# On Directed Information and Gambling 

Haim Permuter
Stanford

Young-Han Kim
UCSD

Tsachy Weissman Stanford/ Technion

## ISIT

July 2008

## The horse race gambling problem

## The horse race gambling problem

- $m$ horses


## The horse race gambling problem

- $m$ horses
- $X_{i}$ denotes the winning horse at time $i . \mathcal{X}=\{1,2, . ., m\}$


## The horse race gambling problem

- $m$ horses
- $X_{i}$ denotes the winning horse at time $i . \mathcal{X}=\{1,2, . ., m\}$
- $\left\{X_{i}\right\}_{i \geq 1}$, i.i.d. $\sim p(x)$


## The horse race gambling problem

- $m$ horses
- $X_{i}$ denotes the winning horse at time $i . \mathcal{X}=\{1,2, . ., m\}$
- $\left\{X_{i}\right\}_{i \geq 1}$, i.i.d. $\sim p(x)$
- $b\left(X_{i}\right)$ is the fraction of wealth that we invest at time $i$ on horse $X_{i}$


## The horse race gambling problem

- $m$ horses
- $X_{i}$ denotes the winning horse at time $i . \mathcal{X}=\{1,2, . ., m\}$
- $\left\{X_{i}\right\}_{i \geq 1}$, i.i.d. $\sim p(x)$
- $b\left(X_{i}\right)$ is the fraction of wealth that we invest at time $i$ on horse $X_{i}$
- uniform odds, i.e., 1 : m


## The horse race gambling problem

- $m$ horses
- $X_{i}$ denotes the winning horse at time $i . \mathcal{X}=\{1,2, . ., m\}$
- $\left\{X_{i}\right\}_{i \geq 1}$, i.i.d. $\sim p(x)$
- $b\left(X_{i}\right)$ is the fraction of wealth that we invest at time $i$ on horse $X_{i}$
- uniform odds, i.e., $1: m$
- our wealth after investing $n$ times is

$$
\prod_{i=1}^{n} b\left(X_{i}\right) \cdot m
$$

## The horse race gambling problem

- $m$ horses
- $X_{i}$ denotes the winning horse at time $i . \mathcal{X}=\{1,2, . ., m\}$
- $\left\{X_{i}\right\}_{i \geq 1}$, i.i.d. $\sim p(x)$
- $b\left(X_{i}\right)$ is the fraction of wealth that we invest at time $i$ on horse $X_{i}$
- uniform odds, i.e., $1: m$
- our wealth after investing $n$ times is

$$
\prod_{i=1}^{n} b\left(X_{i}\right) \cdot m
$$

- our goal is to maximize the growth rate, i.e.,

$$
\max _{b\left(X_{i}\right)} \mathrm{E}\left[\log \prod_{i=1}^{n} b\left(X_{i}\right) m\right]
$$

## The Horse Race

- $X_{i}$ the horse that wins at time $i$
- $b\left(X_{i}\right)$ investment at time $i$
- goal: $W^{*}\left(X^{n}\right)=\max _{b\left(X_{i}\right)} \mathrm{E}\left[\log \prod_{i=1}^{n} b\left(X_{i}\right) m\right]$

Note: if we invest all our money on one horse, we will eventually go broke .

## The Horse Race

- $X_{i}$ the horse that wins at time $i$
- $b\left(X_{i}\right)$ investment at time $i$
- goal: $W^{*}\left(X^{n}\right)=\max _{b\left(X_{i}\right)} \mathrm{E}\left[\log \prod_{i=1}^{n} b\left(X_{i}\right) m\right]$

Note: if we invest all our money on one horse, we will eventually go broke .

