Analogy Between Gambling and Measurement-Based Work Extraction

Dror Vinkler ${ }^{1}$ Haim Permuter ${ }^{1}$ Neri Merhav ${ }^{2}$

${ }^{1}$ Ben Gurion University
${ }^{2}$ Technion - Israel Institute of Technology
ISIT 2014

Outline

- Past results and brief physics background
- The analogy
- Gambling on continuous random variables
- Consequences
- Universal engine
- Memory
- Summary and future work

Past Results - Horse Race Gambling

Kelly 1956

- A race of m horses.

Past Results - Horse Race Gambling

Kelly 1956

- A race of m horses.
- X_{i} - winning horse. Y_{i} - side information.

Past Results - Horse Race Gambling

 Kelly 1956- A race of m horses.
- X_{i} - winning horse. Y_{i} - side information.
- X_{i}, Y_{i} are pairwise i.i.d.

Past Results - Horse Race Gambling

Kelly 1956

- A race of m horses.
- X_{i} - winning horse. Y_{i} - side information.
- X_{i}, Y_{i} are pairwise i.i.d.
- S_{n}-gambler's capital after n rounds,

$$
S_{1}=b_{X \mid Y}\left(X_{1} \mid Y_{1}\right) o_{X}\left(X_{1}\right) S_{0},
$$

$b_{X \mid Y}(X \mid Y)$ - betting strategy.
$o_{X}(X) \quad$ - odds.

Past Results - Horse Race Gambling

Kelly 1956

- A race of m horses.
- X_{i} - winning horse. Y_{i} - side information.
- X_{i}, Y_{i} are pairwise i.i.d.
- S_{n}-gambler's capital after n rounds,

$$
S_{1}=b_{X \mid Y}\left(X_{1} \mid Y_{1}\right) o_{X}\left(X_{1}\right) S_{0},
$$

$b_{X \mid Y}(X \mid Y)$ - betting strategy.
$o_{X}(X) \quad$ - odds.

$$
S_{n}=\prod_{i=1}^{n} b_{X \mid Y}\left(X_{i} \mid Y_{i}\right) o_{X}\left(X_{i}\right) S_{0}
$$

Past Results - Horse Race Gambling

Kelly 1956

- The goal: finding the optimal betting strategy $b_{X \mid Y}^{*}$,

$$
b_{X \mid Y}^{*}=\arg \max _{b_{X \mid Y}} E\left[\log S_{n}\right] .
$$

$\log S_{n}$ - capital growth.

Past Results - Horse Race Gambling

 Kelly 1956- The goal: finding the optimal betting strategy $b_{X \mid Y}^{*}$,

$$
b_{X \mid Y}^{*}=\arg \max _{b_{X \mid Y}} E\left[\log S_{n}\right] .
$$

$\log S_{n}$ - capital growth.

- This optimal betting strategy is $b_{X \mid Y}^{*}=P_{X \mid Y}$.

Past Results - Horse Race Gambling

 Kelly 1956- The goal: finding the optimal betting strategy $b_{X \mid Y}^{*}$,

$$
b_{X \mid Y}^{*}=\arg \max _{b_{X \mid Y}} E\left[\log S_{n}\right] .
$$

$\log S_{n}$ - capital growth.

- This optimal betting strategy is $b_{X \mid Y}^{*}=P_{X \mid Y}$.
- A bet is fair if $o_{X}(x)=1 / P_{X}(x) \forall x$.

Past Results - Horse Race Gambling Kelly 1956

- The goal: finding the optimal betting strategy $b_{X \mid Y}^{*}$,

$$
b_{X \mid Y}^{*}=\arg \max _{b_{X \mid Y}} E\left[\log S_{n}\right] .
$$

$\log S_{n}$ - capital growth.

- This optimal betting strategy is $b_{X \mid Y}^{*}=P_{X \mid Y}$.
- A bet is fair if $o_{X}(x)=1 / P_{X}(x) \forall x$.
- For a fair bet, the maximal growth is $n I(X ; Y)$.

Brief Background on Statistical Mechanics

- For large systems, classical analysis is not possible.

Brief Background on Statistical Mechanics

- For large systems, classical analysis is not possible.
- Principle 1:

Brief Background on Statistical Mechanics

- For large systems, classical analysis is not possible.
- Principle 1:
- X - state of particle.

