Toward single-letter feedback capacity via structured auxiliary r.v.

Haim Permuter
Ben-Gurion University

The ISL Colloquium
Feb. 2017

In my Ph.D. ...

considered channel with memory and feedback

In my Ph.D. ...

considered channel with memory and feedback

- Finite State Channel (FSC)

$$
P\left(y_{i}, s_{i} \mid x_{i}, s_{i-1}, x^{i-1}, y^{i-1}, s^{i-2}\right)=P\left(y_{i}, s_{i} \mid x_{i}, s_{i-1}\right)
$$

In my Ph.D. ...

Theorem

For any FSC with feedback

$$
\begin{aligned}
& C_{F B} \geq \frac{1}{n} \max _{P\left(x^{n}| | y^{n-1}\right)} \min _{s_{0}} I\left(X^{n} \rightarrow Y^{n} \mid s_{0}\right)-\frac{\log |\mathcal{S}|}{n} \\
& C_{F B} \leq \frac{1}{n} \max _{P\left(x^{n}| | y^{n-1}\right)} \max _{s_{0}} I\left(X^{n} \rightarrow Y^{n} \mid s_{0}\right)+\frac{\log |\mathcal{S}|}{n}
\end{aligned}
$$

In my Ph.D. ...

Theorem

For any FSC with feedback

$$
\begin{aligned}
& C_{F B} \geq \frac{1}{n} \max _{P\left(x^{n} \| y^{n-1}\right)} \min _{s_{0}} I\left(X^{n} \rightarrow Y^{n} \mid s_{0}\right)-\frac{\log |\mathcal{S}|}{n} \\
& C_{F B} \leq \frac{1}{n} \max _{P\left(x^{n} \| y^{n-1}\right)} \max _{s_{0}} I\left(X^{n} \rightarrow Y^{n} \mid s_{0}\right)+\frac{\log |\mathcal{S}|}{n}
\end{aligned}
$$

- directed information:

$$
I\left(X^{n} \rightarrow Y^{n}\right)=\sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
$$

In my Ph.D. ...

Theorem

For any FSC with feedback

$$
\begin{aligned}
& C_{F B} \geq \frac{1}{n} \max _{P\left(x^{n}| | y^{n-1}\right)} \min _{s_{0}} I\left(X^{n} \rightarrow Y^{n} \mid s_{0}\right)-\frac{\log |\mathcal{S}|}{n} \\
& C_{F B} \leq \frac{1}{n} \max _{P\left(x^{n}| | y^{n-1}\right)} \max _{s_{0}} I\left(X^{n} \rightarrow Y^{n} \mid s_{0}\right)+\frac{\log |\mathcal{S}|}{n}
\end{aligned}
$$

- directed information:

$$
I\left(X^{n} \rightarrow Y^{n}\right)=\sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
$$

- causally conditioned distribution:

$$
P\left(x^{n} \| y^{n-1}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)
$$

In my Ph.D. ...

Theorem

For any FSC with feedback

$$
\begin{aligned}
& C_{F B} \geq \frac{1}{n} \max _{P\left(x^{n}| | y^{n-1}\right)} \min _{s_{0}} I\left(X^{n} \rightarrow Y^{n} \mid s_{0}\right)-\frac{\log |\mathcal{S}|}{n} \\
& C_{F B} \leq \frac{1}{n} \max _{P\left(x^{n}| | y^{n-1}\right)} \max _{s_{0}} I\left(X^{n} \rightarrow Y^{n} \mid s_{0}\right)+\frac{\log |\mathcal{S}|}{n}
\end{aligned}
$$

- directed information:

$$
I\left(X^{n} \rightarrow Y^{n}\right)=\sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
$$

- causally conditioned distribution:

$$
P\left(x^{n}| | y^{n-1}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)
$$

- under mild conditions

$$
C_{F B}=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{P\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

My adviser questions

$$
C_{F B}=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{P\left(x^{n}| | y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

My adviser questions

$$
C_{F B}=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{P\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

(1) Is it computable?

My adviser questions

$$
C_{F B}=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{P\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

(1) Is it computable?
(2) Is there single-letter expression?

My adviser questions

$$
C_{F B}=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{P\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

(1) Is it computable?
(2) Is there single-letter expression?

Auxiliary random variable (r.v.)

- Auxiliary r.v. plays an important role in multi-users problems

Auxiliary random variable (r.v.)