## Kelly (1956)

The optimal strategy is to invest the capital according to $p(x)$, i.e., $b(x)=p(x)$. The optimal growth is

$$
\frac{1}{n} W^{*}\left(X^{n}\right)=\log m-H(X)
$$

## Gambling with side information

Summary of the problem:

- $X_{i}$ the horse that wins at time $i$
- $Y_{i}$ side information
- $\left(X_{i}, Y_{i}\right)$, i.i.d. $\sim p(x, y)$.
- $b\left(X_{i} \mid Y_{i}\right)$ investment at time $i$
- goal: $W^{*}\left(X^{n} \mid Y^{n}\right)=\max _{b\left(X_{i} \mid Y_{i}\right)} \mathrm{E}\left[\log \prod_{i=1}^{n} b\left(X_{i} \mid Y_{i}\right) m\right]$


## "A new interpretation of information rate" [Kelly56]

The optimal strategy is to invest the capital proportional to $p(x \mid y)$, i.e., $b(x \mid y)=p(x \mid y)$. The increase in the growth rate due to side information $Y$ is

$$
\Delta W=I(X ; Y)
$$

## Directed Information

- Massey introduced it in 1990:

$$
I\left(X^{n} \rightarrow Y^{n}\right) \triangleq \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
$$

## Directed Information

- Massey introduced it in 1990:

$$
I\left(X^{n} \rightarrow Y^{n}\right) \triangleq \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) .
$$

- feedback capacity: [Massey90] [Kramer98] [Tatikonda00] [Yang/Kavcic/Tatikonda05] [Chen/Berger05] [Kim07] [P./Cuff/Van Roy/Weissman07] [Yuksel/Tatikonda07] [Shrader/P.07] [P./Weissman/Chen08]
[Dabora/Goldsmith08]
- rate distortion: [Zamir/Kochman/Erez06]
[Venkataramanan/Pradhan07]


## Directed Information

- Massey introduced it in 1990:

$$
I\left(X^{n} \rightarrow Y^{n}\right) \triangleq \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) .
$$

- feedback capacity: [Massey90] [Kramer98] [Tatikonda00] [Yang/Kavcic/Tatikonda05] [Chen/Berger05] [Kim07] [P./Cuff/Van Roy/Weissman07] [Yuksel/Tatikonda07] [Shrader/P.07] [P./Weissman/Chen08]
[Dabora/Goldsmith08]
- rate distortion: [Zamir/Kochman/Erez06] [Venkataramanan/Pradhan07]

Does it have an interpretation in gambling?

## Definitions

$$
I\left(X^{n} ; Y^{n}\right) \triangleq H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right)
$$

$$
H\left(Y^{n} \mid X^{n}\right) \triangleq E\left[-\log P\left(Y^{n} \mid X^{n}\right)\right]
$$

$$
P\left(y^{n} \mid x^{n}\right)=\prod_{i=1}^{n} P\left(y_{i} \mid x^{n}, y^{i-1}\right)
$$

## Definitions

Directed Information
[Massey90]

$$
\begin{aligned}
& I\left(X^{n} \rightarrow Y^{n}\right) \triangleq H\left(Y^{n}\right)-H\left(Y^{n}| | X^{n}\right) \\
& I\left(X^{n} ; Y^{n}\right) \triangleq H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right) \\
& H\left(Y^{n} \mid X^{n}\right) \triangleq E\left[-\log P\left(Y^{n} \mid X^{n}\right)\right] \\
& P\left(y^{n} \mid x^{n}\right)=\prod_{i=1}^{n} P\left(y_{i} \mid x^{n}, y^{i-1}\right)
\end{aligned}
$$

## Definitions

Directed Information
[Massey90]

$$
\begin{aligned}
I\left(X^{n} \rightarrow Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n}| | X^{n}\right) \\
I\left(X^{n} ; Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right)
\end{aligned}
$$

Causal Conditioning
[Kramer98]

$$
\begin{aligned}
H\left(Y^{n} \| X^{n}\right) & \triangleq E\left[-\log P\left(Y^{n}| | X^{n}\right)\right] \\
H\left(Y^{n} \mid X^{n}\right) & \triangleq E\left[-\log P\left(Y^{n} \mid X^{n}\right)\right]
\end{aligned}
$$

$$
P\left(y^{n} \mid x^{n}\right)=\prod_{i=1}^{n} P\left(y_{i} \mid x^{n}, y^{i-1}\right)
$$

