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In my Ph.D. ...

considered channel with memory and feedback

m xi(m, yi−1)
En DeP (yi, si|xi, si−1)

yi

Delay
yi−1

m̂

H. Permuter Toward single-letter feedback capacity



In my Ph.D. ...

considered channel with memory and feedback

m xi(m, yi−1)
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Finite State Channel (FSC)

P (yi, si|xi, si−1, x
i−1, yi−1, si−2) = P (yi, si|xi, si−1)
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In my Ph.D. ...
Theorem

For any FSC with feedback [P.&Weissman&Goldsmith09]

CFB≥ 1

n
max

P (xn||yn−1)
min
s0

I(Xn → Y n|s0)−
log |S|

n
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n
max

P (xn||yn−1)
max
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I(Xn → Y n|s0)+
log |S|

n
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In my Ph.D. ...
Theorem

For any FSC with feedback [P.&Weissman&Goldsmith09]

CFB≥ 1

n
max

P (xn||yn−1)
min
s0

I(Xn → Y n|s0)−
log |S|

n

CFB≤ 1

n
max

P (xn||yn−1)
max
s0

I(Xn → Y n|s0)+
log |S|

n

directed information:

I(Xn → Y n) =

n
∑

i=1

I(Xi;Yi|Y
i−1)

causally conditioned distribution:

P (xn||yn−1) =

n
∏

i=1

P (xi|x
i−1, yi−1)

under mild conditions

CFB = lim
n→∞

1
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Auxiliary random variable (r.v.)

Auxiliary r.v. plays an important role in multi-users
problems
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Auxiliary random variable (r.v.)

Auxiliary r.v. plays an important role in multi-users
problems

Gelfand-Pinsker: C = max
P (u|s)P (x|u,s)

I(U ;Y )− I(U ;S)

Wyner-Ziv: R = min
P (u|x)

I(X;U |Y )

Auxiliary r.v. converts multi-letter into single-letter

Auxiliary r.v. are i.i.d.
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Structured auxiliary r.v.

Non i.i.d auxiliary r.v.
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Structured auxiliary r.v.

Non i.i.d auxiliary r.v.

The auxiliary is represented by a graph
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Structured auxiliary r.v.

Non i.i.d auxiliary r.v.

The auxiliary is represented by a graph

21

The graph induces a Markov process

The single-letter expression is evaluated with the
stationary distribution
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Unifilar FSC with feedback

m xi(m, yi−1)
En DeP (yi, si|xi, si−1)

yi

Delay
yi−1

m̂

Finite State Channel (FSC)

P (yi, si|xi, si−1, x
i−1, yi−1, si−2) = P (yi, si|xi, si−1)
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Unifilar FSC with feedback

m xi(m, yi−1)
En DeP (yi, si|xi, si−1)

yi

Delay
yi−1

m̂

Finite State Channel (FSC)

P (yi, si|xi, si−1, x
i−1, yi−1, si−2) = P (yi, si|xi, si−1)

Unifilar FSC

Si = f(Si−1,Xi, Yi)
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0 0

1 1

?

Trapdoor Channel [Blackwell61] Ising Channel [Berger90]

yi =

{

xi, with prob. 1
2

xi−1, with prob. 1
2

yi =

{

xi − xi−1, with prob. 1− ǫ

?, with prob. ǫ

1− ǫ

1− ǫ

ǫ

Cfb = log φ, φ =
√
5+1
2

Cfb = maxp
2H2(p)
3+p

≈ 0.575

Cfb = maxp(1− ǫ)p+ǫH2(p)
ǫ+(1−ǫ)p

Cfb = maxp
H2(p)

p+ 1
1−ǫ

[Elischo/P.13][P. et al08]

[Sabag/P/Kashyap15][Sabag/P/Pfister16]

Dicode Erasure Channel [Pfister08] Erasure Channel
with no repeated 1’s
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Feedback capacity