- Auxiliary r.v. plays an important role in multi-users problems

Gelfand-Pinsker: $\quad C=\max _{P(u \mid s) P(x \mid u, s)} I(U ; Y)-I(U ; S)$
Wyner-Ziv: $\quad R=\min _{P(u \mid x)} I(X ; U \mid Y)$

Auxiliary random variable (r.v.)

- Auxiliary r.v. plays an important role in multi-users problems

Gelfand-Pinsker: $\quad C=\max _{P(u \mid s) P(x \mid u, s)} I(U ; Y)-I(U ; S)$

$$
\text { Wyner-Ziv: } \quad R=\min _{P(u \mid x)} I(X ; U \mid Y)
$$

- Auxiliary r.v. converts multi-letter into single-letter

Auxiliary random variable (r.v.)

- Auxiliary r.v. plays an important role in multi-users problems

Gelfand-Pinsker: $\quad C=\max _{P(u \mid s) P(x \mid u, s)} I(U ; Y)-I(U ; S)$

$$
\text { Wyner-Ziv: } \quad R=\min _{P(u \mid x)} I(X ; U \mid Y)
$$

- Auxiliary r.v. converts multi-letter into single-letter
- Auxiliary r.v. are i.i.d.

Structured auxiliary r.v.

- Non i.i.d auxiliary r.v.

Structured auxiliary r.v.

- Non i.i.d auxiliary r.v.
- The auxiliary is represented by a graph

Structured auxiliary r.v.

- Non i.i.d auxiliary r.v.
- The auxiliary is represented by a graph

- The graph induces a Markov process

Structured auxiliary r.v.

- Non i.i.d auxiliary r.v.
- The auxiliary is represented by a graph

- The graph induces a Markov process
- The single-letter expression is evaluated with the stationary distribution

Unifilar FSC with feedback

- Finite State Channel (FSC)

$$
P\left(y_{i}, s_{i} \mid x_{i}, s_{i-1}, x^{i-1}, y^{i-1}, s^{i-2}\right)=P\left(y_{i}, s_{i} \mid x_{i}, s_{i-1}\right)
$$

Unifilar FSC with feedback

- Finite State Channel (FSC)

$$
P\left(y_{i}, s_{i} \mid x_{i}, s_{i-1}, x^{i-1}, y^{i-1}, s^{i-2}\right)=P\left(y_{i}, s_{i} \mid x_{i}, s_{i-1}\right)
$$

- Unifilar FSC

$$
S_{i}=f\left(S_{i-1}, X_{i}, Y_{i}\right)
$$

Trapdoor Channel [Blackwell61] Robert B. Ash THEORY	Ising Channel [Berger90] $y_{i}= \begin{cases}x_{i}, & \text { with prob. } \frac{1}{2} \\ x_{i-1}, & \text { with prob. } \frac{1}{2}\end{cases}$
Dicode Erasure Channel [Pfister08] $y_{i}= \begin{cases}x_{i}-x_{i-1}, & \text { with prob. } 1-\epsilon \\ ?, & \text { with prob. } \epsilon\end{cases}$	Erasure Channel with no repeated 1's

Feedback capacity

Theorem

[Sabag/P./Pfiser16]
The feedback capacity of a unifilar FSC is bounded by

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

Feedback capacity

Theorem

[Sabag/P./Pfiser16]
The feedback capacity of a unifilar FSC is bounded by

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

Q-graph defines a mapping: $\left(\mathcal{Q}_{i-1}, \mathcal{Y}_{i}\right) \rightarrow \mathcal{Q}_{i}$

Feedback capacity

Theorem

[Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

Q-graph defines a mapping: $\left(\mathcal{Q}_{i-1}, \mathcal{Y}_{i}\right) \rightarrow \mathcal{Q}_{i}$