## Definitions

Directed Information
[Massey90]

$$
\begin{aligned}
I\left(X^{n} \rightarrow Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n}| | X^{n}\right) \\
I\left(X^{n} ; Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right)
\end{aligned}
$$

Causal Conditioning
[Kramer98]

$$
\begin{aligned}
H\left(Y^{n}| | X^{n}\right) & \triangleq E\left[-\log P\left(Y^{n}| | X^{n}\right)\right] \\
H\left(Y^{n} \mid X^{n}\right) & \triangleq E\left[-\log P\left(Y^{n} \mid X^{n}\right)\right] \\
P\left(y^{n}| | x^{n}\right) & \triangleq \prod_{i=1}^{n} P\left(y_{i} \mid x^{i}, y^{i-1}\right) \\
P\left(y^{n} \mid x^{n}\right) & =\prod_{i=1}^{n} P\left(y_{i} \mid x^{n}, y^{i-1}\right)
\end{aligned}
$$

## Definitions

Directed Information
[Massey90]

$$
\begin{aligned}
I\left(X^{n} \rightarrow Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n}| | X^{n}\right) \\
I\left(X^{n} ; Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right)
\end{aligned}
$$

Causal Conditioning
[Kramer98]

$$
\begin{aligned}
H\left(Y^{n}| | X^{n}\right) & \triangleq E\left[-\log P\left(Y^{n}| | X^{n}\right)\right] \\
H\left(Y^{n} \mid X^{n}\right) & \triangleq E\left[-\log P\left(Y^{n} \mid X^{n}\right)\right] \\
P\left(y^{n}| | x^{n}\right) & \triangleq \prod_{i=1}^{n} P\left(y_{i} \mid x^{i}, y^{i-1}\right) \\
P\left(y^{n} \| x^{n-1}\right) & \triangleq \prod_{i=1}^{n} P\left(y_{i} \mid x^{i-1}, y^{i-1}\right)
\end{aligned}
$$

## Chain rule

## causal conditioning

$$
\begin{aligned}
p\left(x^{n} \| y^{n}\right) & \triangleq \prod_{i=1}^{n} p\left(x_{i} \mid x^{i-1}, y^{i}\right) \\
p\left(y^{n} \| x^{n-1}\right) & \triangleq \prod_{i=1}^{n} p\left(y_{i} \mid y^{i-1}, x^{i-1}\right)
\end{aligned}
$$

chain rule

$$
p\left(x^{n}, y^{n}\right)=p\left(x^{n} \| y^{n}\right) p\left(y^{n} \| x^{n-1}\right)
$$

## Gambling with causal side information

- $X_{i}$ the horse that wins at time $i$
- $Y_{i}$ side information that is known causally
- $\left(X^{n}, Y^{n}\right) \sim p\left(x^{n}, y^{n}\right)$.
- $b\left(X_{i} \mid X^{i-1}, Y^{i}\right)$ investment at time $i$

$$
W^{*}\left(X^{n}| | Y^{n}\right)=\max _{\left\{b\left(X_{i} \mid X^{i-1}, Y^{i}\right)\right\}} \mathrm{E}\left[\log \prod_{i=1}^{n} b\left(X_{i} \mid X^{i-1}, Y^{i}\right) m\right]
$$

## Gambling with causal side information

- $X_{i}$ the horse that wins at time $i$
- $Y_{i}$ side information that is known causally
- $\left(X^{n}, Y^{n}\right) \sim p\left(x^{n}, y^{n}\right)$.
- $b\left(X_{i} \mid X^{i-1}, Y^{i}\right)$ investment at time $i$

$$
\begin{aligned}
W^{*}\left(X^{n} \| Y^{n}\right) & =\max _{\left\{b\left(X_{i} \mid X^{i-1}, Y^{i}\right)\right\}} \mathrm{E}\left[\log \prod_{i=1}^{n} b\left(X_{i} \mid X^{i-1}, Y^{i}\right) m\right] \\
& =\max _{b\left(X^{n}| | Y^{n}\right)} \mathrm{E}\left[\log b\left(X^{n}| | Y^{n}\right) m^{n}\right]
\end{aligned}
$$

