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Lecture 1. Method of types and strong typicality

Lecturer: Haim Permuter Scribe: Avihay Shirazi and Offir [davani

. A TYPES DEFINITION ADN PROPERTIES

The method of types evolved from notions of strong typigalgome of the ideas
were used by Wolfowitz [4] to prove channel capacity the@meihe method was fully
developed by Csiszar and Korner [1], who derived the maimrgras of information
theory from this viewpoint.

We will start the lecture by defining a type of a sequence.al’et (xq, o, ..., z,) be
a sequence from alphabét = (a1, as, as, ...ax|). Let N(a|z") be the number of times

that e appears in sequencg.

Definition 1 (Type) The typeP,. (or empirical probability distribution) of a sequence
2™ is the relative proportion of occurrences of each symbakof.e., Pyn(a) = Y@z

n

forall a € X.

Example 1 Let X = {0,1,2}, letn = 5 and2® = (1,1,2,2,0). Then N(0|z°) = 1,
N(1|2°) = 2 and N(2|2°) = 2. Hence,P,» = (3,2, 2).

Definition 2 (all possible types)Let P, be the collection of all possible types of
sequences of length.

For example, ifX = {0, 1}, the set of possible types with denominators

P, = {(P(O),P(l)) ; (% %) | <% i 1) (% %) } | (1)

Lemma 1 An upper bound folP,|:

1P| < (n+ 1) 2)
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Proof: There arelX’| components in the vector that specifiés.. The numerator
in each component can take on omly- 1 values. So there are at mast+ 1)I*! choices

for the type vector. [ |

Definition 3 (Type class)Let P € P,,, The set of sequences of lengthwith type P is
called type class of P, denotdd P):

T(P) = {a": P = P} (3)

Lets us now define the notatio”(z") that emphasis thak™ is distributed i.i.d
according toQ(z). In other words,

éIIQ@J (4)

Theorem 1 (Probability of a sequence in the type classlf X ~ @ i.i.d., the proba-
bility of «™ depends only on the type af', i.e., P;»

Qn(l,n) — Q—N(H(Pz")-FD(Pz"HQ)) (5)
Proof: Consider
log Q" (z™) ZlogQ ;) (6)
@ Z N(a|x™)log Q(a) (7)
acX
= n Z P.n(a)logQ(a (8)
aceX

= nz Pn(a)log Q((3> - Ppn(a) 9)

acX g;n
— n(—H(P) — D(P||Q)), (10)

where
(a) follows because each € X contributes exactlyflog Q(a) times it's number of
occurences ix" to the sum in (6).

(b) follows from the definition ofP,-(a).
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Hence we obtained

Corollary 1 if 2" is in the type class of), then we geQ"(z") = 27 (Pan),

The following theorem tells us how many sequences, asyioptlyt exist of type
P cP,.

Theorem 2 (size of a type class}or any typeP € P,
T (p)| = 27 (12)

Whereaq,, = b, if lim + log(§*) = 0.

n—o0

Example 2 Question: How many binary sequences of lengtivith 50% 0 and 50% 1
exists?
Answer: An exact calculation yieldég). An asymptotic calculation Using Theorem 2
yields that(g) =",

There are two possible ways to prove Theorem 2, one is a catdoial proof and

the other is a probabilistic. We will provide both proofs ot different subsections.

[I. COMBINATORIAL PROOF OF THEOREM 2

Lemma 2 (Stirling’s formula) :

The combinatorial proof is based on Stirling’s Formula:

2mn <E>n <nl <V2mn <g>n e 12w (13)

(&
proof of Theorem 2:

n n!
IT(P)l = (nP(al), nP(az),... ,nP(aX)) - (nP(ar))!(nP(az))!...(nP(ax))! (14)
Using Stirling’s formula with equation (5) we get:

o= (2) (15)
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T PR | aw |

| nP(ay) | nP(as) | | nP(ax) |

Fig. 1. The total length of the sequencenisand the part of the sequence that equals;tis nP(a;)

’I’L

T(P)| = 16
e (nP(a1))"P@)(nP(az)) @) . (nP(ajx)) (16)
= i 17)

— <n>nP(a1)<n)nP(a2) L (n)nP‘X‘ H|X| P( )TLP(CL»L)

