT') < ne, and the fact that

conditioning reduces entropy.
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For the rateR,, consider
nR2 = H(WQ)

(a)

< I(Wo; YY) + ney,
(b)

< H(Yy') + ne,

(6) &
=1
where:

(@) follows from Fano’s inequality, i.ed (W5|Y") < ne,;
(b) follows from the non-negativity of the terd (Y3*|Ws);
(c) follows from the fact that conditioning reduces entropy

For the sum rate?; + R,, consider
n(R1 + RQ) == H(Wl, Wg)
= H(W|Wsy) + H(Ws)

(@)
< H(Wh|Wy, X3) + 1(Wy; Y3') + ney

b
© H(Y7, Wh W, X) + H(YS) — H(YJWa) + ne,

< HOP, WAy, XP) + HYZ) + ey
D Wy W, XI) + HYD) + 2ne,
D H(Y W Wa, X3, Y5) + H(YS) + 2ne,
&S H (Y| X Vo) + H(¥ar) + 2nc,

=1
where:

(a) follows from the fact thak} is a deterministic function off’; and Fano’s inequality,
i.e. HWs|YS) < ney;

(b) follows from the deterministic channel characteriaafi

(c) follows from the non-negativity of the ter (Y'|1V2);

(d) follows from Fano’s inequality, i.eH (W |Y]", Wa, XT) < ney;
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(e) follows from the fact that’;* is a deterministic function of;, Ws);

() follows from the fact that conditioning reduces entropy

B. Semi-Deterministic Cognitive 1C with state known at the cognitive user

The setup is described in Fig. 3, ti¥emi-Deterministic (SD) channel is character-
ized by the channel distributio®y, v,x, x,,5 = ly=f(z1,00,5)F (Y2|21, 22, s) for each
time instance. Two independent messagés M, are distributed uniformly in the set
{1,...,2n%1} x {1,...,2"%2} and the state of the channel is.d. and distributed
according toP(s), independently from each messages. Encddéansmits the signal
X7 to the channel, based on both messages and the non-caesifsithation sequence
S™. Encoder2 has access to the messabg only, and transmits the sign&{} to the

channel. Based on the output’, Decoderi; decodes the messagé;, wherei € {1,2}.

Cognitive User

lsn

my ~
- X7 Yr My
Encoder > » Decoder }————
PY1,Y2|X1,X275'
m A X3 Yy Lom
2 > Encoder 2 z2_, 2 > Decoder 2——2——»

Primary User

Fig. 3. Cognitive interference channel, where the cogaitiransmitter knows the state non causally.

Definition 2 A (21 272 p) code of blocklengthn for the setting in Fig. 3 consisting

of two encoding functions

for o {1, .20 {1, 27 x ST s A
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foo t {1, ..., 2" s A2 (5)
and two decoding functions

gar : Y= {1, .., 20

gaz : y{z = {17 e 2nR2}‘ (6)

Let us denote byl (Y;*) and M,(Y;) the outputs of Decoder 1 and 2, respectively.

Definition 3 The probability of error,”™ of a code of blocklength is defined as
P = Pr{M, # My(Y]") or My # My(Y")}. 7
We use the standard definition of an achievable pair-ratetldapacity region.

The next Theorem was introduced and proved in [4].

Theorem 2 (Capacity of the SD Cognitive IC with State known tothe Cognitive User [4])
The capacity region of the semi-deterministic interfeeecbannel with state known to
the cognitive user is the set of all pair ratgs,, i) that satisfies

Ry < H(Y1]S, X5)

Ry < I(U, X5, Ys) — I(U, X2; S)