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph
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Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Q-graph defines a mapping: (Qi−1,Yi) → Qi

y = 1
y = 0
y =? y = 0/?/1 21
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Feedback capacity

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Q-graph defines a mapping: (Qi−1,Yi) → Qi

y = 1
y = 0
y =? y = 0/?/1 21

The Q-graph and P (x|s, q) induces

p(s, q, x, y) = π(s, q)p(x|s, q)p(y|s, x)
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Feedback capacity

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

For all known cases the upper bound is tight |Q| ≤ 4,
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Feedback capacity

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

For all known cases the upper bound is tight |Q| ≤ 4,

If |Q| unbounded then its also achievable, i.e.,

Cfb = sup
Q

sup
p(x|s,q)

I(X,S;Y |Q)

a a a a
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Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)
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Examples

Theorem [Sabag/P./Pfiser16]

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Ex1: Memoryless channel, |S| = 1. Choose Q constant.

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q) = sup
p(x)

I(X;Y )
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Examples

Theorem [Sabag/P./Pfiser16]

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Ex1: Memoryless channel, |S| = 1. Choose Q constant.

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q) = sup
p(x)

I(X;Y )

Ex2: State known at the decoder and encoder. Choose Q = S

Cfb ≤ sup
p(x|s,q)

I(X,S;Y, S|Q) = sup
p(x|s)

I(X;Y |S)
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The input-constrained BEC [Sabag,Permuter,Kashyap 16]

Binary erasure channel (BEC):

0

1

0

?

1

ǫ

ǫ

1− ǫ

1− ǫ

X Y
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The codewords contain no-consecutive ones
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The input-constrained BEC [Sabag,Permuter,Kashyap 16]

Binary erasure channel (BEC):

0

1

0

?

1

ǫ

ǫ

1− ǫ

1− ǫ

X Y

The codewords contain no-consecutive ones

The channel state is Si−1 = Xi−1.
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Solving BEC with no consecutive ’1’
Q-graph

y = 1
y = 0
y =? y = 0/?/1

Q = 2 .Q = 1

(S,Q)−graph

Q = 1
S = 0

Q = 1
S = 1

Q = 2
S = 0

Q = 2
S = 1
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Solving BEC with no consecutive ’1’

Q = 1
S = 0

Q = 1
S = 1

Q = 2
S = 0

Q = 2
S = 1

(x = 0, y = 0/?)
p̄

(x = 1, y = 1)
pǭ

(x = 0, y = 0/?)
1

(1, ?)
pǫ

(0, 0/?)
1

[π0,1, π1,1, π1,2] =

[

1

1 + p
,

pǫ

1 + p
,

pǭ

1 + p

]
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Final step in solving BEC with no consecutive ’1’

Evaluate
I(X,S;Y |Q)

at π(s, q)p(x|s, q)p(y|x, s):

Cfb ≤ max
p

H2(p)

p+ 1
1−ǫ

.

By showing for the induced process Yi −Qi−1 − Y i−1,

Cfb = max
p

H2(p)

p+ 1
1−ǫ

.
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Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)

, max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(Xi;Yi|Y
i−1)

= max
P (xi|si−1,yi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Y
i−1)(Xi−1, Y i−1)

≤ max
P (xi|si−1,qi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Qi−1)(Y
i−1)

= max
P (x|s,q)

I(X,S;Y |Q)
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Sufficient condition

The channel state estimation:

p(st|y
t) =

p(st, yt|y
t−1)

p(yt|yt−1)
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Sufficient condition

The channel state estimation:

p(st|y
t) =

p(st, yt|y
t−1)

p(yt|yt−1)

=

∑

xt,st−1
p(st, yt, xt, st−1|y

t−1)
∑

xt,st−1
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where Φ(q, y) is the Q-graph mapping.
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.

This mapping is denoted by Bs : P(S) ×Y → [0, 1].