1
- HIXI P(al)nP (as) (18)
Hence:

|T(P)| = olog |[T(P)| Q—HZl’i‘l P(a;)log(P(ai)) _ onH(P) (19)
[

IIl. PROBABILISTIC PROOF OFTHEOREM 2:

From the probabilistic proof we will obtain two bounds thatplies Theorem 2. The

bounds are:
onH(P)
(n+ 1)1l
Proof: Let's assume the sequendég’ is distributed i.i.d according t@(z). Now

< |T(P)| < 2mHP), (20)

consider the following:

1 > Pr(a" eT(P)) (21)

2N Pr(a) (22)
zneT(P)

9Ny g (23)
xneT(P)

= |T(P)]2"H®. (24)

Equality (a) follows from the fact that the probability of alset equals to the sum of the

probabilities of each element in the subset. For exampleeihave a setl, B, C' where
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the probability of choosingd is P4, B is Pz andC' is Ps, where Py + Pg + Po = 1,
then the probability of choosing from the subédt B) is P4 + Pg. Equality (b) follows
from Theorem 1.
Therefore:

T(P)| < 2nHP) (25)

In order to prove the other part we need the following lemma:

Lemma 3 P*(T(P)) > P"(T(Q))

Proof: Let X™ be of a typeP. The termP™(T(P)) is the probability of type class

T(P) where the sequences of lengthare drawn according t&(z") =[]\, P(x;), and

letQ € P,.
Consider
PYT(P)) @ |T(P)|[Lex P(a)"" 26
PMT(Q)) I T( Q)| [Lex Pla)@@
n P nP(a)
(Q (nP(al),nP(afL) ..... nP(a‘X‘)) Han P(a>nQ(a) (27)
(nQ(al),nQ(ag) ..... nQ(a‘X‘)) HaEX (a’)
() (nQ(a))! n(P(a)—Q(a))
= UGy 28)

(a) Using the fact that probability of each type. € P, is given by:

P = T, Pa:) = Taea P@" " = TL,en P()".
(b) Using combinatorical math it is known that the number o$gibilities to arange a

vector {z" : P,» = P} is: (np(al)mp(az) _____ nP(a‘X‘)).

(npay)mpagy.cnPlagx))

nP(aq),nP(ag),..., nP(a Q !

(€) ( n = ) - Han EZPEZB'
nQ(aq),nQ(ag),..., nQ(a‘X‘)

Using the simple bound} > n™" we obtain:

Pr(T(P)

> (np(a))nQ(a)*nP(a)p(a)n(P(a)fQ(a)) (29)
prgy = AL
_ H nMQa)=P(a)) (30)
acX

— nn(Zan Q(a)fzae)f P(a)) (31)
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= -0 =1 (32)
|
Using Lemma 3 let us show thé'(P)| > 25
1= ) P(TQ) (33)
QEPn
< Y maxPT(Q) (34)
QEPn
2N prrp) (35)
QEPn
< (m+1)MPT(P)) (36)
S RS S R (37)
xneT(P)
= (n+1)M|T(P)[27"") (38)

(a) Using theorem 2 it is clear thahgxP”(T(Q)) = P"(T(P)).
(b) Using Lemma 1.
(c) Using Theorem 3.

Therefore our final result is:

2nH(P)

DA < |T(P)| < 2 (39)

which implies that:
T(P)| = 2" (40)
|

V. PROBABILITY OF A TYPE AND OF A SET OF TYPES( SANOV’S THEOREM)
Theorem 3 The probability of the type clasg(P) where the sequences are drawn i.i.d.
~Qis

QUT(P)) = 27PI9), (41)
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Proof:

QUT(P) = Y. Q" (42)

xneT(P)
(@) Z 9=n(H(Pyn)+D(Pn||Q)) (43)

xneT(P)
) Z o—n(H(P)+D(P||Q)) (44)

zneT(P)
— |T(p)|27n(H(P)+D(PHQ)) (45)
Y gnra) (46)

where (a) follows from Theorem 1, (b) from the fact that alfsences have the same
type P,» = P and (c) from Theorem 2.
One can also obtain more explicit bounds by using the exfl@minds o7'(P)| given

in (39):
9—nD(P||Q)

mrm S @@P) < 2 PR (47)

[ |
Next we state Sanov’'s theorem, [3] which was generalized bigz@r [2] using the

method of types. It also opened a new field in statistics dall@rge Deviation

Theorem 4 (Sanov’'s Theorem)Let X ~ @ i.i.d. and letE be a set of probabilities

that is the closure of its interior, then:

lim log Q"(E) = —minD(P|Q) = ~D(P*]|Q), (48)

n— oo
whereQ"(E) is the probability that™ € E i.e. Q"(E) = Pr(P € E) and P* is defined
as P* = argrlglelED(PHQ).