The Q-graph and $P(x \mid s, q)$ induces

$$
p(s, q, x, y)=\pi(s, q) p(x \mid s, q) p(y \mid s, x)
$$

Feedback capacity

Theorem
The feedback capacity of a unifilar FSC is bounded by

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

- For all known cases the upper bound is tight $|\mathcal{Q}| \leq 4$,

Feedback capacity

Theorem
The feedback capacity of a unifilar FSC is bounded by

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

- For all known cases the upper bound is tight $|\mathcal{Q}| \leq 4$,
- If $|\mathcal{Q}|$ unbounded then its also achievable, i.e.,

$$
C_{f b}=\sup _{Q} \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q)
$$

Sketch Proof

$$
C_{f b}=\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right)
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i}, S_{i-1}\left(X^{i-1}, Y^{i-1}\right) ; Y_{i} \mid Y^{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right) \\
& \leq \max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Q_{i-1}\left(Y^{i-1}\right)\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right) \\
& \leq \max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Q_{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right) \\
& \leq \max _{P\left(x_{i} \mid s_{i-1}, q_{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Q_{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right) \\
& \leq \max _{P\left(x_{i} \mid s_{i-1}, q_{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Q_{i-1}\right) \\
& =\max _{P(x \mid s, q)} I(X, S ; Y \mid Q)
\end{aligned}
$$

Examples

Theorem

[Sabag/P./Pfiser16]

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

Ex1: Memoryless channel, $|\mathcal{S}|=1$. Choose Q constant.

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q)=\sup _{p(x)} I(X ; Y)
$$

Examples

Theorem

[Sabag/P./Pfiser16]

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

Ex1: Memoryless channel, $|\mathcal{S}|=1$. Choose Q constant.

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q)=\sup _{p(x)} I(X ; Y)
$$

Ex2: State known at the decoder and encoder. Choose $Q=S$

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y, S \mid Q)=\sup _{p(x \mid s)} I(X ; Y \mid S)
$$

The input-constrained BEC [Sabag,Permuter,Kashyap 16]

- Binary erasure channel (BEC):

The input-constrained BEC [Sabag,Permuter,Kashyap 16]

- Binary erasure channel (BEC):

- The codewords contain no-consecutive ones

The input-constrained BEC [Sabag,Permuter,Kashyap 16]

- Binary erasure channel (BEC):

- The codewords contain no-consecutive ones
- The channel state is $S_{i-1}=X_{i-1}$.

Solving BEC with no consecutive ' 1 '

Q-graph

$$
\begin{aligned}
& y=0 \\
& y=?
\end{aligned}(Q=1)^{y=1}
$$

Solving BEC with no consecutive ' 1 '

Q-graph

$$
\begin{aligned}
& y=0 \\
& y=?
\end{aligned}\left(Q=1, \begin{array}{c}
y=1 \\
y=0 / ? / 1
\end{array}(Q=2\right.
$$

(S, Q) - graph

Solving BEC with no consecutive ' 1 '

Q-graph

$$
\begin{aligned}
& y=0 \\
& y=?
\end{aligned}(Q=1 \underset{y=0 / ? / 1}{y=1}
$$

(S, Q) - graph

$$
(x=0, y=0 / ?)
$$

Solving BEC with no consecutive '1'

Solving BEC with no consecutive '1'

$$
P(x=1 \mid s=1, q=1)=P(x=1 \mid s=1, q=2)=0
$$

Solving BEC with no consecutive '1'

$$
\begin{aligned}
& P(x=1 \mid s=1, q=1)=P(x=1 \mid s=1, q=2)=0 \\
& P(x=1 \mid s=0, q=1)=p
\end{aligned}
$$

Solving BEC with no consecutive '1'

$$
\begin{aligned}
& P(x=1 \mid s=1, q=1)=P(x=1 \mid s=1, q=2)=0 \\
& P(x=1 \mid s=0, q=1)=p
\end{aligned}
$$

Solving BEC with no consecutive '1'

$$
\begin{aligned}
& P(x=1 \mid s=1, q=1)=P(x=1 \mid s=1, q=2)=0 \\
& P(x=1 \mid s=0, q=1)=p
\end{aligned}
$$

Solving BEC with no consecutive '1'

$$
\begin{aligned}
& P(x=1 \mid s=1, q=1)=P(x=1 \mid s=1, q=2)=0 \\
& P(x=1 \mid s=0, q=1)=p
\end{aligned}
$$

Solving BEC with no consecutive '1'

$$
\begin{aligned}
& P(x=1 \mid s=1, q=1)=P(x=1 \mid s=1, q=2)=0 \\
& P(x=1 \mid s=0, q=1)=p
\end{aligned}
$$

Solving BEC with no consecutive '1'

$$
\begin{aligned}
& P(x=1 \mid s=1, q=1)=P(x=1 \mid s=1, q=2)=0 \\
& P(x=1 \mid s=0, q=1)=p
\end{aligned}
$$