## Gambling with causal side information

- $X_{i}$ the horse that wins at time $i$
- $Y_{i}$ side information that is known causally
- $\left(X^{n}, Y^{n}\right) \sim p\left(x^{n}, y^{n}\right)$.
- $b\left(X_{i} \mid X^{i-1}, Y^{i}\right)$ investment at time $i$

$$
\begin{aligned}
W^{*}\left(X^{n} \| Y^{n}\right) & =\max _{\left\{b\left(X_{i} \mid X^{i-1}, Y^{i}\right)\right\}} \mathrm{E}\left[\log \prod_{i=1}^{n} b\left(X_{i} \mid X^{i-1}, Y^{i}\right) m\right] \\
& =\max _{b\left(X^{n} \| Y^{n}\right)} \mathrm{E}\left[\log b\left(X^{n} \| Y^{n}\right) m^{n}\right]
\end{aligned}
$$

## Theorem

The optimal strategy is $b\left(x^{n}| | y^{n}\right)=p\left(x^{n} \| y^{n}\right)$. The increase in the growth rate due to causal side information $Y_{i}$ is

$$
\Delta W=\frac{1}{n} I\left(Y^{n} \rightarrow X^{n}\right)
$$

## causal side information: the i.i.d. case

If $\left(X^{n}, Y^{n}\right)$ are i.i.d. $\sim p(x, y)$, we simply obtain

$$
\frac{1}{n} I\left(Y^{n} \rightarrow X^{n}\right)=I(X ; Y)
$$

## The proof is simple

$\mathrm{E}\left[\log b\left(X^{n} \| Y^{n}\right)\right]$

$$
=\sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right)\left[\log p\left(x^{n} \| y^{n}\right)+\log \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)}\right]
$$

## The proof is simple

$\mathrm{E}\left[\log b\left(X^{n} \| Y^{n}\right)\right]$

$$
\begin{aligned}
& =\sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right)\left[\log p\left(x^{n} \| y^{n}\right)+\log \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)}\right] \\
& =-H\left(X^{n} \| Y^{n}\right)+\sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right) \log \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)}
\end{aligned}
$$

## The proof is simple

$\mathrm{E}\left[\log b\left(X^{n} \| Y^{n}\right)\right]$

$$
\begin{aligned}
& =\sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right)\left[\log p\left(x^{n} \| y^{n}\right)+\log \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)}\right] \\
& =-H\left(X^{n} \| Y^{n}\right)+\sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right) \log \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)} \\
& \leq-H\left(X^{n} \| Y^{n}\right)+\log \sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right) \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)}
\end{aligned}
$$

## The proof is simple

$\mathrm{E}\left[\log b\left(X^{n} \| Y^{n}\right)\right]$

$$
\begin{aligned}
& =\sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right)\left[\log p\left(x^{n} \| y^{n}\right)+\log \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)}\right] \\
& =-H\left(X^{n} \| Y^{n}\right)+\sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right) \log \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)} \\
& \leq-H\left(X^{n} \| Y^{n}\right)+\log \sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right) \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)}
\end{aligned}
$$

Recall the chain rule $p\left(x^{n}, y^{n}\right)=p\left(x^{n} \| y^{n}\right) p\left(y^{n} \| x^{n-1}\right)$.

## The proof is simple

$\mathrm{E}\left[\log b\left(X^{n} \| Y^{n}\right)\right]$

$$
\begin{aligned}
& =\sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right)\left[\log p\left(x^{n} \| y^{n}\right)+\log \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)}\right] \\
& =-H\left(X^{n} \| Y^{n}\right)+\sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right) \log \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)} \\
& \leq-H\left(X^{n} \| Y^{n}\right)+\log \sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right) \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)} \\
& \leq-H\left(X^{n} \| Y^{n}\right)+\log \sum_{x^{n}, y^{n}} p\left(y^{n} \| x^{n-1}\right) b\left(x^{n} \| y^{n}\right)
\end{aligned}
$$

Recall the chain rule $p\left(x^{n}, y^{n}\right)=p\left(x^{n} \| y^{n}\right) p\left(y^{n} \| x^{n-1}\right)$.