To get more intuitive understanding we can thinkafP*||@) as the minimum distance

between E space and Q as shown in the figure:

Q"(E) =2 "PlI@) (49)

P* = argminD(P[|Q) (50)
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. D(PQ)

Fig. 2. LetX ~ @ than P* is the typeP € F that gives the minimum t®(P||Q).

Example 3 Let Q(z = 1) = Q(z = —1) = 3, What is the probability of getting an
empirial distrebution that satisfie®(x = 1) > 0.8, P(x = —1) < 0.2?
Answer: P* is the probabilityP(z = 1) = 0.8, P(x = —1) = 0.2 so by using Sanov

theorem and Theorem 4 we get our resgitE) = 2-"P(F"1Q)

Proof of Theorem 4First we will find the upper bound

QE) = ). QuT(P) (51)
PeENPn
(%) Z 9—nD(P||Q) (52)
PeENPn
< max 2 "PPIQ) 53
B PE;P PEENPn 3
_ Z Q*Tlpeglirﬂlan(PHQ) (54)
PEENPn
(b) —n  min D(P||Q
< (n—}-1)|X|2 PEENPn Pl ), (55)

where (a) follows from Theorem 3, and (b) follows from thetf#tat || < |P,| and

the bound on the number of types (Lemma 1).
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The minimum ofminpcpnp, D(P||Q) exists sincer is closed, further more because
E is the closure of its interior and Divergence is continuds,jmplies that the
lim,, o minpepnp, D(P||Q) exists and is obtained by sonf& € E.

Now we will find the lower bound:

Q"E) = > QuT(P)) (56)
PEENPn
(a)
> duin Q(T(P)) (57)
(b)
= min 27"PPIQ) (58)
PEENPn

where (a) follows from the fact that we take into considematonly one type and (b)
According to Theorem 3.

We can obtain a more explicit bound using (47) in the last:step

1 —n_min_ D(P||Q)

"(B) > ————2 PeENPa .

Bz oo (59)

Combining the lower bound (55) and upper bound (59) we have

1 —n_ min  D(P||Q) —n_ min  D(P||Q)
9 PeENPn < O"(E) < 1)I¥l9 “PeENPn ) 60
(61)
which implies

Q"(B) = 27"PQ) (62)
[ |

V. JOINT TYPE
Definition 4 (Joint type) The type P, ,» (or empirical probability distribution) of a
pair-sequencéz™, y") is the relative proportion of occurrences of each pair-syinaf
X x Y, i.e., Ppmn(a,b) = w foralla € X andb € X.

Example 4 Let X = {0,1}, and) = {A4,B}. letn = 5 andz® = (1,1,0,1,0) and
y> = (A, A, B, A, B). Then N(0, A|z°) = 0, N(0, B|z°) = 2, N(1, A|z°) = 3 and
N(1, Alz®) = 0.
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Theorem 5 (Conditional type)
Let us define theonditional typeP,.,» (or conditional empirical distribution)
N((a,b)|z",y")

Px"\y"<a"b> £ N(My”) (63)
. Pxn7yn(a, b)
- R (64)

Let W(y|xz) € P"(z]y) be a conational probability, The conditional typg (y")
Tw(yn) = {l’n e X" Pxn‘yn(a“)) = Wx‘y(a|b),Va, be X,y} (65)

— {2" € X" : Pxnyn(a,b) = Wy (alb)Pyn(b),Va,b € X, Y}  (66)

H(X|Y) = =) Y P(x,y)log P(zly) (67)
zeX yey
Pxy(a,b) = Pyn(b)Wxy(alb) (68)
Than:
Ty (y™)] = 2 (69)
Proof:
m |, | | by |
| nPY”@lJ nPY"(bZ)| e | nPyn (b|y‘)|

Fig. 3. Length of eaclb;.

