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Multi-User Information Theory 2 December 13th, 2012

Lecture 6

Lecturer: Haim Permuter Scribe: Tal Kopetz

I. GAUSSIAN BROADCAST CHANNEL

Let us consider the Gaussian Broadcast Channel depicted in Fig. 1 where fori ∈ [1, 2],

Zi ∼ N(0, σ2
i ) and Z1 ⊥ Z2. Additionaly, there is a power constraint on the input

E[
∑n

i=1X
2
i ] ≤ P .

+ +X

Z1 Z2

Y1 Y2

Fig. 1. The Gaussian Broadcast Channel

The capacity of the degraded broadcast channel is the set of all pairs (R1, R2) that

satisfies

R1 < I(X ; Y1|U) (1)

R2 < I(U ; Y2) (2)

for some joint distributionp(u)p(x|u)p(y1, y2|x).
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Theorem 1 (Gaussian BC) The capacity region of the gaussian broadcastchannel is the

set of all pairs(R1, R2) that satisfies

R1 <
1

2
log(1 +

αP

σ2
1

) (3)

R2 <
1

2
log(1 +

ᾱP

αP + σ2
1 + σ2

2

) (4)

Whereα ∈ [0, 1].

Proof: We will find the capacity region of the gaussian broadcast channel under the

power constraint of1
n

∑n

i=1E[X2
i ] ≤ P .

Proof of Achievability:We start by setting the following distributions:

Zi ∼ N(0, σ2
i ) (5)

X ∼ N(0, P ) (6)

U ∼ N(0, αP ) (7)

V ∼ N(0, ᾱP ) (8)

where0 ≤ α ≤ 1 and ᾱ = 1− α. Therefore

R1 = I(X ; Y1|U) (9)

= I(U + V ;U + V + Z1|U) (10)

= I(V ;V + Z1) (11)

=
1

2
log(1 +

αP

σ2
1

) (12)

and similarly,

R2 = I(U ; Y2) (13)

= I(U ;U + V + Z1 + Z2) (14)

=
1

2
log(1 +

ᾱP

αP + σ2
1 + σ2

2

) (15)

thus obtaining an achievable region. �

In order to prove the converse we will use the following lemma.
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Lemma 1 (Entropy power inequality) TheEntropy Power Inequality(EPI) states that

for any independentX ∼ f(x) andZ ∼ f(z)

22h(X+Z) ≥ 22h(X) + 22h(Z) (16)

in the vector case, whereXn
∼ f(xn), Zn

∼ f(zn),

2
2

n
h(Xn+Zn) ≥ 2

2

n
h(Xn) + 2

2

n
h(Zn) (17)

and in the conditional case

22h(X+Z|U) ≥ 22h(X|U) + 22h(Z|U) (18)

Lemma 2 (Alternative representation of EPI) LetX,Z be independent r.v andX ′, Z ′

gaussian independent r.v. Ifh(Z) = h(Z ′) andh(X) = h(X ′) then

22h(X+Z) ≥ 22h(X
′+Z′) (19)

is equivalent to (16).

Proof:

22h(X+Z) ≥ 22h(X
′+Z′) (20)

= 22
1

2
log(2πe(σ2

x
+σ2

z
)) (21)

= 2πe(σ2
x + σ2

z) (22)

= 22
1

2
log(2πeσ2

x
) + 22

1

2
log(2πe(σ2

z
)) (23)

= 22h(X
′) + 22h(Z

′) (24)

= 22h(X) + 22h(Z) (25)

Thus we have shown that (16) is equivalent to (19).

Proof for the EPI conditional case given the scalar case:We will now prove the con-

ditional case (18) based on the scalar case (16). We need to show that

22h(X+Z|U) ≥ 22h(X|U) + 22h(Z|U) (26)

or equivalently,

2
∑

u∈U

p(u)h(X + Z|U = u) ≥ log(22
∑

u∈U
p(u)h(X|U=u) + 22

∑
u∈U

p(u)h(Z|U=u)) (27)
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Let us consider the following function

f(x, y) = ln(ex + ey) (28)

we will show thatf(x, y) is convex in the pair(x, y) by showing that its hessian is

positive semi-definite.

