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Definitions (Discrete Time)

I(Xn;Y n) , H(Y n) − H(Y n|Xn) =
n

∑

i=1

I(Xn;Yi|Y
i−1)

H(Y n|Xn) , E[− log P (Y n|Xn)]

P (yn|xn) =

n
∏

i=1

P (yi|x
n, yi−1)

H. Permuter, Y.-H Kim and T. Weissman Continuous-Time Directed Information



Definitions (Discrete Time)

Directed Information [Massey90]

I(Xn → Y n) , H(Y n) − H(Y n||Xn) ,

n
∑

i=1

I(Xi;Yi|Y
i−1)

I(Xn;Y n) , H(Y n) − H(Y n|Xn) =
n

∑

i=1

I(Xn;Yi|Y
i−1)

Causal Conditioning [Kramer98]

H(Y n||Xn) , E[− log P (Y n||Xn)]

H(Y n|Xn) , E[− log P (Y n|Xn)]

P (yn||xn) ,

n
∏

i=1

P (yi|x
i, yi−1)

P (yn|xn) =

n
∏

i=1

P (yi|x
n, yi−1)
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Channels with feedback

Message

Encoder

xi(m, zi−1)
xi

Channel with memory

P (yi|x
i, yi−1)

yim

Decoder

m̂(yn)

zi(yi) yi

Unit Delay Time-Invariant
Functionzi−1(yi−1)

m̂

Estimated
message

Directed information characterizes the channel capacity.

C = lim
n→∞

max
Q(xn||zn−1)

1

n
I(Xn → Y n)

[Massey90, Kramer98, Tatikonda/Mitter10, Kim10,
P/Goldsmith/Weissman10]
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Key Property: Chain rule

causal conditioning

P (yn||xn) ,

n
∏

i=1

P (yi|x
i, yi−1),

Q(xn||yn−1) ,

n
∏

i=1

Q(xi|x
i−1, yi−1)

chain rule

P (xn, yn) = Q(xn||yn−1)P (yn||xn−1)
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Conservation Law
I(Xn; Y n) = I(Xn → Y

n) + I(Y n−1 → X
n) [Massey06]

Recall P (xn, yn) = P (xn||yn−1)P (yn||xn)

I(Xn;Y n) = E

[

ln
P (Y n,Xn)

P (Y n)P (Xn)

]

= E

[

ln
P (Y n||Xn)P (Xn||Y n−1)

P (Y n)P (Xn)

]

= E

[

ln
P (Y n||Xn)

P (Y n)

]

+ E

[

ln
P (Xn||Y n−1)

P (Xn)

]

= I(Xn → Y n) + I(Y n−1 → Xn).
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Conservation Law
I(Xn; Y n) = I(Xn → Y

n) + I(Y n−1 → X
n) [Massey06]

Recall P (xn, yn) = P (xn||yn−1)P (yn||xn)

I(Xn;Y n) = E

[

ln
P (Y n,Xn)

P (Y n)P (Xn)

]

= E

[

ln
P (Y n||Xn)P (Xn||Y n−1)

P (Y n)P (Xn)

]

= E

[

ln
P (Y n||Xn)

P (Y n)

]

+ E

[

ln
P (Xn||Y n−1)

P (Xn)

]

= I(Xn → Y n) + I(Y n−1 → Xn).

In case that we have deterministic feedback zi(yi):

I(Xn;Y n) = I(Xn → Y n) + I(Zn−1 → Xn).
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Conservation Law
I(Xn; Y n) = I(Xn → Y

n) + I(Y n−1 → X
n) [Massey06]

Recall P (xn, yn) = P (xn||yn−1)P (yn||xn)

I(Xn;Y n) = E

[

ln
P (Y n,Xn)

P (Y n)P (Xn)

]

= E

[

ln
P (Y n||Xn)P (Xn||Y n−1)

P (Y n)P (Xn)

]

= E

[

ln
P (Y n||Xn)

P (Y n)

]

+ E

[

ln
P (Xn||Y n−1)

P (Xn)

]

= I(Xn → Y n) + I(Y n−1 → Xn).

In case that we have deterministic feedback zi(yi):

I(Xn;Y n) = I(Xn → Y n) + I(Zn−1 → Xn).