An input, p(x|s, q), is BCJR-invariant if

π(S = s|Q = Φ(q, y)) = Bs(πS|Q=q, y) ∀(y, q) ∈ Y ×Q,

where Φ(q, y) is the Q-graph mapping.
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Sufficient condition

The channel state estimation:

p(st|y
t) =

p(st, yt|y
t−1)

p(yt|yt−1)

=

∑

xt,st−1
p(st, yt, xt, st−1|y

t−1)
∑

xt,st−1
p(yt, xt, st−1|yt−1)

.

This mapping is denoted by Bs : P(S) ×Y → [0, 1].

An input, p(x|s, q), is BCJR-invariant if

π(S = s|Q = Φ(q, y)) = Bs(πS|Q=q, y) ∀(y, q) ∈ Y ×Q,

where Φ(q, y) is the Q-graph mapping.

p(x|s, q) is BCJR-invariant =⇒ Yi −Qi−1 − Y i−1 ∀i
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Final step in solving BEC with no consecutive ’1’

Evaluate
I(X,S;Y |Q)

at π(s, q)p(x|s, q)p(y|x, s):

Cfb ≤ max
p

H2(p)

p+ 1
1−ǫ

.
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Final step in solving BEC with no consecutive ’1’

Evaluate
I(X,S;Y |Q)

at π(s, q)p(x|s, q)p(y|x, s):

Cfb ≤ max
p

H2(p)

p+ 1
1−ǫ

.

We show that maximizing input is BCJR, hence

Cfb = max
p

H2(p)

p+ 1
1−ǫ

.
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0 0

1 1

?

Trapdoor Channel [Blackwell61] Ising Channel [Berger90]

yi =

{

xi, with prob. 1
2

xi−1, with prob. 1
2

yi =

{

xi − xi−1, with prob. 1− ǫ

?, with prob. ǫ

1− ǫ

1− ǫ

ǫ

Cfb = log φ, φ =
√
5+1
2

Cfb = maxp
2H2(p)
3+p

≈ 0.575

Cfb = maxp(1− ǫ)p+ǫH2(p)
ǫ+(1−ǫ)p

Cfb = maxp
H2(p)

p+ 1
1−ǫ

[Elischo/P.13][P. et al08]

[Sabag/P/Kashyap15][Sabag/P/Pfister16]

Dicode Erasure Channel [Pfister08] Erasure Channel
with no repeated 1’s
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[Elischo/P.13][P. et al08]

[Sabag/P/Kashyap15][Sabag/P/Pfister16]

Dicode Erasure Channel [Pfister08] Erasure Channel
with no repeated 1’s

H. Permuter Toward single-letter feedback capacity
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1 The posterior intervals p(m|yt):

1 2 2nR

10
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1 The posterior intervals p(m|yt):

1 2 2nR

10

2 The encoder matches inputs according to p∗(x)

P (X = 1) P (X = 2)

10

3 The decoder declares m̂ = maxm p(m|yn)

For memoryless channels:
- BSC (Horstein 63), AWGN channel (Schalkwijk, Kailath 66).
- For all memoryless channels (Shayevitz, Feder 11, 16).
- New and simple proof, (Li, El Gamal 15).
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Matching schemes for memoryless channels

1 The posterior intervals p(m|yt):

1 2

Cyclic shift

2nR

10

2 The encoder matches inputs according to p∗(x)

P (X = 1) P (X = 2)

10

3 The decoder declares m̂ = maxm p(m|yn)

For memoryless channels:
- BSC (Horstein 63), AWGN channel (Schalkwijk, Kailath 66).
- For all memoryless channels (Shayevitz, Feder 11, 16).
- New and simple proof, (Li, El Gamal 15).