Brief Background on Statistical Mechanics

- For large systems, classical analysis is not possible.
- Principle 1:
- X - state of particle.
- For a fixed temperature,

$$
P_{X}(x) \sim e^{-\mathcal{E}(x) / k_{B} T} .
$$

$P_{X}(x)$ - the Boltzmann distribution.

Brief Background on Statistical Mechanics

- For large systems, classical analysis is not possible.
- Principle 1:
- X - state of particle.
- For a fixed temperature,

$$
P_{X}(x) \sim e^{-\mathcal{E}(x) / k_{B} T} .
$$

$P_{X}(x)$ - the Boltzmann distribution.

Brief Background on Statistical Mechanics

- For large systems, classical analysis is not possible.
- Principle 1:
- X - state of particle.
- For a fixed temperature,

$$
P_{X}(x) \sim e^{-\mathcal{E}(x) / k_{B} T} .
$$

$P_{X}(x)$ - the Boltzmann distribution.

- Principle 2:

Brief Background on Statistical Mechanics

- For large systems, classical analysis is not possible.
- Principle 1:
- X - state of particle.
- For a fixed temperature,

$$
P_{X}(x) \sim e^{-\mathcal{E}(x) / k_{B} T} .
$$

$P_{X}(x)$ - the Boltzmann distribution.

- Principle 2:
- The second law of thermodynamics:

$$
\Delta S \geq 0
$$

S - the entropy of the system.

Brief Background on Statistical Mechanics

- For large systems, classical analysis is not possible.
- Principle 1:
- X - state of particle.
- For a fixed temperature,

$$
P_{X}(x) \sim e^{-\mathcal{E}(x) / k_{B} T} .
$$

$P_{X}(x)$ - the Boltzmann distribution.

- Principle 2:
- The second law of thermodynamics:

$$
\Delta S \geq 0
$$

S - the entropy of the system.

- In a complete cycle: $E[W] \leq 0$.

Past Results - Measurement-Based Work Extraction

- Originated with Maxwell's demon in the $19^{\text {th }}$ century.

Past Results - Measurement-Based Work Extraction

- Originated with Maxwell's demon in the $19^{\text {th }}$ century.
- Using fluctuation theorems, it was shown that [Sagawa and Ueda 2010]

$$
E[W] \leq k_{B} T I(X ; Y) .
$$

Past Results - Measurement-Based Work Extraction

- Originated with Maxwell's demon in the $19^{\text {th }}$ century.
- Using fluctuation theorems, it was shown that [Sagawa and Ueda 2010]

$$
E[W] \leq k_{B} T I(X ; Y) .
$$

- Some systems achieve this, but no general achievability scheme.

Past Results - The Szilard Engine

- Presented by Sagawa and Ueda as an example:

Past Results - The Szilard Engine

- Presented by Sagawa and Ueda as an example:

Past Results - The Szilard Engine

- Presented by Sagawa and Ueda as an example:

Past Results - The Szilard Engine

- Presented by Sagawa and Ueda as an example:

Past Results - The Szilard Engine

- Presented by Sagawa and Ueda as an example:

Past Results - The Szilard Engine

- Presented by Sagawa and Ueda as an example:

- X - the particle's location. Y - a noisy measurement.

Past Results - The Szilard Engine

- Presented by Sagawa and Ueda as an example:

- X - the particle's location. Y - a noisy measurement.
- Extracted work is

$$
W=k_{B} T \ln \frac{V_{f}(X \mid Y)}{V_{0}(X)} .
$$

Past Results - The Szilard Engine

- Optimal value of $V_{f}(X \mid Y)$ is

$$
V_{f}^{*}(X \mid Y)=P_{X \mid Y}(X \mid Y)
$$

Past Results - The Szilard Engine

- Optimal value of $V_{f}(X \mid Y)$ is

$$
V_{f}^{*}(X \mid Y)=P_{X \mid Y}(X \mid Y)
$$

- Maximal extracted work is

$$
\max E[W]=k_{B} T I(X ; Y)
$$

Past Results - The Szilard Engine

- Optimal value of $V_{f}(X \mid Y)$ is

$$
V_{f}^{*}(X \mid Y)=P_{X \mid Y}(X \mid Y)
$$

- Maximal extracted work is

$$
\max E[W]=k_{B} T I(X ; Y)
$$

- Upper bound is achieved.

