BEN-GURION UNIVERSITY OF THE NEGEV FACULTY OF

 ENGINEERING SCIENCES DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERINGSlide 1
Parametric Estimation of the Orientation of Textured Planar Surfaces

Haim Permuter and Prof. Yossi Francos

Presentation for the AI Lab at MIT

June 2003

Problem Definition

- Estimate the orientation in space of a planar textured surface from a single observed image of it.
- In its own coordinate system the surface texture is homogeneous.

Slide 2

- The 2-D Wold decomposition implies that the deterministic component of any homogeneous texture field can be approximated by a sum of 2-D sinusoids.

$$
t\left(x_{s}, y_{s}\right)=\sum_{l=1}^{L} A_{l} \cos \left(x_{s} \omega_{l}+y_{s} \nu_{l}+\varphi_{l}\right)
$$

Projection of the Texture

The Phase $\Phi_{s}\left(x_{s}, y_{s}\right)=u x_{s}+v y_{s}+\varphi$ is transformed by the perspective projection
$\Phi_{l}\left(x_{i}, y_{i}\right)=\frac{\frac{x_{i}}{f} \frac{\left(\widetilde{u}_{l} \cos \tau-\widetilde{v}_{l} \cos \sigma \sin \tau\right)}{\cos \sigma}+\frac{y_{i}}{f} \frac{\left(\widetilde{u}_{l} \sin \tau+\widetilde{v}_{l} \cos \sigma \cos \tau\right)}{\cos \sigma}}{\tan \sigma\left(\frac{x_{i}}{f} \cos \tau+\frac{y_{i}}{f} \sin \tau\right)+1}+\varphi_{l}$
$\widetilde{u}=u z_{0}, \widetilde{v}=v z_{0}$.

- The spatial frequencies of the harmonic components are now functions of the location !!!
- In the case of a planar surface the functional dependence of the sinusoid phase in location is uniquely determined by the tilt and slant angles of the surface.

The Observed Phase and the Estimated (Unwrapped) phase

The Parametric Phase Model

- Continuous functions can be approximated by polynomials.
- The parametric phase model is given by

$$
\phi\left(x_{i}, y_{i}\right)=\sum_{\{0 \leq k, \ell: 0 \leq k+\ell \leq Q\}} c(k, \ell) x_{i}^{k} y_{i}^{\ell}
$$

- Since the assumption of phase smoothness is implicit to our model, no explicit phase unwrapping is required.

Phase differencing algorithm

let $\{v(x, y)\}$ be a discrete 2-D constant amplitude polynomial phase signal of total-degree $Q+1$ i.e.,

$$
v(x, y)=A \exp \left\{j \phi_{Q+1}(x, y)\right\}, x=0,1, \ldots, N-1, y=0,1, \ldots, M-1
$$

Slide 7
Definition 1: Let τ_{y} and τ_{x} be some positive constants. Define

$$
\mathrm{PD}_{y^{(0)}}[v(x, y)]=v(x, y)
$$

and in general

$$
\mathrm{PD}_{y^{(q)}}[v(x, y)]=\mathrm{PD}_{y^{(q-1)}}[v(x, y)]\left(\mathrm{PD}_{y^{(q-1)}}\left[v\left(x, y+\tau_{y}\right)\right]\right)^{*}
$$

Phase differencing algorithm (Continue)

The signal $\mathrm{PD}_{x^{(P)}, y^{(Q-P)}}[v(x, y)]$ is a 2-D exponential given by

$$
\mathrm{PD}_{x^{(P)}, y^{(Q-P)}}[v(x, y)]=\exp \left\{j\left[\omega_{Q} x+\nu_{Q} y+\gamma_{Q}\left(\tau_{x}, \tau_{y}\right]\right\}\right.
$$

Slide 8 where

$$
\begin{gathered}
\omega_{Q}=(-1)^{Q} c(P+1, Q-P)(P+1)!(Q-P)!\tau_{x}^{P} \tau_{y}^{Q-P} \\
\nu_{Q}=(-1)^{Q} c(P, Q+1-P) P!(Q+1-P)!\tau_{x}^{P} \tau_{y}^{Q-P}
\end{gathered}
$$

and $\gamma_{Q}\left(\tau_{x}, \tau_{y}\right)$ is not a function of x nor y.

Extraction of a Monocomponent Complex Signal

- Motivation: The PD algorithm is designed to work with complex valued constant amplitude polynomial phase monocomponent signals.
- Similarly to the 1-D case the way to define without ambiguity the instantaneous amplitude and phase of a real signal $d_{q}\left(x_{i}, y_{i}\right)$ is to associate it with its analytic signal

$$
z_{q}\left(x_{i}, y_{i}\right)=a_{q}\left(x_{i}, y_{i}\right) \exp \left(j \Phi_{q}\left(x_{i}, y_{i}\right)\right)
$$

through the 2-D Hilbert transform.