Solving BEC with no consecutive '1'

$$
P(x=1 \mid s=1, q=1)=P(x=1 \mid s=1, q=2)=0
$$

$$
P(x=1 \mid s=0, q=1)=p
$$

Solving BEC with no consecutive '1'

Final step in solving BEC with no consecutive ' 1 '

Evaluate

$$
I(X, S ; Y \mid Q)
$$

at $\pi(s, q) p(x \mid s, q) p(y \mid x, s)$:

$$
C_{f b} \leq \max _{p} \frac{H_{2}(p)}{p+\frac{1}{1-\epsilon}}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right) \\
& \leq \max _{P\left(x_{i} \mid s_{i-1}, q_{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Q_{i-1}\right) \\
& =\max _{P(x \mid s, q)} I(X, S ; Y \mid Q)
\end{aligned}
$$

Sufficient condition

- The channel state estimation:

$$
p\left(s_{t} \mid y^{t}\right)=\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)}
$$

Sufficient condition

- The channel state estimation:

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)} .
\end{aligned}
$$

Sufficient condition

- The channel state estimation:

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

This mapping is denoted by $\mathrm{B}_{s}: \mathcal{P}(\mathcal{S}) \times \mathcal{Y} \rightarrow[0,1]$.

Sufficient condition

- The channel state estimation:

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

This mapping is denoted by $\mathrm{B}_{s}: \mathcal{P}(\mathcal{S}) \times \mathcal{Y} \rightarrow[0,1]$.

Sufficient condition

- The channel state estimation:

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

This mapping is denoted by $\mathrm{B}_{s}: \mathcal{P}(\mathcal{S}) \times \mathcal{Y} \rightarrow[0,1]$.

Sufficient condition

- The channel state estimation:

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

This mapping is denoted by $\mathrm{B}_{s}: \mathcal{P}(\mathcal{S}) \times \mathcal{Y} \rightarrow[0,1]$.

Sufficient condition

- The channel state estimation:

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

This mapping is denoted by $\mathrm{B}_{s}: \mathcal{P}(\mathcal{S}) \times \mathcal{Y} \rightarrow[0,1]$.

- An input, $p(x \mid s, q)$, is BCJR-invariant if

$$
\pi(S=s \mid Q=\Phi(q, y)) \quad \forall(y, q) \in \mathcal{Y} \times \mathcal{Q}
$$

where $\Phi(q, y)$ is the Q-graph mapping.

Sufficient condition

- The channel state estimation:

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

This mapping is denoted by $\mathrm{B}_{s}: \mathcal{P}(\mathcal{S}) \times \mathcal{Y} \rightarrow[0,1]$.

- An input, $p(x \mid s, q)$, is BCJR-invariant if

$$
\pi(S=s \mid Q=\Phi(q, y))=B_{s}\left(\pi_{S \mid Q=q}, y\right) \quad \forall(y, q) \in \mathcal{Y} \times \mathcal{Q}
$$

where $\Phi(q, y)$ is the Q-graph mapping.

Sufficient condition

- The channel state estimation:

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

This mapping is denoted by $\mathrm{B}_{s}: \mathcal{P}(\mathcal{S}) \times \mathcal{Y} \rightarrow[0,1]$.

- An input, $p(x \mid s, q)$, is BCJR-invariant if

$$
\pi(S=s \mid Q=\Phi(q, y))=B_{s}\left(\pi_{S \mid Q=q}, y\right) \quad \forall(y, q) \in \mathcal{Y} \times \mathcal{Q}
$$

where $\Phi(q, y)$ is the Q-graph mapping.

- $p(x \mid s, q)$ is BCJR-invariant $\Longrightarrow Y_{i}-Q_{i-1}-Y^{i-1} \forall i$

Final step in solving BEC with no consecutive ' 1 '

Evaluate

$$
I(X, S ; Y \mid Q)
$$

at $\pi(s, q) p(x \mid s, q) p(y \mid x, s)$:

$$
C_{f b} \leq \max _{p} \frac{H_{2}(p)}{p+\frac{1}{1-\epsilon}}
$$

Final step in solving BEC with no consecutive ' 1 '