Ri+ Ry < HM[S, X5, U) + I(U, X2;Ys) — I(U, X3; S) (8)

for some joint distribution of the forn® (s) P(z2) P (21, u|T2, 8) 1y, = f(01 20,5) P (Y2] 71, 2, 5).
Theorem 3 (Capacity of the Deterministic Cognitive IC with Sate known to the Cognitive User)
The capacity region of the deterministic interference cehrwith state known to the
cognitive user is the set of all pair ratéB;, R,) that satisfies
Ry < H(V1|S, Xo)
Ry < H(Ys) = I(¥, X:5)

for some joint distribution of the forn(s) P(x2) P(x1]%2, 5) 1y, = f, (21,22,5) Lyo=fo(w1,22,5) -
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The achievability of Theorem 3 follows in a straightforwarénner from Theorem 2 by

replacingU with Y5. It is also possible to write (9) as
Ry < H(Y1|S, Xa)
Ry < H(Y2[S, Xa) + 1(Xa; Y2)

Note that the capacity region defined only by the entropy esgions of (10) are the
capacity region of the deterministic BC with stat&,(S) known non-causally at the
encoder, and the additional raféY,; X5) is the point-to-point capacity of the primary
user whergS, X»,Y]) are treated as noise.

Proof of Theorem 2:

Sketch of achievability: The main idea in the achievability is to split messddeinto
two parts with rated?, and ;. Then send the bit-ratg’ via a point-to-point channel to
Decoder 2, whereX; and S are treated as noise. The bit-rateés and R, are sent from
Encoder 1 using a semi-deterministic broadcast channéhg@theme with known state
and the encoder [3], where the state $5 X5).

Here is a more detailed description. Fix a joint distriboti®(s) P(x2) P (1, u|za, s).
Split the messagé@/, into two messages/;, and M. with ratesR/, and R}, respectively,
such that

Ry = Ry + Rj. (11)

Code design:Generate2™2 random codewordsXy using i.i.d. p(z,). Generate a
random codé2" 2" pn) for a semi deterministic BC with state known at the encoder
non causally as described in [3] where the statésSts, X7'). The outputs of the BC are
Yy and (Y, X).

Encoding:Map the messagé/} to a codewordX and transmit it. Map the message
pair (M, M}) to X} where the state i§S™, X7 (M})), and transmitX 7.

Decoding:Decoder 2 receive¥,* and uses point-to-point decoding in order to decode
M. Then Decoder 1 and Decoder 2 uses semideterministic BC stétte known at

the encoder to decode¥/; and Mé at decoder 1 and 2, respectively. The state of the



1-9

semideterministic BC i¢X7, S") and Decoder 1 uses" to decodel/; and Decoder 2
uses(Yy", X,(MY)) to decodels.
Error analysisWe would like to show that if the rate-pafi?;, R,) satisfies (8) with
a strict inequality then as goes to infinityPe(") goes to zero.
First note that if
Ry < 1(X3;Ya), (12)

then Decoder 2 would be able to decadd with a probability of error that goes to zero.

Now considering a semi deterministic BC with state (theestiat (X} (M), S™))
known at the encoder, where the first decoder obt&dirand the second decoder obtains
(YJ', X3 (M}). Using the achievability from [3] if Ry, R}) satisfies

Ry < H(Y1|S, X,)
R, < I(U; Yy, X3) — I(U; S, X5)
Ry + Ry < HY[S, Xo) + I(U; Yo, Xo) — I(U; S, X2, Y1) (13)

then Decoder 1 and 2 would be able to decafieand M), respectively, with a probability
of error that goes to zero. Using Fourier-Mozkin elimination (11), (12) and (14) we

obtain
Ry < H(Y1|S, X»)
Ry < I(U;Ys, X2) — I(U; S, Xa) + 1(X2; Y2)
Ry + Ry < HY1|S, Xo) + I(U; Ya, Xo) — I(U; S, X0, Y1) + I(Xs; Y5). (14)
Finally, using simple chain rules and the fact th&t is independent of we obtain
I(U; Y2, Xp) — I(U; 5, Xa) + I(X2; Y2)
= I(U;Y5|Xo) = I(U; 5| X2) + 1(X5;Y3)
= I(U, X2 Yz) — I(U; 5| X3)
= I(U, X2 Y2) — I(U, X5; 5), (15)
and
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= HW|S, X5) + I(U; Yo| Xp) = I(U; 5, 1| X5) 4 1(X5; Y3)

= H(Y1[S, Xo) + 1(X2,U; Ya) — I(U; S, V1| Xs)

= HW|S, X5) +1(Xo, U; Ys) = I(U; §1X3) — I(U; V1] X5, 5)

= HY1|S, X2, U) 4+ 1(X5,U;Y2) — I(U, X5; 9), (16)
and this prove that (14) is identical to (8). [ |

Proof of Converse:Let us fix a codg2"#, 272 p) with a probability of error,P{™.