Now if we haveb, we get:

Therefore we can use combinatorical proof as we did in the qoomitional case:

( nPyn (bl) ) - 2nH(X‘y:b1)Pyn(b1) (70)
1Py yn (a1, b1)nPyn yn(az,br) ... nPyn yn (a)x), b1)
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TR NP | o

|77,Pxn7yn (ay, 61}) nPxn yn(az, b\l) . | nPxn yn(a x|, bl)

Fig. 4. Length of eaclu; given b;.

( TLPY” (bl) ) - 2nPyn(b1)H(X|y:b1)
nPyn (bl)Pxn|yn(a1|bl)nPyn (bl)Px"|y” (a2|bl) e nPyn (bl)Pxn‘yn (G‘X“bl)
(71)
Y
i=1

VI. STRONG TYPICALITY
Definition 5 (e-strongly typical) A sequencer” € X is said to bee-strongly typical
with respect to a distributio®(x) on & if

1) For alla € X with Px(a) > 0 we have

[Pon(a) = P(a)] < (73)

2) If Px(a) =0 then P,»(a) = 0.
Definition 6 (e-joint strongly typical) A pair of sequence&:™, y") € X x ) is said to
be e-joint strongly typicalwith respect to a distributio®(z,y) on X x ) if

1) For all (a,b) € X x Y with Pxy(a,b) > 0 we have

€

X1

| Penyn(a,b) — Pxy(a,b)| < (74)
2) If PXVY(CL, b) >0 then PmnVyn(a,, b) = 0.

Definition 7 (Strongly typical set) The set of sequencds™,y") € X" x V" that are
e-joint strongly typical is calledstrongly typical setand is denoted aﬁ”e(")(X, Y) or
T (Pxy). le.,

TM(X,Y) & {(a",y") € X" X Y™ i |Pynyn — P(x,y)| < €} (75)
In a shorter notation we write it as

T(X,Y) 2 {z",y" : |Penyn — P(x,y)| < €}. (76)
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Definition 8 (Strongly conditional typical set 7.™ (X |y™))
TW(Y]a") & {y": (@"y") € T (X,Y)}
= {y" 1 |Penyn — Pla,y)| < €} (77)
The following lemma follows directly from the Sanov’'s Thear.

Lemma 4 Suppose w.l.o.g. tha(z) > 0 for all z € X (otherwise shrink the alphabet
to its effective size) and thak; are i.i.d.~ Q(z). Then there existg’(¢) such that

€'(e) — 0 ase — 0 such that for all sufficiently large
o~ nD(PQ)+€] < Pr(X" € Te(")(P)) < 2 UDPIQ)—€] (78)

Lemma 5 Consider a joint distributiorPx y with marginal Px and Py. GenerateX™
i.i.d. ~ Py and~ Py-. Then

2—n[I(X;Y)+5’] < PI’((X”, Yn) e T;(n)()(7 Y)) < 2—n[I(X;Y)—5’}' (79)

VIl. ALTERNATIVE PROOFS OF PROPERTIES OF STRONGLY TYPICAL SET BEB

ONLY ON PROBABILISTIC METHODS

Let us define the strong type slightly differen but equivdieas follows:
T (Py) = T"(X) = {a" € X" |Pum(a) — Px(a)| < ePx(a)} (80)
and
T (Pxy) = TO(X,Y) = {a",y" : |Panyn(a,b) = Pxy(a,b)| < ePxy(a,b)}. (81)

Properties:

1) If X"~ Px 1iid., then

nh_)rgloPr {XmeT™(X)} =1 (82)
or equivalently
1—6,(e) <Pr{X"eT"(X)} <1, (83)

whereVe > 0, lim, ., d,(€) = 0.
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Proof: Because of the L.L.N. [ |
2) For X" ~ Py, ii.d. , then for any sequence® Ts(”)(X) we have
(4) - (i)
2—nH(X)(1+5) < p(xn) _ HPX(Q;1> < 2—nH(X)(1—5). (84)
=1

Proof: Note thatp(z") = [],. Px(a)"*™), hence, the left hand side of the
inequality () follows from

08" = 03 Nlala") log P @)
= Z P,n(a)log Px(a) (86)
acX
2371+ Px(a) log Py (a) 87)
= —H(X)(1+e), (88)

where step(a) follows from (80).