- random cyclic shift
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Matching schemes for unifilar channels

yt−1 is public
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Matching schemes for unifilar channels

yt−1 is public

for each message compute st−1(m, yt−1)

1 2 34

P (X = 0|S = 0, Q = q) P (X = 1|S = 0, Q = q) P (X = 0|S = 1, Q = q) P (X = 1|S = 1, Q = q)

s = 0 s = 1
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Matching schemes for unifilar channels

yt−1 is public

for each message compute st−1(m, yt−1)

1 2 34

Cyclic shiftCyclic shift

P (X = 0|S = 0, Q = q) P (X = 1|S = 0, Q = q) P (X = 0|S = 1, Q = q) P (X = 1|S = 1, Q = q)

s = 0 s = 1

new message-splitting idea
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Intuition for posterior matching for unifilar channels

The posterior principle,

p(m|yt) = p(m|yt−1)
p(yt|m, yt−1)

p(yt|yt−1)
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Intuition for posterior matching for unifilar channels

The posterior principle,

p(m|yt) = p(m|yt−1)
p(yt|m, yt−1)

p(yt|yt−1)

= p(m|yt−1)
p(yt|xt(m, yt−1), st−1(m, yt−1))

p(yt|qt−1)
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Intuition for posterior matching for unifilar channels

The posterior principle,

p(m|yt) = p(m|yt−1)
p(yt|m, yt−1)

p(yt|yt−1)

= p(m|yt−1)
p(yt|xt(m, yt−1), st−1(m, yt−1))

p(yt|qt−1)

The gain is

E

[

log
p(Yt|Xt, St−1)

p(Yt|Qt−1)

]

= E

[

log
p(Yt|Xt, St−1, Qt−1)

p(Yt|Qt−1)

]

= I(Xt, St−1;Yt|Qt−1)
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Intuition for posterior matching for unifilar channels

The posterior principle,

p(m|yt) = p(m|yt−1)
p(yt|m, yt−1)

p(yt|yt−1)

= p(m|yt−1)
p(yt|xt(m, yt−1), st−1(m, yt−1))

p(yt|qt−1)

The gain is

E

[

log
p(Yt|Xt, St−1)

p(Yt|Qt−1)

]

= E

[

log
p(Yt|Xt, St−1, Qt−1)

p(Yt|Qt−1)

]

= I(Xt, St−1;Yt|Qt−1)

[Feedback capacity and coding for the BIBO channel with a no-repeated-ones

input constraint, Sabag/P/Kashyap, on Arxiv]
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Summary

Introduced the idea of structured auxiliary r.v.
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Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q). ∀Q-graph
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Summary

Introduced the idea of structured auxiliary r.v.
Plays important role in feedback capacity of unifilar channel

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q). ∀Q-graph

Tight for all known channel
Tight for all channels if cardinality is unbounded
Sufficient condition on finite Q

Coding based on posterior matching scheme

Ongoing work

Algorithm for computing the bound for large Q.
Derive cardinality bound on Q.

Thank you very much!
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Sufficient condition

The channel state estimation (DP state):

p(st|y
t) =

p(st, yt|y
t−1)

p(yt|yt−1)

=

∑

xt,st−1
p(st, yt, xt, st−1|y

t−1)
∑

xt,st−1
p(yt, xt, st−1|yt−1)

.
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Sufficient condition

The channel state estimation (DP state):

p(st|y
t) =

p(st, yt|y
t−1)

p(yt|yt−1)

=

∑

xt,st−1
p(st, yt, xt, st−1|y

t−1)
∑

xt,st−1
p(yt, xt, st−1|yt−1)

.

This mapping is denoted by BCJR : Z × Y → Z.

If |Z| ≤ ∞ and PX|S,Z satisfies the BCJR mapping, we call it
BCJR-invariant.

Theorem (Lower bound)

The feedback capacity satisfies

Cfb ≥ I(X,S;Y |Q),

for all BCJR-invariant inputs.
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Upper bound with sufficient condition

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ max
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

and if p∗(x|s, q) is BCJR-invariant input, equality holds.
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