Now consider the following inequalities,
nRy = H(M)
= H(M,|S", Ms)
%) I(My; Y™ S™, My) + ne,,
< H(Y™|S"™, My) + ney,

= H(Yi[Y"™", 5", My, X,,(Ms)) + ney,
< Z H(Yi]Si, Xa;) + ney, 17)
=1
where step (a) follows from Fano’s inequality and= (R, +R2)P§”)+%. The second set
of inequalities is very similar to the converse of pointgomt channel with non causal

state known at the encoder (Gelfand-Pinsker).
nR2 :H<M2>
(a)
<I(My;Yy') — I(My; S™) + ne,

=N I(M; Yo, |Y3™Y) — I(Ms; Si[ ST,y ) + nen,

i=1

=" I(My, Sy Yl Vi) = 1(SP 4 Yaul Vi, M)

i=1

- I(M% Y2i_1§ Si‘Sin+1) + I<Y2i_1§ Si|Sin+17 Mz) + ne,

b - n i— i— n
(:)Z](M%SHNYZ,AYQ 1)_[(M2>Y2 1>Si+135i)+n€n

i=1
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<3 H(My, ST, Vi3 Vo) — (M, Vi, 2415 51) + e
=1
- i I(Xo5, My, S}y, Yy 1 Yau) — I1(Xa, Mo, Y57, S7L 45 Si) + e,
=1
< Zn: I(Xa, Vis Yai) — 1( X2, Vis Si) 4 ney, (18)

=1
where step (a) follows from Fano’s inequality, step (b) fr@siszar sum identity, i.e.,

St I(ATY BB ) = Yo, I(BlYy; Ai|A'1), step (c) from the fact thak,; is a

function of M, and step (d) from defining
Vi = (M2’ Y2i_1’ Sin—i-l)' (19)

To prove the converse of the third inequality in (8) we wouse the following identity

which follows simply from the chain rule of mutual informai.
H(1|S, Xo,U) + I(U, X5 Ys) — I(U, X5: S) (20)
= H(Y1|S, X5,U) — HY1[S) + HY1[S) + (U, X2 Y2) — I(U, X; 5)
= —1(Y1; X5,U[S) + H(Y1[S) + I(U, X2;Y2) — I(U, X5; 5)
= HYA|S) + I(U, X2; Yz) — I(U, X5 5. Y7) (21)
Now consider,
n(R; + Ry) (22)
= H (M) + H(M,)
%) H(M:|S") + I(M2;Y5") — I(Ma; My, S™) + ne,
= H(M|S") + I[(Ma; Yy") — I(Ma; My, S™, Y\") + I(My; Y{"| My, S") + ne,
2 H(M;, Y"|S™) + I(M2;Yy') — I(Ma; My, S™,Y)") + ney
(_2 H(YS™) 4 I(My; YJ) — I(My; S™,Y7) + 2ne,,

= H(Y",S") — H(S") + I(My;Yy") — I(Ms; S™,YT") + 2ne,

=D HY 0S¥, ) = HS) + 1(Ma; Yo Y5™1) = 1(Ma; Yi, Sil Y41, S + 2nen

i=1



1-12

n

=Y H(Y1:,8) — H(Y13,8:) + HYv, Sl Y710, S0 — H(S))

i=1
+ ](M27 }/FQZ‘}/QZ 1) - I(M2J }/117 S ‘}/1 Ja+10 z+1) + 2n€n

= Z H(Y13|8:) = T(Y13, 85 Yy, Siyn) + 1 (Ma; Yo [Yo ™) = T(Ma; Yii, Sil YV, Si) + 2nen