Evaluate

$$
I(X, S ; Y \mid Q)
$$

at $\pi(s, q) p(x \mid s, q) p(y \mid x, s)$:

$$
C_{f b} \leq \max _{p} \frac{H_{2}(p)}{p+\frac{1}{1-\epsilon}}
$$

We show that maximizing input is BCJR, hence

$$
C_{f b}=\max _{p} \frac{H_{2}(p)}{p+\frac{1}{1-\epsilon}}
$$

Trapdoor Channel [Blackwell61] Robert B. Ash THEORY	Ising Channel [Berger90] $y_{i}= \begin{cases}x_{i}, & \text { with prob. } \frac{1}{2} \\ x_{i-1}, & \text { with prob. } \frac{1}{2}\end{cases}$
Dicode Erasure Channel [Pfister08] $y_{i}= \begin{cases}x_{i}-x_{i-1}, & \text { with prob. } 1-\epsilon \\ ?, & \text { with prob. } \epsilon\end{cases}$	Erasure Channel with no repeated 1's

Trapdoor Channel [Blackwell61]
Robert B. Ash

INFORMATION THEORY
$C_{f b}=\log \phi, \phi=\frac{\sqrt{5}+1}{2}$
Dicode Erasure Channel [Pfister08]

$$
y_{i}= \begin{cases}x_{i}-x_{i-1}, & \text { with prob. } 1-\epsilon \\ ?, & \text { with prob. } \epsilon\end{cases}
$$

$$
C_{f b}=\max _{p}(1-\epsilon) \frac{p+\epsilon H_{2}(p)}{\epsilon+(1-\epsilon) p}
$$

Ising Channel [Berger90]

$$
y_{i}= \begin{cases}x_{i}, & \text { with prob. } \frac{1}{2} \\ x_{i-1}, & \text { with prob. } \frac{1}{2}\end{cases}
$$

$$
C_{f b}=\max _{p} \frac{2 H_{2}(p)}{3+p} \approx 0.575
$$

Erasure Channel with no repeated 1's

$$
C_{f b}=\max _{p} \frac{H_{2}(p)}{p+\frac{1}{1-\epsilon}}
$$

Matching schemes for memoryless channels

(1) The posterior intervals $p\left(m \mid y^{t}\right)$:

Matching schemes for memoryless channels

(1) The posterior intervals $p\left(m \mid y^{t}\right)$:

(2) The encoder matches inputs according to $p^{*}(x)$

Matching schemes for memoryless channels

(1) The posterior intervals $p\left(m \mid y^{t}\right)$:

(2) The encoder matches inputs according to $p^{*}(x)$

(3) The decoder declares $\hat{m}=\max _{m} p\left(m \mid y^{n}\right)$

Matching schemes for memoryless channels

(1) The posterior intervals $p\left(m \mid y^{t}\right)$:

(2) The encoder matches inputs according to $p^{*}(x)$

(3) The decoder declares $\hat{m}=\max _{m} p\left(m \mid y^{n}\right)$

- For memoryless channels:
- BSC (Horstein 63), AWGN channel (Schalkwijk, Kailath 66).

Matching schemes for memoryless channels

(1) The posterior intervals $p\left(m \mid y^{t}\right)$:

(2) The encoder matches inputs according to $p^{*}(x)$

(3) The decoder declares $\hat{m}=\max _{m} p\left(m \mid y^{n}\right)$

- For memoryless channels:
- BSC (Horstein 63), AWGN channel (Schalkwijk, Kailath 66).
- For all memoryless channels (Shayevitz, Feder 11, 16).

Matching schemes for memoryless channels

(1) The posterior intervals $p\left(m \mid y^{t}\right)$:

(2) The encoder matches inputs according to $p^{*}(x)$

(3) The decoder declares $\hat{m}=\max _{m} p\left(m \mid y^{n}\right)$

- For memoryless channels:
- BSC (Horstein 63), AWGN channel (Schalkwijk, Kailath 66).
- For all memoryless channels (Shayevitz, Feder 11, 16).
- New and simple proof, (Li, El Gamal 15).