Past Results - The Szilard Engine

- Optimal value of $V_{f}(X \mid Y)$ is

$$
V_{f}^{*}(X \mid Y)=P_{X \mid Y}(X \mid Y)
$$

- Maximal extracted work is

$$
\max E[W]=k_{B} T I(X ; Y)
$$

- Upper bound is achieved.
- Result is specific to one particle of ideal gas.

Main Results

Main Results

Gambling	Maxwell's Demon
Side information	Measurements results
o_{X} - odds	$1 / V_{0}$ - initial vol.

Main Results

Gambling	Maxwell's Demon
Side information	Measurements results
o_{X} - odds	$1 / V_{0}$ - initial vol.
$b_{X \mid Y}$ - betting strategy	V_{f} - final vol.

Main Results

Gambling	Maxwell's Demon
Side information	Measurements results
o_{X} - odds	$1 / V_{0}$ - initial vol.
$b_{X \mid Y}$ - betting strategy	V_{f} - final vol.
$\log S_{n}$ - log of capital	W_{n} - extracted work

Main Results

$$
\begin{array}{c|c}
\text { Gambling } & \text { Maxwell's Demon } \\
\hline \text { Side information } & \text { Measurements results } \\
o_{X} \text { - odds } & 1 / V_{0} \text { - initial vol. } \\
b_{X \mid Y} \text { - betting strategy } & V_{f} \text { - final vol. } \\
\log S_{n} \text { - log of capital } & W_{n} \text { - extracted work } \\
\log S_{n}=\sum_{i=1}^{n} \log b_{X \mid Y}\left(X_{i} \mid Y_{i}\right) o_{X}\left(X_{i}\right), W_{n}=\sum_{i=1}^{n} k_{B} T \ln \frac{V_{f}\left(X_{i} \mid Y_{i}\right)}{V_{0}\left(X_{i}\right)} .
\end{array}
$$

Some Immediate Consequences

- $o_{X} \Leftrightarrow 1 / V_{0}=1 / P_{X}$

Some Immediate Consequences

- $o_{X} \Leftrightarrow 1 / V_{0}=1 / P_{X} \Rightarrow$ In physics, the bet is always fair.

Some Immediate Consequences

- $o_{X} \Leftrightarrow 1 / V_{0}=1 / P_{X} \Rightarrow$ In physics, the bet is always fair. Second law of thermo. - without measurements $E[W] \leq 0$.

Some Immediate Consequences

- $o_{X} \Leftrightarrow 1 / V_{0}=1 / P_{X} \Rightarrow$ In physics, the bet is always fair. Second law of thermo. - without measurements $E[W] \leq 0$.
- Enables straightforward generalization to m dividers

$$
V_{f}^{*}(X \mid Y)=P_{X \mid Y}(X \mid Y) .
$$

Recap

What we achieved so far:

Recap

What we achieved so far:

- One-to-one mapping.

Recap

What we achieved so far:

- One-to-one mapping.
- Specific to Szilard engine.

Continuous Random Variables - Physics

 Horowitz and Parrondo 2011, Esposito and Van den Broeck 2011A single particle in a potential field:

Continuous Random Variables - Physics

Horowitz and Parrondo 2011, Esposito and Van den Broeck 2011
A single particle in a potential field:

Continuous Random Variables - Physics

Horowitz and Parrondo 2011, Esposito and Van den Broeck 2011
A single particle in a potential field:

Continuous Random Variables - Physics

Horowitz and Parrondo 2011, Esposito and Van den Broeck 2011
A single particle in a potential field:

Continuous Random Variables - Physics

Horowitz and Parrondo 2011, Esposito and Van den Broeck 2011
A single particle in a potential field:

- X - particle's location. Y - noisy measurement.

Continuous Random Variables - Physics

Horowitz and Parrondo 2011, Esposito and Van den Broeck 2011
A single particle in a potential field:

- X - particle's location. Y - noisy measurement.
- $Q_{X \mid y}$ - the Boltzmann distribution that stems from \mathcal{E}_{f}.

Continuous Random Variables - Physics

Horowitz and Parrondo 2011, Esposito and Van den Broeck 2011
A single particle in a potential field:

- X - particle's location. Y - noisy measurement.
- $Q_{X \mid y}$ - the Boltzmann distribution that stems from \mathcal{E}_{f}.

Theorem

$$
\begin{aligned}
Q_{X \mid y}^{*} & =\arg \min D\left(f_{X \mid y} \| Q_{X \mid y}\right) \forall y \in \mathcal{Y} \\
E[W] & =k_{B} T\left[I(X ; Y)-D\left(f_{X \mid Y} \| Q_{X \mid Y}^{*} \mid f_{Y}\right)\right]
\end{aligned}
$$

Continuous Random Variables - Gambling

What's the analogous case in gambling?