If there is no feedback, zi = null, then

I(Xn;Y n) = I(Xn → Y n) + 0.
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Directed Information as a functional of causal
conditioning

I(Q(xn||yn−1), P (yn||xn))

=
∑

xn,yn

Q(xn||yn−1)P (yn||xn) ln
P (yn||xn)

∑

xn Q(xn||yn−1)P (yn||xn)

= H(Y n) − H(Y n||Xn)

= I(Xn → Y n)

Causal-conditioning Q(xn||yn−1) and P (yn||xn)) are
convex sets.
Directed information is concave in Q(xn||yn−1) and convex
in P (yn||xn)

Blaut-Arimoto or Geometric programming can be used for
computing maxQ(xn||yn−1) I(Xn → Y n) [Naiss/P11]
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Example: Blackwell’s Channel/Trapdoor
Channel/Chemocal Channel

Introduced by David Blackwell in 1961. [Ash65], [Ahlswede &
Kaspi 87], [Ahlswede 98], [Kobayashi 02] [Berger91].

(a) Ash book (b) D. Blackwell

Cfb = log
√

1+5
2 , simple scheme [P/Cuff/Weissman/Van-Roy09].
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Example: Issing Channel

Introduced by Berger in 1990 and it models inter-symbol
interference.

The channel behaves as a Z-channel or S-channel,
depending on the previous input.

0

1

0

1

0

1

0

1

xn−1 = 0 xn−1 = 1

xnxn ynyn

1
2

1
2

1
2

1
2

C = max0≤x≤1
2Hb(x)
3+x

, simple scheme [P/Elischo11].
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Portfolio Theory and Gambling

Consider a horse-race market

Xi - the horse that wins at time i.

Yi - side information available at time i.

(Xi, Yi), i.i.d Kelly[56]

The optimal strategy is to invest the capital proportional to
P (x|y). The increase in the growth rate due to side information
Y is

∆W = nI(X;Y ).

(Xi, Yi) general processes [P.&Kim&Weissman ISIT08]

The optimal strategy is to invest the capital proportional to
P (xi|x

i−1, yi). The increase in the growth rate due to causal
side information is

∆W = I(Y n → Xn).
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Lossless compression

Xi - stationary source.

Yi - side information available at the encoder and causally
at the decoder.

lossless compression with causal side information [Osvaldo/P 11]

The minimum rate needed to reconstruct the process {Xi}

R = lim
n→∞

1

n
H(Xn||Y n)

The reduction in the compression rate due to causal side
information is

∆R = lim
n→∞

1

n
(H(Xn) − H(Xn||Y n)) = lim

n→∞
1

n
I(Y n → Xn)
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More results involving directed information

Memoryless networks with feedback [Gerhard98]

Rate distortion with feedforward [Weiss-
man/Merhav03][Venkataramanan/Pradhan07][Naiss/P11]

Broadcast with feedback [Deborah/Goldsmith10]

Finite state MAC with feedback[P/Weissman/Chen10]

Compound channels with feedback [Shrader/P. 10]

Quantity causality [Colman et. al10][Zhao et al 10][Rao et
al 08][Mathai et all07]...
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Continuous time

In discrete time

I(Xn → Y n) ,

n
∑

i=1

I(Xi;Yi|Y
i−1).

How to define directed information in continuous-time?
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Continuous time

In discrete time

I(Xn → Y n) ,

n
∑

i=1

I(Xi;Yi|Y
i−1).

How to define directed information in continuous-time?

Recall continuous-value mutual information is defined as

I(X;Y ) = sup
Q,P

I([X]Q; [Y ]P),

where Q, and P are partitions.

Main idea: use time-partition!
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Time-partition

For a continuous-time process {Xt}, let
Xb

a = {Xs : a ≤ s < b}.

Let t = (t1, t2, . . . , tn) denote an n-dimensional vector

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn < T.

Let X
T,t
0 denote

X
T,t
0 =

(

Xt1
0 ,Xt2

t1
, . . . ,Xtn

tn−1
,XT

tn

)

.

