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Multi-User Information Theory 2 December 13th, 2012

Lecture 6

Lecturer: Haim Permuter Scribe: Tal Kopetz

I. GAUSSIAN BROADCAST CHANNEL

Let us consider the Gaussian Broadcast Channel depicted.id ihere fori € [1, 2],
Z; ~ N(0,0?) and Z, 1 Z,. Additionaly, there is a power constraint on the input
ER S X7 < P.

Fig. 1. The Gaussian Broadcast Channel

The capacity of the degraded broadcast channel is the sdt phies (R, R,) that

satisfies

R, < I(X:Yy|U) (1)

Ry, < I(U;Y3) (2)

for some joint distributiorp(u)p(x|w)p(y1, ye| ).
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Theorem 1 (Gaussian BC) The capacity region of the gaussian broadbasinel is the

set of all pairs(R;, i) that satisfies

1 aP
R —log(l + —- 3
1 < 2Og( +crf) 3)
alP

1
R, < —log(l4+ —m—
2 og( +04P+0%+0§

: ) (4)
Wherea € [0, 1].

Proof: We will find the capacity region of the gaussian broadcashobhunder the
power constraint oft 3" | F[X?] < P.

Proof of Achievability:We start by setting the following distributions:

Zi ~ N(0,0%) (5)
X ~ N(0,P) (6)
U ~ N(0,aP) (7
V. ~ N(0,aP) (8)

where0 < a <1 anda =1 — «. Therefore

Ry = I(X;1|U) 9)
= I(U+V;U+V+ Z|U) (20)
= I(V;V+2y) (11)
1 aP
= =log(l+ — 12
5 log(1+ = ) (12)
and similarly,
Ry = I(U;Yy) (13)
1 aP
= —log(l4+ ————— 15
thus obtaining an achievable region. [ |

In order to prove the converse we will use the following lemma
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Lemma 1 (Entropy power inequality) Th&ntropy Power InequalitEPI) states that
for any independenX ~ f(x) andZ ~ f(z)
22h(X+Z) > 22h(X) + 22h(Z) (16)
in the vector case, wher&"™ ~ f(z"), Z™ ~ f(2"),
9Zh(X"+2") > 9=h(X™) + 9=2h(Z™) (17)
and in the conditional case

Q2R(X+Z|U) > 92h(X|U) 92h(2|U) (18)

Lemma 2 (Alternative representation of EPI) Léet, Z be independent r.v and”’, 7’
gaussian independent r.v. M{Z) = h(Z') andh(X) = h(X’) then

22h(x+z) > 22h(X/+Z’) (19)

is equivalent to (16).
Proof:

92M(X+2) > 92h(X'+2) (20)

— 925 log(2me(0}+02)) (21)

= 2me(0? + 0?) (22)

_ 92jlog(2men?) | 923 log(2me(o?)) (23)

_ 92h(X') 4 92h(Z) (24)

_ 92h(X) 4 92h(2) (25)

Thus we have shown that (16) is equivalent to (19). [ |

Proof for the EPI conditional case given the scalar cagé will now prove the con-
ditional case (18) based on the scalar case (16). We neecbvo thiat

Q2R(X+Z|U) > 92h(X|U) 92h(2|U) (26)

or equivalently,

2 Zp(u)h()( + Z|U = u) > log(2?XueuPWhXU=0) 4 923 e ph(ZIU=w)y  (27)

ueU
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Let us consider the following function
f(z,y) = In(e” +¢€’) (28)

we will show that f(x,y) is convex in the paifz,y) by showing that its hessian is

positive semi-definite.
Pf(x,z)  0f(z,2)  Of(z,2) O f(z,2) e

= = = = 29
O0x? 022 0x0z 0yOox (e + e*)? (29)
thus,
Pf(xz)  f(zx.2) etz _ emts
Ox2 0x0z o (e*+e%)2 (e te?)2
02f(x,2) O02%f(x,2) o _ emtz et tz (30)
0z0x 022 (e Fe?)2 (e%+e7)2
etz 1 -1
= 31
(em + 62)2 1 1 ( )
o ! (1 1) (32)
o (em + 62)2 1 -

which means that the hessian is positive semi-definite ftiusz) is convex for any pair
(x,z). Now we setr = h(X|U = u),z = h(Z|U = u). From the convexity off (z, z),
by Jensen’s Inequality,

Zp(u) In(ehXIV=0) 4 h(ZIU=0) > | (Sucup@hXIU=0) | T.cuph(ZIU=u)) (33)

uel
which is the same as in our problem hence (18) holds. [ |

We now proceed with the converse.

Proof of ConverseBy Fano’s Inequality,

Ry <I(YyU) = h(Y2) — h(Yz|U) (34)
For the first term
1
h(Ya) < 5 log(2me(P + 0 +03)), (35)

where (a) follows from the concavity of log function. We nowumd the second term as

follows

%log(%e(df +03)) = h(Ya]X) < h(Ya|U) < h(Y2) < S log(2me(P + o7 + 03)) (36)

N —
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by the Markov chainy; — X — U. From the two bounds we conclude that there must
exist some) < a < 1 s.t
1
h(Y2|U) = 5 log(2me(aP + o7 + 03)) (37)

and by combining (35) and (38) we obtain

1 Q
< -log(l+ ——— 38
R2_20g( +aP+0%+a§) (38)
We now continue tak,. By Fano’s Inequality,
R < I(X;Vi|U) (39)
= h("|U) — (11| X, U) (40)
= hWN|U) = h(Y1]X) (41)
(@ 1 o1 )
< 5 log(2me(aP + 07)) — 5 log(2meoy) (42)
1 aP
= —log(l+— 43
5 log(1 + = ) (43)
where (a) follows from the EPI since
22h(Y2|U) Z 22h(Y1‘U) + 22h(Z2‘U) (44)
therefore,
92h(MIU) < 92h(V2lU) _ 92h(Z:|U) (45)
= 2me(aP + o} + 03) — 2meo; (46)
= 2me(aP + o}) (47)
thus we conclude that
1 aP
< —log(l+ —- 48
Rl = 9 Og( + O'%) ( )
1 _
Ry < —log(1+ a ) (49)

S Ry
u

Bergmans (1974) established the converse for the capagtym of the Gaussian BC

using the entropy power inequality. The EPI was first statgedSbannon (1948) in [4].

the first formal proofs are due to Stam [5] and Blachman [6]réAeersions of the EPI

are available in [1] and [2]. For further reading, see rafees below.
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Il. APPENDIX
A. The duality between the EPI and the Brunn-Minkowski laétyu
We introduce the following theorem from mathematics.

Theorem 2 (Brunn-Minkowski Inequality) The volume of the set-sum wabtsetsA and
B is greater than the volume of the set-sum of two sphdfe®’ with the same volume

as A’ and B’. In other words
Vol(A+ B) > Vol(A"+ B') (50)
VA", B' stVol(A) = Vol(A") andVol(B) = Vol(B').

The Brunn-Minkowski Inequality (BMI) is very similar to thePI. In information theory,
the differential entropy:(.X) relates to volume in the following way:
Let {X;}:>1 be an i.i.d process with a probability density functipfx). Also, let S,

be a sequence of sets s.t

lim Pr(z" € 5,) =1 (51)
n—oo
Then
lim sup Vol(S,) > 2"®) (52)
n—oo

and for anye > 0 there exists a sequence of volumes s.t

lim Vol(S,) < 2@+ (53)

n—o0
Hence, we can see that the volume of the set-sum in the BMeiatialogue of (X +2)
in the EPI.
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