Continuous Random Variables - Gambling

What's the analogous case in gambling?

- X is some continuous r.v., i.e., the price of a stock.

Continuous Random Variables - Gambling

What's the analogous case in gambling?

- X is some continuous r.v., i.e., the price of a stock.
- Betting strategy:

Continuous Random Variables - Gambling

What's the analogous case in gambling?

- X is some continuous r.v., i.e., the price of a stock.
- Betting strategy:

Continuous Random Variables - Gambling

What's the analogous case in gambling?

- X is some continuous r.v., i.e., the price of a stock.
- Betting strategy:

Theorem

$$
\begin{aligned}
b_{X \mid y}^{*} & =\arg \min D\left(f_{X \mid y} \| b_{X \mid y}\right) \forall y \in \mathcal{Y} . \\
E\left[\log S_{n}^{*}\right] & =n\left[I(X ; Y)-D\left(f_{X \mid Y} \| b_{X \mid Y}^{*} \mid f_{Y}\right)\right] .
\end{aligned}
$$

Consequence 1 - Universal Engine

Gambling:

- X, Y discrete r.v. $P_{X, Y}$ is unknown.

Consequence 1 - Universal Engine

Gambling:

- X, Y discrete r.v. $P_{X, Y}$ is unknown.
- \widehat{b} - the universal portfolio [Cover and Ordentlich 1996].

Consequence 1 - Universal Engine

Gambling:

- X, Y discrete r.v. $P_{X, Y}$ is unknown.
- \widehat{b} - the universal portfolio [Cover and Ordentlich 1996].

Theorem

$$
\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\log \widehat{S}_{n}-\log S_{n}^{*}\right]=0
$$

\widehat{S}_{n} - capital using $\widehat{b} . S_{n}^{*}$ - capital using $b_{X \mid Y}^{*}$.

Consequence 1 - Universal Engine

Gambling:

- X, Y discrete r.v. $P_{X, Y}$ is unknown.
- \widehat{b} - the universal portfolio [Cover and Ordentlich 1996].

Theorem

$$
\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\log \widehat{S}_{n}-\log S_{n}^{*}\right]=0
$$

\widehat{S}_{n} - capital using $\widehat{b} . S_{n}^{*}$ - capital using $b_{X \mid Y}^{*}$.
Physics:

- X, Y discrete r.v. Unknown measurement error $P_{Y \mid X}$.

Consequence 1 - Universal Engine

Gambling:

- X, Y discrete r.v. $P_{X, Y}$ is unknown.
- \widehat{b} - the universal portfolio [Cover and Ordentlich 1996].

Theorem

$$
\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\log \widehat{S}_{n}-\log S_{n}^{*}\right]=0
$$

\widehat{S}_{n} - capital using $\widehat{b} . S_{n}^{*}$ - capital using $b_{X \mid Y}^{*}$.
Physics:

- X, Y discrete r.v. Unknown measurement error $P_{Y \mid X}$.
- We developed the analogous universal control protocol.

Consequence 1 - Universal Engine

Gambling:

- X, Y discrete r.v. $P_{X, Y}$ is unknown.
- \widehat{b} - the universal portfolio [Cover and Ordentlich 1996].

Theorem

$$
\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\log \widehat{S}_{n}-\log S_{n}^{*}\right]=0
$$

\widehat{S}_{n} - capital using $\widehat{b} . S_{n}^{*}$ - capital using $b_{X \mid Y}^{*}$.
Physics:

- X, Y discrete r.v. Unknown measurement error $P_{Y \mid X}$.
- We developed the analogous universal control protocol.

Theorem

$$
\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\widehat{W}_{n}-W_{n}^{*}\right]=0
$$

Consequence 2 - Memory

Gambling:

- Dependent races. At round i, X^{i-1}, Y^{i} are known.

Consequence 2 - Memory

Gambling:

- Dependent races. At round i, X^{i-1}, Y^{i} are known.