## The proof is simple

$\mathrm{E}\left[\log b\left(X^{n} \| Y^{n}\right)\right]$

$$
\begin{aligned}
& =\sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right)\left[\log p\left(x^{n} \| y^{n}\right)+\log \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)}\right] \\
& =-H\left(X^{n} \| Y^{n}\right)+\sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right) \log \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)} \\
& \leq-H\left(X^{n} \| Y^{n}\right)+\log \sum_{x^{n}, y^{n}} p\left(x^{n}, y^{n}\right) \frac{b\left(x^{n} \| y^{n}\right)}{p\left(x^{n} \| y^{n}\right)} \\
& \leq-H\left(X^{n} \| Y^{n}\right)+\log \sum_{x^{n}, y^{n}} p\left(y^{n} \| x^{n-1}\right) b\left(x^{n} \| y^{n}\right) \\
& =-H\left(X^{n} \| Y^{n}\right)+0
\end{aligned}
$$

Recall the chain rule $p\left(x^{n}, y^{n}\right)=p\left(x^{n} \| y^{n}\right) p\left(y^{n} \| x^{n-1}\right)$.

## Proof...

Causal side information:

$$
\frac{1}{n} W^{*}\left(X^{n} \| Y^{n}\right)=\log m-\frac{1}{n} H\left(X^{n} \| Y^{n}\right) .
$$

no side information

$$
\frac{1}{n} W^{*}\left(X^{n}\right)=\log m-\frac{1}{n} H\left(X^{n}\right) .
$$

The increase in growth rate

$$
\begin{aligned}
\frac{1}{n} W^{*}\left(X^{n} \| Y^{n}\right)-\frac{1}{n} W^{*}\left(X^{n}\right) & =-\frac{1}{n} H\left(X^{n} \| Y^{n}\right)+\frac{1}{n} H\left(X^{n}\right) \\
& =\frac{1}{n} I\left(Y^{n} \rightarrow X^{n}\right)
\end{aligned}
$$

## Intuition

- $I\left(Y^{n} ; X^{n}\right)=H\left(X^{n}\right)-H\left(X^{n} \mid Y^{n}\right)$ amount of uncertainty about $X^{n}$ reduced by knowing $Y^{n}$.
- $I\left(Y^{n} \rightarrow X^{n}\right)=H\left(X^{n}\right)-H\left(X^{n} \| Y^{n}\right)$ amount of uncertainty about $X^{n}$ reduced by knowing $Y^{n}$ causally.


## Intuition

- $I\left(Y^{n} ; X^{n}\right)=H\left(X^{n}\right)-H\left(X^{n} \mid Y^{n}\right)$ amount of uncertainty about $X^{n}$ reduced by knowing $Y^{n}$.
- $I\left(Y^{n} \rightarrow X^{n}\right)=H\left(X^{n}\right)-H\left(X^{n} \| Y^{n}\right)$ amount of uncertainty about $X^{n}$ reduced by knowing $Y^{n}$ causally.

$X_{i}$ winning horse

$Y_{i}$ side information

$$
\Delta W=\frac{1}{n} I\left(Y^{n} \rightarrow X^{n}\right)
$$

## An example



$$
\begin{gathered}
\frac{1}{n} I\left(Y^{n} \rightarrow X^{n}\right)=H\left(Y_{1} \mid X_{0}\right)-H\left(Y_{1} \mid X_{1}\right)=h(p * q)-h(q) \\
p * q=(1-p) q+(1-q) p
\end{gathered}
$$

## Stock Market [Barron/Cover88], [Cover/Thomas06, ch. 13]

- $\mathbf{X}_{\mathbf{i}}=\left(X_{i, 1}, X_{i, 2}, \ldots, X_{i, m}\right)$ - the relative price at time $i$.

$$
X_{i, k}=\frac{\text { stock- } k \text { at the end of day } i}{\text { stock- } k \text { at the end of day } i-1}
$$

