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bX|Y

E [log Sn] .

log Sn - capital growth.

This optimal betting strategy is b∗
X|Y = PX|Y .

A bet is fair if oX(x) = 1/PX (x) ∀x.

For a fair bet, the maximal growth is nI(X;Y ).
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Principle 1:

X - state of particle.

For a fixed temperature,

PX(x) ∼ e−E(x)/kBT .
X = 0

X = 1
X = 2

X = 3
X = 4

E

PX(x) - the Boltzmann distribution.

Principle 2:
The second law of thermodynamics:

∆S ≥ 0.

S - the entropy of the system.

In a complete cycle: E[W ] ≤ 0.
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Past Results - Measurement-Based Work Extraction

Originated with Maxwell’s demon in the 19th century.

Using fluctuation theorems, it was shown that
[Sagawa and Ueda 2010]

E[W ] ≤ kBTI(X;Y ).

Some systems achieve this, but no general achievability
scheme.
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Past Results - The Szilard Engine

Presented by Sagawa and Ueda as an example:

V = 1 V0(X)

Y

Vf (X)

X - the particle’s location. Y - a noisy measurement.

Extracted work is

W = kBT ln
Vf (X|Y )

V0(X)
.
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Optimal value of Vf (X|Y ) is

V ∗
f (X|Y ) = PX|Y (X|Y ).

Maximal extracted work is

maxE[W ] = kBTI(X;Y ).

Upper bound is achieved.

Result is specific to one particle of ideal gas.
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Main Results

Gambling Maxwell’s Demon

Side information Measurements results

oX - odds 1/V0 - initial vol.

bX|Y - betting strategy Vf - final vol.

logSn - log of capital Wn - extracted work

log Sn =
n∑

i=1

log bX|Y (Xi|Yi)oX(Xi) , Wn =
n∑

i=1

kBT ln
Vf (Xi|Yi)

V0(Xi)
.
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Some Immediate Consequences

oX ⇔ 1/V0 = 1/PX ⇒ In physics, the bet is always fair.
Second law of thermo. - without measurements E[W ] ≤ 0.

Enables straightforward generalization to m dividers

V ∗
f (X|Y ) = PX|Y (X|Y ).
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A single particle in a potential field:

E0E0 fX

000
xxx

fX|yfX|y Ef

Y E0 → Ef

X - particle’s location. Y - noisy measurement.

QX|y - the Boltzmann distribution that stems from Ef .

Theorem

Q∗
X|y = argminD(fX|y||QX|y) ∀y ∈ Y.

E[W ] = kBT
[
I(X;Y )−D(fX|Y ||Q

∗
X|Y |fY )

]
.
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Continuous Random Variables - Gambling

What’s the analogous case in gambling?

X is some continuous r.v., i.e., the price of a stock.

Betting strategy:

1 2 3 4 xx
Horse Race Stocks

bX|ybX|y

Theorem

b∗X|y = argminD(fX|y||bX|y) ∀y ∈ Y.

E[log S∗
n] = n

[
I(X;Y )−D(fX|Y ||b

∗
X|Y |fY )

]
.

13 / 17
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E[log Ŝn − log S∗

n] = 0.
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Ŝn - capital using b̂. S∗
n - capital using b∗
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Physics:
X, Y discrete r.v. Unknown measurement error PY |X .
We developed the analogous universal control protocol.

Theorem

lim
n→∞

1

n
E[Ŵn −W ∗
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b∗Xi|Xi−1,Y i = PXi|Xi−1,Y i .

E[log Sn(X
n||Y n)]− E[log Sn(X

n)] = I(Y n → Xn).

Sn(X
n||Y n) - capital with causal side information.

Sn(X
n) - capital without side information.

Physics:
Dependence through fast cycles, hysteresis, etc.

Theorem

Q∗
Xi|Xi−1,Y i = PXi|Xi−1,Y i .

E[Wn(X
n||Y n)−Wn(X

n)] = kBTI(Y
n → Xn).
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Summary

One-to-one mapping between gambling and
measurement-based work extraction.

Extension of gambling to continuous random variables.

Universal work extraction.

Analysis of work extraction with cycle dependence.

Full version available on arXiv:
http://arxiv.org/abs/1404.6788

16 / 17

http://arxiv.org/abs/1404.6788


Future Work

Multiple particles.

17 / 17



Future Work

Multiple particles.

Generalize universal portfolios for continuous r.v.

17 / 17



Future Work

Multiple particles.

Generalize universal portfolios for continuous r.v.

Thank you !

17 / 17



Future Work

Multiple particles.

Generalize universal portfolios for continuous r.v.

Thank you !

17 / 17



Future Work

Multiple particles.

Generalize universal portfolios for continuous r.v.

Thank you !

17 / 17



Future Work

Multiple particles.

Generalize universal portfolios for continuous r.v.

Thank you !

17 / 17



Maximization Over PX

In the Szilard engine:

Control over PX through V0.

Maximal extracted work is

maxE[W ] = kBT max
PX

I(X;Y ).

17 / 17



Maximization Over PX

In the Szilard engine:

Control over PX through V0.

Maximal extracted work is

maxE[W ] = kBT max
PX

I(X;Y ).

In gambling:

Control over PX through choice of race track.

Maximal capital growth is

maxE[log Sn] = n max
PX∈P

I(X;Y ).
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