Matching schemes for memoryless channels

(1) The posterior intervals $p\left(m \mid y^{t}\right)$:

(2) The encoder matches inputs according to $p^{*}(x)$

(3) The decoder declares $\hat{m}=\max _{m} p\left(m \mid y^{n}\right)$

- For memoryless channels:
- BSC (Horstein 63), AWGN channel (Schalkwijk, Kailath 66).
- For all memoryless channels (Shayevitz, Feder 11, 16).
- New and simple proof, (Li, El Gamal 15).
- random cyclic shift

Matching schemes for unifilar channels

- y^{t-1} is public

Matching schemes for unifilar channels

- y^{t-1} is public
- for each message compute $s_{t-1}\left(m, y^{t-1}\right)$

Matching schemes for unifilar channels

- y^{t-1} is public
- for each message compute $s_{t-1}\left(m, y^{t-1}\right)$

Matching schemes for unifilar channels

- y^{t-1} is public
- for each message compute $s_{t-1}\left(m, y^{t-1}\right)$

Matching schemes for unifilar channels

- y^{t-1} is public
- for each message compute $s_{t-1}\left(m, y^{t-1}\right)$

Matching schemes for unifilar channels

- y^{t-1} is public
- for each message compute $s_{t-1}\left(m, y^{t-1}\right)$

- new message-splitting idea

Intuition for posterior matching for unifilar channels

- The posterior principle,

$$
p\left(m \mid y^{t}\right)=p\left(m \mid y^{t-1}\right) \frac{p\left(y_{t} \mid m, y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)}
$$

Intuition for posterior matching for unifilar channels

- The posterior principle,

$$
\begin{aligned}
p\left(m \mid y^{t}\right) & =p\left(m \mid y^{t-1}\right) \frac{p\left(y_{t} \mid m, y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =p\left(m \mid y^{t-1}\right) \frac{p\left(y_{t} \mid x_{t}\left(m, y^{t-1}\right), s_{t-1}\left(m, y^{t-1}\right)\right)}{p\left(y_{t} \mid q_{t-1}\right)}
\end{aligned}
$$

Intuition for posterior matching for unifilar channels

- The posterior principle,

$$
\begin{aligned}
p\left(m \mid y^{t}\right) & =p\left(m \mid y^{t-1}\right) \frac{p\left(y_{t} \mid m, y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =p\left(m \mid y^{t-1}\right) \frac{p\left(y_{t} \mid x_{t}\left(m, y^{t-1}\right), s_{t-1}\left(m, y^{t-1}\right)\right)}{p\left(y_{t} \mid q_{t-1}\right)}
\end{aligned}
$$

- The gain is

$$
\begin{aligned}
E\left[\log \frac{p\left(Y_{t} \mid X_{t}, S_{t-1}\right)}{p\left(Y_{t} \mid Q_{t-1}\right)}\right] & =E\left[\log \frac{p\left(Y_{t} \mid X_{t}, S_{t-1}, Q_{t-1}\right)}{p\left(Y_{t} \mid Q_{t-1}\right)}\right] \\
& =I\left(X_{t}, S_{t-1} ; Y_{t} \mid Q_{t-1}\right)
\end{aligned}
$$

Intuition for posterior matching for unifilar channels

- The posterior principle,

$$
\begin{aligned}
p\left(m \mid y^{t}\right) & =p\left(m \mid y^{t-1}\right) \frac{p\left(y_{t} \mid m, y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =p\left(m \mid y^{t-1}\right) \frac{p\left(y_{t} \mid x_{t}\left(m, y^{t-1}\right), s_{t-1}\left(m, y^{t-1}\right)\right)}{p\left(y_{t} \mid q_{t-1}\right)}
\end{aligned}
$$

- The gain is

$$
\begin{aligned}
E\left[\log \frac{p\left(Y_{t} \mid X_{t}, S_{t-1}\right)}{p\left(Y_{t} \mid Q_{t-1}\right)}\right] & =E\left[\log \frac{p\left(Y_{t} \mid X_{t}, S_{t-1}, Q_{t-1}\right)}{p\left(Y_{t} \mid Q_{t-1}\right)}\right] \\
& =I\left(X_{t}, S_{t-1} ; Y_{t} \mid Q_{t-1}\right)
\end{aligned}
$$

[Feedback capacity and coding for the BIBO channel with a no-repeated-ones input constraint, Sabag/P/Kashyap, on Arxiv]

Summary

- Introduced the idea of structured auxiliary r.v.