- $Y_{i}$ causal side information
- $\mathbf{b}\left(\mathbf{x}^{i-1}, y^{i}\right)$ is the portfolio. It is non-negative and

$$
\sum_{k=1}^{m} b_{k}\left(\mathbf{x}^{i-1}, y^{i}\right)=1
$$

- The goal is to maximize the growth rate, i.e.,

$$
\max _{\left\{\mathbf{b}\left(\mathbf{x}^{i-1}, y^{i}\right)\right\}_{i=1}^{n}} E\left[\sum_{i=1}^{n} \log \left(\mathbf{b}^{t}\left(\mathbf{X}^{i-1}, Y^{i}\right) \mathbf{X}_{i}\right)\right]
$$

## Theorem

The increase in growth rate in $n$-epoch time investments due to side information is bounded by $\Delta W \leq \frac{1}{n} I\left(Y^{n} \rightarrow \mathbf{X}^{n}\right)$.

## Lossless Compression

- $X_{i}$ source
- $Y_{i}$ causal side information
- encoder and decoder are instantaneous and variable length.
- Encoder: $M_{i}=g\left(X^{i}, Y^{i}\right)$
- Decoder: $\hat{X}_{i}=f\left(M^{i}, Y^{i}\right)$
- the transmission rate

$$
\begin{gathered}
R=\frac{1}{n} \sum_{i=1}^{n} \log \left|M_{i}\right| \\
\frac{1}{n} H\left(X^{n} \| Y^{n}\right) \leq R \leq \frac{1}{n} H\left(X^{n} \| Y^{n}\right)+1
\end{gathered}
$$

## Theorem

The decrease in the transmission rate due to causal side information is $\frac{1}{n} I\left(Y^{n} \rightarrow \mathbf{X}^{n}\right)+c$, where $|c| \leq 1$.

## Summary

$I\left(Y^{n} ; X^{n}\right) \triangleq H\left(X^{n}\right)-H\left(X^{n} \mid Y^{n}\right)$ amount of uncertainty about $X^{n}$ reduced by knowing $Y^{n}$
$I\left(Y^{n} \rightarrow X^{n}\right) \triangleq H\left(X^{n}\right)-H\left(X^{n} \| Y^{n}\right)$ amount of uncertainty about $X^{n}$ reduced by knowing $Y^{n}$ causally.

- Gambling with causal side information:

$$
\begin{aligned}
& b\left(x^{n} \| y^{n}\right)=p\left(x^{n} \| y^{n}\right), \\
& \Delta W=\frac{1}{n} I\left(Y^{n} \rightarrow X^{n}\right) .
\end{aligned}
$$

- Portfolio theory: $\Delta W \leq \frac{1}{n} I\left(Y^{n} \rightarrow \mathbf{X}^{n}\right)$.
- Instantaneous compression: $\Delta R \leq \frac{1}{n} I\left(Y^{n} \rightarrow X^{n}\right)+c$


## Summary

$I\left(Y^{n} ; X^{n}\right) \triangleq H\left(X^{n}\right)-H\left(X^{n} \mid Y^{n}\right)$ amount of uncertainty about $X^{n}$ reduced by knowing $Y^{n}$
$I\left(Y^{n} \rightarrow X^{n}\right) \triangleq H\left(X^{n}\right)-H\left(X^{n} \| Y^{n}\right)$ amount of uncertainty about $X^{n}$ reduced by knowing $Y^{n}$ causally.

- Gambling with causal side information:

$$
\begin{aligned}
& b\left(x^{n} \| y^{n}\right)=p\left(x^{n} \| y^{n}\right), \\
& \Delta W=\frac{1}{n} I\left(Y^{n} \rightarrow X^{n}\right) .
\end{aligned}
$$

- Portfolio theory: $\Delta W \leq \frac{1}{n} I\left(Y^{n} \rightarrow \mathbf{X}^{n}\right)$.
- Instantaneous compression: $\Delta R \leq \frac{1}{n} I\left(Y^{n} \rightarrow X^{n}\right)+c$

Thank you for attending the talk!