- The analytic signal $z_{q}\left(x_{i}, y_{i}\right)$ of the real signal $d_{q}\left(x_{i}, y_{i}\right)$ is obtained by applying the operator

$$
M[\cdot]=(1+j H[\cdot])
$$

$H[\cdot]$ denote the 2-D Hilbert transform operator

Linear least squares estimation

$$
\Phi_{l}\left(x_{i}, y_{i}\right)=\frac{\frac{x_{i}}{f} \frac{\left(\widetilde{u}_{l} \cos \tau-\widetilde{v}_{l} \cos \sigma \sin \tau\right)}{\cos \sigma}+\frac{y_{i}}{f} \frac{\left(\widetilde{u}_{l} \sin \tau+\widetilde{v}_{l} \cos \sigma \cos \tau\right)}{\cos \sigma}}{\tan \sigma\left(\frac{x_{i}}{f} \cos \tau+\frac{y_{i}}{f} \sin \tau\right)+1}+\varphi_{l}
$$

can be written in the linear form
Slide 10

$$
\begin{gathered}
\Phi\left(x_{i}, y_{i}\right)=\frac{x_{i}}{f} \beta_{2}+\frac{y_{i}}{f} \delta_{2}-\frac{x_{i}}{f} \Phi\left(x_{i}, y_{i}\right) l_{1}-\frac{y_{i}}{f} \Phi\left(x_{i}, y_{i}\right) l_{2}+\varphi . \\
\beta_{1}=\frac{(\widetilde{u} \cos \tau-\widetilde{v} \cos \sigma \sin \tau)}{\cos \sigma} \\
\delta_{1}=\frac{(\widetilde{u} \sin \tau+\widetilde{v} \cos \sigma \cos \tau)}{\cos \sigma} \\
l_{1}=\tan \sigma \cos \tau \quad l_{2}=\tan \sigma \sin \tau \\
\beta_{2}=\beta_{1}+\varphi l_{1} \quad \delta_{2}=\delta_{1}+\varphi l_{2}
\end{gathered}
$$

Linear least squares estimation (cont.)

Slide 11

- Since the observed surface texture is homogeneous the variables $\widetilde{u}, \widetilde{v}, \varphi$ are independent of $\left(x_{i}, y_{i}\right)$.
- The unknown parameters $\beta_{2} \delta_{2} l_{1} l_{2} \varphi$ are obtained by least squares solution.

Tilt and Slant Estimation Using the Unwrapped

 PhaseSlide $12 \quad \psi\left(x_{i}, y_{i}\right)=2 \pi \cdot \operatorname{ROUND}\left(\frac{\hat{\phi}\left(x_{i}, y_{i}\right)-\phi_{P V}\left(x_{i}, y_{i}\right)}{2 \pi}\right)+\phi_{P V}\left(x_{i}, y_{i}\right)$.
$\hat{\phi}\left(x_{i}, y_{i}\right) \quad$ estimated phase obtained using the PD algorithm
$\phi_{P V}\left(x_{i}, y_{i}\right)$ principle value of the observed phase
$\psi\left(x_{i}, y_{i}\right) \quad$ unwrapped phase

The CRB on the error variance

Homogeneous surface texture in the presence of zero mean, white Gaussian noise, whose variance is ρ^{2}

$$
t\left(x_{i}, y_{i}\right)=\sum_{l=1}^{L} A_{l} \cos \left(\Phi_{l}\left(x_{i}, y_{i}\right)\right)+n\left(x_{i}, y_{i}\right)
$$

Slide 13
The unknown parameters:

$$
\boldsymbol{\theta}=\left[\sigma, \tau, \widetilde{u}_{1} \ldots, \widetilde{u}_{L}, \widetilde{v}_{1} \ldots \widetilde{v}_{L}, \varphi_{1} \ldots \varphi_{L}, A_{1}, A_{2}, \ldots, A_{L}\right]^{T}
$$

The CRB is simply the inverse of the FIM

$$
\mathbf{F}_{i j}=-E\left\{\frac{\partial^{2} \Lambda}{\partial \boldsymbol{\theta}_{i} \partial \boldsymbol{\theta}_{j}}\right\},
$$