Summary

- Introduced the idea of structured auxiliary r.v.
- Plays important role in feedback capacity of unifilar channel

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q) . \quad \forall Q \text {-graph }
$$

Summary

- Introduced the idea of structured auxiliary r.v.
- Plays important role in feedback capacity of unifilar channel

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q) . \quad \forall Q \text {-graph }
$$

- Tight for all known channel

Summary

- Introduced the idea of structured auxiliary r.v.
- Plays important role in feedback capacity of unifilar channel

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q) . \quad \forall Q \text {-graph }
$$

- Tight for all known channel
- Tight for all channels if cardinality is unbounded

Summary

- Introduced the idea of structured auxiliary r.v.
- Plays important role in feedback capacity of unifilar channel

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q) . \quad \forall Q \text {-graph }
$$

- Tight for all known channel
- Tight for all channels if cardinality is unbounded
- Sufficient condition on finite Q

Summary

- Introduced the idea of structured auxiliary r.v.
- Plays important role in feedback capacity of unifilar channel

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q) . \quad \forall Q \text {-graph }
$$

- Tight for all known channel
- Tight for all channels if cardinality is unbounded
- Sufficient condition on finite Q
- Coding based on posterior matching scheme

Summary

- Introduced the idea of structured auxiliary r.v.
- Plays important role in feedback capacity of unifilar channel

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q) . \quad \forall Q \text {-graph }
$$

- Tight for all known channel
- Tight for all channels if cardinality is unbounded
- Sufficient condition on finite Q
- Coding based on posterior matching scheme

Ongoing work

- Algorithm for computing the bound for large Q.
- Derive cardinality bound on Q.

Summary

- Introduced the idea of structured auxiliary r.v.
- Plays important role in feedback capacity of unifilar channel

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q) . \quad \forall Q \text {-graph }
$$

- Tight for all known channel
- Tight for all channels if cardinality is unbounded
- Sufficient condition on finite Q
- Coding based on posterior matching scheme

Ongoing work

- Algorithm for computing the bound for large Q.
- Derive cardinality bound on Q.

> Thank you very much!

Sufficient condition

- The channel state estimation (DP state):

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

Sufficient condition

- The channel state estimation (DP state):

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

- This mapping is denoted by BCJR : $\mathcal{Z} \times \mathcal{Y} \rightarrow \mathcal{Z}$.

Sufficient condition

- The channel state estimation (DP state):

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

- This mapping is denoted by BCJR : $\mathcal{Z} \times \mathcal{Y} \rightarrow \mathcal{Z}$.

Sufficient condition

- The channel state estimation (DP state):

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

- This mapping is denoted by BCJR : $\mathcal{Z} \times \mathcal{Y} \rightarrow \mathcal{Z}$.

Sufficient condition

- The channel state estimation (DP state):

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}
\end{aligned}
$$

- This mapping is denoted by BCJR : $\mathcal{Z} \times \mathcal{Y} \rightarrow \mathcal{Z}$.

Sufficient condition

- The channel state estimation (DP state):

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)} .
\end{aligned}
$$

- This mapping is denoted by BCJR : $\mathcal{Z} \times \mathcal{Y} \rightarrow \mathcal{Z}$.
- If $|\mathcal{Z}| \leq \infty$ and $P_{X \mid S, Z}$ satisfies the BCJR mapping, we call it BCJR-invariant.

Sufficient condition

- The channel state estimation (DP state):

$$
\begin{aligned}
p\left(s_{t} \mid y^{t}\right) & =\frac{p\left(s_{t}, y_{t} \mid y^{t-1}\right)}{p\left(y_{t} \mid y^{t-1}\right)} \\
& =\frac{\sum_{x_{t}, s_{t-1}} p\left(s_{t}, y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)}{\sum_{x_{t}, s_{t-1}} p\left(y_{t}, x_{t}, s_{t-1} \mid y^{t-1}\right)} .
\end{aligned}
$$

- This mapping is denoted by BCJR: $\mathcal{Z} \times \mathcal{Y} \rightarrow \mathcal{Z}$.
- If $|\mathcal{Z}| \leq \infty$ and $P_{X \mid S, Z}$ satisfies the BCJR mapping, we call it BCJR-invariant.

Theorem (Lower bound)

The feedback capacity satisfies

$$
C_{f b} \geq I(X, S ; Y \mid Q)
$$

for all BCJR-invariant inputs.

Upper bound with sufficient condition

Theorem

The feedback capacity of a unifilar FSC is bounded by

$$
C_{f b} \leq \max _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

and if $p^{*}(x \mid s, q)$ is BCJR-invariant input, equality holds.