∂2f(x, z)

∂x2
=

∂2f(x, z)

∂z2
= −

∂2f(x, z)

∂x∂z
= −

∂2f(x, z)

∂y∂x
=

ex+z

(ex + ez)2
(29)

thus,




∂2f(x,z)
∂x2

∂2f(x,z)
∂x∂z

∂2f(x,z)
∂z∂x

∂2f(x,z)
∂z2



 =





ex+z

(ex+ez)2
− ex+z

(ex+ez)2

− ex+z

(ex+ez)2
ex+z

(ex+ez)2



 (30)

=
ex+z

(ex + ez)2





1 −1

−1 1



 (31)

=
ex+z

(ex + ez)2





1

−1





(

1 −1
)

(32)

which means that the hessian is positive semi-definite thusf(x, z) is convex for any pair

(x, z). Now we setx = h(X|U = u), z = h(Z|U = u). From the convexity off(x, z),

by Jensen’s Inequality,
∑

u∈U

p(u) ln(eh(X|U=u) + eh(Z|U=u) ≥ ln(e
∑

u∈U
p(u)h(X|U=u) + e

∑
u∈U

p(u)h(Z|U=u)) (33)

which is the same as in our problem hence (18) holds. �

We now proceed with the converse.

Proof of Converse:By Fano’s Inequality,

R2 < I(Y2;U) = h(Y2)− h(Y2|U) (34)

For the first term

h(Y2) ≤
1

2
log(2πe(P + σ2

1 + σ2
2)), (35)

where (a) follows from the concavity of log function. We now bound the second term as

follows

1

2
log(2πe(σ2

1 + σ2
2)) = h(Y2|X) ≤ h(Y2|U) ≤ h(Y2) ≤

1

2
log(2πe(P + σ2

1 + σ2
2)) (36)
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by the Markov chainY2 − X − U . From the two bounds we conclude that there must

exist some0 ≤ α ≤ 1 s.t

h(Y2|U) =
1

2
log(2πe(αP + σ2

1 + σ2
2)) (37)

and by combining (35) and (38) we obtain

R2 ≤
1

2
log(1 +

ᾱ

αP + σ2
1 + σ2

2

) (38)

We now continue toR1. By Fano’s Inequality,

R1 ≤ I(X ; Y1|U) (39)

= h(Y1|U)− h(Y1|X,U) (40)

= h(Y1|U)− h(Y1|X) (41)
(a)

≤
1

2
log(2πe(αP + σ2

1))−
1

2
log(2πeσ2

1) (42)

=
1

2
log(1 +

αP

σ2
1

) (43)

where (a) follows from the EPI since

22h(Y2|U) ≥ 22h(Y1|U) + 22h(Z2|U) (44)

therefore,

22h(Y1|U) ≤ 22h(Y2|U) − 22h(Z2|U) (45)

= 2πe(αP + σ2
1 + σ2

2)− 2πeσ2
2 (46)

= 2πe(αP + σ2
1) (47)

thus we conclude that

R1 ≤
1

2
log(1 +

αP

σ2
1

) (48)

R2 ≤
1

2
log(1 +

ᾱ

αP + σ2
1 + σ2

2

) (49)

Bergmans (1974) established the converse for the capacity region of the Gaussian BC

using the entropy power inequality. The EPI was first stated by Shannon (1948) in [4].

the first formal proofs are due to Stam [5] and Blachman [6]. More versions of the EPI

are available in [1] and [2]. For further reading, see references below.
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II. A PPENDIX

A. The duality between the EPI and the Brunn-Minkowski Inequality

We introduce the following theorem from mathematics.

Theorem 2 (Brunn-Minkowski Inequality) The volume of the set-sum of two setsA and

B is greater than the volume of the set-sum of two spheresA′, B′ with the same volume

asA′ andB′. In other words

V ol(A+B) ≥ V ol(A′ +B′) (50)

∀A′, B′ s.t V ol(A) = V ol(A′) andV ol(B) = V ol(B′).

The Brunn-Minkowski Inequality (BMI) is very similar to theEPI. In information theory,

the differential entropyh(X) relates to volume in the following way:

Let {Xi}i≥1 be an i.i.d process with a probability density functionf(x). Also, letSn

be a sequence of sets s.t

lim
n→∞

Pr(xn ∈ Sn) = 1 (51)

Then

lim sup
n→∞

V ol(Sn) ≥ 2nh(x) (52)

and for anyǫ > 0 there exists a sequence of volumes s.t

lim
n→∞

V ol(Sn) ≤ 2n(h(x)+ǫ) (53)

Hence, we can see that the volume of the set-sum in the BMI is the analogue ofh(X+Z)

in the EPI.
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