Directed information as a function of the time-partition

It
(

XT
0 → Y T

0

)

, I
(

X
T,t
0 → Y

T,t
0

)

=
n

∑

i=1

I
(

Xti
0 ;Y ti

ti−1
|Y

ti−1

0

)
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Directed-information in continuous-time

Definition

Directed information between XT
0 and Y T

0 is defined as

I
(

XT
0 → Y T

0

)

, inf
t

It
(

XT
0 → Y T

0

)

,

where the infimum is over all partitions t .

Note that for continuous-value we had suprimum, and for
continuous-time we use infimum.
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Directed-information in continuous-time

Definition

Directed information between XT
0 and Y T

0 is defined as

I
(

XT
0 → Y T

0

)

, inf
t

It
(

XT
0 → Y T

0

)

,

where the infimum is over all partitions t .

Note that for continuous-value we had suprimum, and for
continuous-time we use infimum.

Lemma

If t
′ is a refinement of t, then It′

(

XT
0 → Y T

0

)

≤ It
(

XT
0 → Y T

0

)

.
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Directed-information in continuous-time

Definition

Directed information between XT
0 and Y T

0 is defined as

I
(

XT
0 → Y T

0

)

, inf
t

It
(

XT
0 → Y T

0

)

,

where the infimum is over all partitions t .

Note that for continuous-value we had suprimum, and for
continuous-time we use infimum.

Lemma

If t
′ is a refinement of t, then It′

(

XT
0 → Y T

0

)

≤ It
(

XT
0 → Y T

0

)

.

For different durations we zero-pad at the beginning

I(XT−δ
0 → Y T

0 ) := I((0δ
0X

T−δ
0 ) → Y T

0 ).
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Properties

I
(

XT
0 → Y T

0

)

≤ I
(

XT
0 ;Y T

0

)

Monotonicity: I(Xt
0 → Y t

0 ) is monotone non-decreasing in
t

Invariance to time scaling: If φ is monotone strictly
increasing and continuous, and (X̃φ(t), Ỹφ(t)) = (Xt, Yt) ,

then I(XT
0 → Y T

0 ) = I
(

X̃
φ(T )
φ(0) → Ỹ

φ(T )
φ(0)

)

Coincidence of directed and mutual information: If the
Markov relation Y t

0 − Xt
0 − XT

t (no feedback) holds then

I
(

XT
0 → Y T

0

)

= I
(

XT
0 ;Y T

0

)

Equivalent to discrete-time if the process is piecewise
constant.
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Conservation law

If the continuity condition

lim
δ→0+

[I(Xδ
0 ;Y δ

0 ) + I(XT
δ → Y T

δ |Y δ
0 )] = I(XT

0 → Y T
0 )

holds then the directed information

I
(

Y T−
0 → XT

0

)

, lim
δ→0+

I
(

Y T−δ
0 → XT

0

)

exists and

I
(

XT
0 → Y T

0

)

+ I
(

Y T−
0 → XT

0

)

= I
(

XT
0 ;Y T

0

)

(this is continuous-time analogue of the conservation
lawI(Un → V n) + I(V n−1 → Un) = I(Un;V n) )
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Estimation: Duncan’s Theorem

Theorem ( Duncan 1970 )

Let XT
0 be a signal of finite average power

∫ T

0 E[X2
t ]dt < ∞ ,

independent of the standard Brownian motion {Bt} , and let
Y T

0 satisfy dYt = Xtdt + dBt . Then

1

2

∫ T

0
E

[

(Xt − E[Xt|Y
t
0 ])2

]

dt = I
(

XT
0 ;Y T

0

)

relationship holds regardless of distribution of XT
0

The GSV theorem, 1
2

∫

snr

0 mmse(snr
′)dsnr

′ = I(snr), is
related.

H. Permuter, Y.-H Kim and T. Weissman Continuous-Time Directed Information



Breakdown of the Duncan Relationship

Duncan stipulates independence between XT
0 and

channel noise {Bt}

excludes scenarios where evolution of Xt is affected by
channel noise.

for an extreme example, consider case Xt+ǫ = Yt

in this case the causal MMSE

E
[

(Xt − E[Xt|Y
t
0 ])2

]

= 0

while the mutual information

I
(

XT
0 ;Y T

0

)

= ∞
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An Extension of Duncan’s Theorem

Theorem

Let {Bt} be a standard Brownian motion, let {Wt} be
independent of {Bt} , and let {(Xt, Yt)} satisfy

Xt ∈ σ(Y t−
0 ,W T

0 ) and dYt = Xtdt + dBt.