Theorem [Permuter, Kim and Weissman 2011]

$$
\begin{aligned}
& b_{X_{i} \mid X^{i-1}, Y^{i}}^{*}=P_{X_{i} \mid X^{i-1}, Y^{i}} \\
& E\left[\log S_{n}\left(X^{n}| | Y^{n}\right)\right]-E\left[\log S_{n}\left(X^{n}\right)\right]=I\left(Y^{n} \rightarrow X^{n}\right)
\end{aligned}
$$

$S_{n}\left(X^{n} \| Y^{n}\right)$ - capital with causal side information.
$S_{n}\left(X^{n}\right) \quad$ - capital without side information.

Consequence 2 - Memory

Gambling:

- Dependent races. At round i, X^{i-1}, Y^{i} are known.

Theorem [Permuter, Kim and Weissman 2011]

$$
\begin{aligned}
& b_{X_{i} \mid X^{i-1}, Y^{i}}^{*}=P_{X_{i} \mid X^{i-1}, Y^{i}} \\
& E\left[\log S_{n}\left(X^{n}| | Y^{n}\right)\right]-E\left[\log S_{n}\left(X^{n}\right)\right]=I\left(Y^{n} \rightarrow X^{n}\right)
\end{aligned}
$$

$S_{n}\left(X^{n} \| Y^{n}\right)$ - capital with causal side information.
$S_{n}\left(X^{n}\right) \quad$ - capital without side information.
Physics:

- Dependence through fast cycles, hysteresis, etc.

Consequence 2 - Memory

Gambling:

- Dependent races. At round i, X^{i-1}, Y^{i} are known.

Theorem [Permuter, Kim and Weissman 2011]

$$
\begin{aligned}
& b_{X_{i} \mid X^{i-1}, Y^{i}}^{*}=P_{X_{i} \mid X^{i-1}, Y^{i}} \\
& E\left[\log S_{n}\left(X^{n}| | Y^{n}\right)\right]-E\left[\log S_{n}\left(X^{n}\right)\right]=I\left(Y^{n} \rightarrow X^{n}\right)
\end{aligned}
$$

$S_{n}\left(X^{n} \| Y^{n}\right)$ - capital with causal side information.
$S_{n}\left(X^{n}\right) \quad$ - capital without side information.
Physics:

- Dependence through fast cycles, hysteresis, etc.

Theorem

$$
\begin{aligned}
& Q_{X_{i} \mid X^{i-1}, Y^{i}}^{*}=P_{X_{i} \mid X^{i-1}, Y^{i}} \\
& E\left[W_{n}\left(X^{n}| | Y^{n}\right)-W_{n}\left(X^{n}\right)\right]=k_{B} T I\left(Y^{n} \rightarrow X^{n}\right)
\end{aligned}
$$

Summary

- One-to-one mapping between gambling and measurement-based work extraction.

Summary

- One-to-one mapping between gambling and measurement-based work extraction.
- Extension of gambling to continuous random variables.

Summary

- One-to-one mapping between gambling and measurement-based work extraction.
- Extension of gambling to continuous random variables.
- Universal work extraction.

Summary

- One-to-one mapping between gambling and measurement-based work extraction.
- Extension of gambling to continuous random variables.
- Universal work extraction.
- Analysis of work extraction with cycle dependence.

Summary

- One-to-one mapping between gambling and measurement-based work extraction.
- Extension of gambling to continuous random variables.
- Universal work extraction.
- Analysis of work extraction with cycle dependence.
- Full version available on arXiv: http://arxiv.org/abs/1404.6788

Future Work

- Multiple particles.

Future Work

- Multiple particles.
- Generalize universal portfolios for continuous r.v.

Future Work

- Multiple particles.
- Generalize universal portfolios for continuous r.v.

Thank you!

Future Work

- Multiple particles.
- Generalize universal portfolios for continuous r.v.

Thank you!

Future Work

- Multiple particles.
- Generalize universal portfolios for continuous r.v.

Thank you!

Future Work

- Multiple particles.
- Generalize universal portfolios for continuous r.v.

Thank you!

Maximization Over P_{X}

In the Szilard engine:

- Control over P_{X} through V_{0}.
- Maximal extracted work is

$$
\max E[W]=k_{B} T \max _{P_{X}} I(X ; Y)
$$

Maximization Over P_{X}

In the Szilard engine:

- Control over P_{X} through V_{0}.
- Maximal extracted work is

$$
\max E[W]=k_{B} T \max _{P_{X}} I(X ; Y)
$$

In gambling:

- Control over P_{X} through choice of race track.
- Maximal capital growth is

$$
\max E\left[\log S_{n}\right]=n \max _{P_{X} \in \mathcal{P}} I(X ; Y)
$$