The Dependence of the CRB on the Camera Parameters

Slide 14

The Dependence on the CRB on the Scene Setting

Slide 17

Slide 18

Slide 19

Statistical performance analysis of the estimation algorithms

Slide 20

$\begin{gathered} \sigma_{1}=7.23 \tau_{1}=181.4 \\ \sigma_{2}=10.2 \tau_{2}=190.3 \\ \sigma_{3}=10 \tau_{3}=183.9 \\ \sigma_{4}=9.8 \tau_{4}=183.7 \end{gathered}$	$\sigma_{T}=10 \tau_{T}=180$	$\begin{gathered} \sigma_{1}=3.6 \quad \tau_{1}=- \\ \sigma_{2}=1.1 \\ \tau_{2}=- \\ \sigma_{3}=1.9 \quad \tau_{3}=- \\ \sigma_{4}=1.1 \quad \tau_{4}=- \end{gathered}$	$\sigma_{T}=0 \quad \tau_{T}=-$
$\begin{gathered} \sigma_{1}=21 \tau_{1}=184.7 \\ \sigma_{2}=28.1 \tau_{2}=182.2 \\ \sigma_{3}=25.7 \tau_{3}=180.2 \\ \sigma_{4}=25.4 \tau_{4}=180.2 \end{gathered}$	$\sigma_{T}=30 \tau_{T}=180$	$\begin{gathered} \sigma_{1}=11.9 \tau_{1}=181.5 \\ \sigma_{2}=17.6 \tau_{2}=178.8 \\ \sigma_{3}=18.5 \tau_{3}=179.6 \\ \sigma_{4}=18.4 \tau_{4}=180.1 \end{gathered}$	$\sigma_{T}=20 \tau_{T}=180$
		$\begin{gathered} \sigma_{1}=1 \quad \tau_{1}=- \\ \sigma_{2}=2.5 \quad \tau_{2}=- \\ \sigma_{3}=3.4 \quad \tau_{3}=- \\ \sigma_{4}=3.5 \quad \tau_{4}=- \end{gathered}$	
$\begin{array}{cl} \sigma_{1}=42.4 & \tau_{1}=0.2 \\ \sigma_{2}=27.2 & \tau_{2}=3.4 \\ \sigma_{3}=26 & \tau_{3}=1 \\ \sigma_{4}=31 & \tau_{4}=-0.8 \end{array}$		$\begin{gathered} \sigma_{1}=11.1 \tau_{1}=268.3 \\ \sigma_{2}=14.6 \tau_{2}=268.6 \\ \sigma_{3}=10 \tau_{3}=270.9 \\ \sigma_{4}=10.7 \tau_{4}=269.1 \end{gathered}$	$\begin{aligned} & \sigma_{T}=10 \tau_{T}=270 \\ & \text { Q } \end{aligned}$
$\begin{gathered} \sigma_{1}=75 \\ \tau_{1}=35.5 \\ \sigma_{2}=64 \\ \tau_{2}=41.7 \\ \sigma_{3}=68 \\ \tau_{3}=44.9 \\ \sigma_{4}=67.6 \\ \tau_{4}=46.5 \end{gathered}$	$\sigma_{T}=70 \tau_{T}=45$	$\begin{array}{cc} \sigma_{1}=69.3 & \tau_{1}=90.7 \\ \sigma_{2}=66.7 & \tau_{2}=88.3 \\ \sigma_{3}=67.1 & \tau_{3}=88.5 \\ \sigma_{4}=65 & \tau_{4}=88.3 \end{array}$	$\sigma_{T}=70 \tau_{T}=90$
$\begin{array}{cl} \sigma_{1}=40.1 & \tau_{1}=92.2 \\ \sigma_{2}=35.2 & \tau_{2}=95.9 \\ \sigma_{3}=38.1 & \tau_{3}=95.5 \\ \sigma_{4}=37.6 & \tau_{4}=95 \end{array}$	$\sigma_{T}=40 \tau_{T}=90$	$\begin{gathered} \sigma_{1}=62.7 \tau_{1}=87.9 \\ \sigma_{2}=67 \quad \tau_{2}=90.9 \\ \sigma_{3}=66.3 \tau_{3}=90.4 \\ \sigma_{4}=65 \tau_{4}=90 \end{gathered}$	

Orthogonalization of a Perspective Viewed Image

- Using the inverse coordinate transformation, find the coordinates of the image boundaries
- Uniformly sample the surface coordinate system.

Slide 21

- Evaluate the image coordinate \mathbf{x}_{i} that corresponds to each \mathbf{x}_{s} on the surface sampling grid.
- For each of the RGB planes, the gray level of each sample in the surface coordinate system is set to the gray level of the corresponding observed image sample \mathbf{x}_{i} (using interpolation since in general the resulting x_{i} and y_{i} are not integers).

Slide 22

Slide 23