Then, provided {Xt} has finite average power
∫ T

0 E[X2
t ]dt < ∞ ,

1

2

∫ T

0
E

[

(Xt − E[Xt|Y
t
0 ])2

]

dt = I
(

XT
0 → Y T

0

)

.

H. Permuter, Y.-H Kim and T. Weissman Continuous-Time Directed Information



The Poisson Channel

The following is the analogue of Duncan’s theorem for Poisson
noise.

Theorem

Let XT
0 be a non-negative signal satisfying

E
∫ T

0 |Xt log Xt|dt < ∞ and, conditioned on XT
0 , let Y T

0 be a
Poisson point process with rate function XT

0 . Then

∫ T

0
E

[

φ(Xt) − φ
(

E[Xt|Y
t
0 ]

)]

dt = I
(

XT
0 ;Y T

0

)

,

where φ(α) = α log α
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The Poisson Channel

The following is the analogue of Duncan’s theorem for Poisson
noise.

Theorem

Let XT
0 be a non-negative signal satisfying

E
∫ T

0 |Xt log Xt|dt < ∞ and, conditioned on XT
0 , let Y T

0 be a
Poisson point process with rate function XT

0 . Then

∫ T

0
E

[

φ(Xt) − φ
(

E[Xt|Y
t
0 ]

)]

dt = I
(

XT
0 ;Y T

0

)

,

where φ(α) = α log α

Note similarly as in Gaussian case:

breaks down in presence of feedback

in above theorem can replace I
(

XT
0 ;Y T

0

)

by
I

(

XT
0 → Y T

0

)
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An Extended ‘Duncan’s Theorem’ for the Poisson
Channel

Theorem

Let Yt be a point process and Xt be its
FY

t -predictable intensity. Then, provided
E

∫ T

0 |Xt log Xt|dt < ∞ ,

∫ T

0
E

[

φ(Xt) − φ
(

E[Xt|Y
t
0 ]

)]

dt = I
(

XT
0 → Y T

0

)
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Continuous-time communication

Message Message est.
M ∈ {1, . . . , 2nT } Xt

Delay ∆
Yt−∆

Yt M̂
xt(m, yt−∆

0 )

Encoder
g(Xt, Zt)
Channel

m̂(yT
0 )

Decoder

The channel of the form Yt = g(Xt, Zt), where Zt is a block
ergodic process.
The encoder assigns a symbol xt(m, yt−∆

0 )

Message M independent of the noise process {Zt}.

Definition

C(∆) = sup{R : R is achievable with feedback delay ∆} (1)
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Capacity result

CI(∆) , lim
T→∞

1

T
sup
S∆

I(XT
0 → Y T

0 ),

where the supremum in is over

Xt =

{

gt(Ut, Y
t−∆
0 ) t ≥ ∆,

gt(Ut) t < ∆,

The limit is shown to exist due to super-additivity.

Theorem

For this channel

C(∆) ≤ CI(∆),

C(∆) ≥ CI(∆′) for all ∆′ > ∆.

Since CI(∆) is a decreasing function in ∆, C(∆) = CI(∆) for
any ∆ ≥ 0 except of a set of points of measure zero.
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summary

I(Xn;Y n) amount of uncertainty about Y n reduced by
knowing Xn

I(Xn → Y n) amount of uncertainty about Y n reduced by
knowing Xn causally.

Important role for discrete-time directed information in
network information theory with feedback, feed-forward
rate distortion, causality measure, horse-race market and
lossless compression with causal side information.

For continuous-time the idea of time-partition is useful.

We saw an important role of directed information in
continuous-time estimation and feedback-capacity.
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summary

I(Xn;Y n) amount of uncertainty about Y n reduced by
knowing Xn

I(Xn → Y n) amount of uncertainty about Y n reduced by
knowing Xn causally.

Important role for discrete-time directed information in
network information theory with feedback, feed-forward
rate distortion, causality measure, horse-race market and
lossless compression with causal side information.

For continuous-time the idea of time-partition is useful.

We saw an important role of directed information in
continuous-time estimation and feedback-capacity.

Thank you very much!
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