i=1

=Y H(Y1lS8) + T(Mo; Yo | V3 ') = I(Ms, Y7y, SEi Vi, Si) + 2ney,

=1
= ZH(YLASZ) + I(M%Y*lrji—i-lv Sz—i—lu }/2@‘}/22 1) <Y1 Jit+10 Sz—i—lu EZ‘M%Y; 1)
=1
- [(M%Ylyji-i-lv S?+17}/;_1;}q,iv S) + I(YZ g lea S |M27 1z+1> Sz—i—l) + 2ne,
(i) iH Y, n n . i—1 n n i—1,
= (Y14l Si) + T(Ma, YY"y 1, 30 Yol Yo o) — I(M, YV 4, Siy gy Yo 75 Y1, Si) + 2ney

i=1

< ZH }/IZ‘S) + I<X2 Z7M27}/11+1751+17}/22 L }/2@) - I<X2 Z7M27}/11+1751+17}/2i_1;}/1,i75i) + Qnen

=1

DN HY1LS) + 1(Xa, Vi, Tis Yau) — I(Xai, Vi Tis Yi, S5) + 20, (23)
=1
where (a) and (c) follows from Fano’s inequality and the peledence of\/;, M, and

S™, from the fact thafy” is a deterministic function of\/;, M, S™), (d) from Csiszar
sum identity, and (e) from the definition & which is given in (19) and the definition
of T3,

T2y (24)

Now we are using the trick that was introduced in [3] to oveneothe fact that the
auxiliary T' is not present in the converse of the second inequality ginefi8). We
need to find &’ for which

I(Xo, V3 Ys) — I(Xo, V5 S) < I(Xo,U; Ya) — I(Xo,U; S)

(25)

As in [3] we will show there always exists suchla Note that if
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then we can choosg =V, and (25) will hold, and if
(X, 5 Ya|V) = I(X5, T3 S|V) 2 0 (27)

then we carV = (V,T), and (25) will hold. Furthermore, note that one of the cdndi
(26) or (27) will always hold, therefore there exists a clkoid U for which (25) holds.

u
Converse proof of Theorem 3: Let us fix a codg2"?1, 272 1) with a probability
of error, P™). The inequality

ni; < Z H(Y;|S;, Xa4) + nep, (28)

=1
follows from identical steps as (17). Now consider the rAte

nR2 == H(MQ)
= H(M,|S™)
S H(M271/2n|5n) - H(M27}/2n) + H(M27)/2n)

@ HYP) - I(M, Y S™) + ne,

(b) &
<Y H(Yy) — H(S:) + H(Si| X4, Ya,) + nen,
i=1

< Z H(Y2;) — I(Si; Xo4, o) + nén, (29)
i=1

where (a) follows from Fano’s Inequality and definiag = (R, + R2)Pe(”) + %, and
(b) from the facts that™ is distributed i.i.d., conditioning reduces entropy aXig; is a
function of M,. For the sum rate consider,
H(Rl —+ RQ) = H(Ml, Mg)
— H(Ml, MQ, Sn> - H(Sn)
@ H(lena )/éna Mla M27 Sn) - H(Sn)v

(b)
< H(Y'lnayrznv Sn) - H(Sn) + ney,

< H(YS) + H(Y", S"Y5') — H(S™) + ne,
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< H(YS) + H(X5, YT, 5"(Y5") — H(S") + ney,
©
< H(Y5') + H(Y?", S"|Y5', X5) — H(S™) + 2nep,

<> H(Yau) + H(Yiy, SifYai, Xa0) — H(S;) + 2ne,,

i=1

= Z H(Y2;) + H(Y1,:]Si, X, Yo ) — I(Ya, Xoi3 Si) + 20y, (30)
i=1

where:

(a) follows from the deterministic channel characterizati
(b) follows from Fano’s inequality, i.eH (M, M |Y]", Y5, S™) < ney;

(c) follows from Fano’s inequality, i.eH (X7|Y5") < ne,.
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