The right hand side of the inequality:) follows from

Llogp(a") = > Nl log Px(@) (89)
- iepxn ) log Px(a) (90)
aceX
<Z (1 — €)Px(a)log Px(a) (91)
acX
— CH(X)(1-e). (92)
|

3) The size of the strongly typical set can be bounded as

(@) (#d)
(1 . 567n)2nH(X)(176) S |T€( ( )| < 2nH(X)(1+6) (93)

Proof: Recall that under the assumption th&t' ~ Py, ii.d. , we have
(1-0) <Pr{x" e T"(X)} < 1. Now we prove the left hand side inequality:

Pr{X"eTM(X)}= > pla") (94)

aneT™ (X)



1: Method of types and strong typicality-14

< Z 9—n(H(X)(1—¢) (95)
z"ET (X)
= T (X) |20, (96)

and becausél — §) < Pr {X” = Te(")(X)}, we get that(l — §)2nH()01-9 <
|T6(”) (X)|. The right hand side inequalityi) follows from

L2 Pr{X" e T"(X)} (97)
- Z p(z") (98)
ZneT™ (X)
> Y gmHeur )
zreT™ (X)
= T (X)[2 0+, (100)
therefore,|T6(”)(X)| < QrH(X)(1+e) .

Conditionally strong typical set

For a givenz™ € X", let us define

T 2" = {y": (2", y") € TM(X,Y)}. (101)
Notice that if (", y") € T\ (X,Y), then surelyz" € T (X).
Properties:

1) If 2" e T(X), p(y"|z™) = T/, Prix (yi]z:) (DMC) , then for all0 < e, < e
1= 0een <Pr{y" e TM(Y[z")} <1 (102)

whered. ., , =+ 0 asn — oo forall 0 < e, <e.
Proof: Follows directly from the L.L.N. [ |
2) If y" € TV (Y]a"), p(y"a") = [T, Prix(vilz:) (DMC), then

(1)
2—nH(Y\X)(1+5) Sp y |l’ HPY\X yz|xz 2 nH(Y|X)(1— 5)' (103)
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Proof: Notice that

p(y"[z") H Py x (yi|lz;) = H PY|X(5|G)N(a’b|mn’yn). (104)

aceX
bey

Now, the left hand side of the inequality) follows from

plyla) = - 37 N(a, bl ) og Peix (bla) (105)

an
bey

= Py ye(a,b)log Pyx(bla) (106)

a€eX
bey

> E (1+ €)Pxy(a,b)log Py x(bla) (107)
acX
bey

= —H(Y|X)(1+e). (108)

The right hand side of the inequali(y'z') follows from
1

~p(y"|a") ZN (a,blz", y") log Py x (bla) (109)
aEX
bey
= Puyn(a,b)log Pyx(bla) (110)
acX
bey
<> (1 —€)Pxy(a,b)log Py x(bla) (111)
aceX
bey
= —H(Y|X)(1—e). (112)
u
3) Givenz" € TV (X), then
(1 . 566 n)2nH(Y|X)(1+6) (ZS) |T€(n)(Y|an>| (%) 2TLH(Y‘X)(1*6). (113)

The proof is done in a similar way to the proof of (93).

Lemma 6 Consider a joint PMFPyy . Letz" € Ts(f)(X) andy™ drawn i.i.d. according

to Py and independent of", then

g-n{1eente) (<Pr{Y" e T (Y |2" } PP RACCEeRY (114)
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for 6. — 0 ase — 0.

Proof: The left hand side inequality) follows from

Pri{y"eT™(Y|z")} = >, p(y") (115)
yreT™ (Y [zm)

Z Z 2—nH(Y)(1+5) (116)
yreT™ (Y |zn)

_ |T€(n)(Y|xn)}|27nH(Y)(1+e) (117)

Z (1 . 55 n)Qn(H(Y\X)(l—e)2—nH(Y)(1+e) (118)

= (1 = 0, )2 MUY )H0en) (119)

The right hand side inequaliti) follows from

Pr{y"eT™"Ylz")} = > p" (120)
yreT{™ (Y]zn)
S Z 2an(Y)(1fe) (121)

yneT™ (Yan)

= [T (Y |2") |27 (122)
< QUHY X)) g—nH (Y)(1=¢) (123)
— gn{rexn-a) (124)
|
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