Continuous-Time Directed Information

Tsachy Weissman Young-Han Kim Haim Permuter Stanford UCSD Ben-Gurion University

> ITW Oct 2011, Paraty

H. Permuter, Y.-H Kim and T. Weissman Continuous-Time Directed Information

Outline

- definition and properties of discrete-time directed information
- review of results involving directed information in
 - feedback capacity
 - gambling
 - lossless compression
 - feedforwad rate distortion
 - multi-user information theory
 - causality measure
- definition and properties of continuous-time directed information
- continuous-time directed information in
 - estimation
 - continuous time communication

$$I(X^{n};Y^{n}) \triangleq H(Y^{n}) - H(Y^{n}|X^{n}) = \sum_{i=1}^{n} I(X^{n};Y_{i}|Y^{i-1})$$

$$H(Y^n|X^n) \triangleq E[-\log P(Y^n|X^n)]$$

$$P(y^{n}|x^{n}) = \prod_{i=1}^{n} P(y_{i}|x^{n}, y^{i-1})$$

Definitions (Discrete Time)

Directed Information

[Massey90]

m

$$I(X^{n} \to Y^{n}) \triangleq H(Y^{n}) - H(Y^{n}||X^{n}) \triangleq \sum_{i=1}^{n} I(X^{i}; Y_{i}|Y^{i-1})$$
$$I(X^{n}; Y^{n}) \triangleq H(Y^{n}) - H(Y^{n}|X^{n}) = \sum_{i=1}^{n} I(X^{n}; Y_{i}|Y^{i-1})$$

Causal Conditioning

[Kramer98]

$$H(Y^{n}||X^{n}) \triangleq E[-\log P(Y^{n}||X^{n})]$$

$$H(Y^{n}|X^{n}) \triangleq E[-\log P(Y^{n}|X^{n})]$$

$$P(y^{n}||x^{n}) \triangleq \prod_{i=1}^{n} P(y_{i}|x^{i}, y^{i-1})$$
$$P(y^{n}|x^{n}) = \prod_{i=1}^{n} P(y_{i}|x^{n}, y^{i-1})$$

Channels with feedback

Directed information characterizes the channel capacity.

$$C = \lim_{n \to \infty} \max_{Q(x^n || z^{n-1})} \frac{1}{n} I(X^n \to Y^n)$$

[Massey90, Kramer98, Tatikonda/Mitter10, Kim10, P/Goldsmith/Weissman10]

causal conditioning

$$P(y^{n}||x^{n}) \triangleq \prod_{i=1}^{n} P(y_{i}|x^{i}, y^{i-1}),$$
$$Q(x^{n}||y^{n-1}) \triangleq \prod_{i=1}^{n} Q(x_{i}|x^{i-1}, y^{i-1})$$

chain rule

$$P(x^{n}, y^{n}) = Q(x^{n}||y^{n-1})P(y^{n}||x^{n-1})$$

Conservation Law $I(X^n; Y^n) = I(X^n \to Y^n) + I(Y^{n-1} \to X^n)$ [Massey06]

$$\begin{aligned} \operatorname{Recall} P(x^{n}, y^{n}) &= P(x^{n} || y^{n-1}) P(y^{n} || x^{n}) \\ I(X^{n}; Y^{n}) &= \mathbf{E} \left[\ln \frac{P(Y^{n}, X^{n})}{P(Y^{n}) P(X^{n})} \right] \\ &= \mathbf{E} \left[\ln \frac{P(Y^{n} || X^{n}) P(X^{n} || Y^{n-1})}{P(Y^{n}) P(X^{n})} \right] \\ &= \mathbf{E} \left[\ln \frac{P(Y^{n} || X^{n})}{P(Y^{n})} \right] + \mathbf{E} \left[\ln \frac{P(X^{n} || Y^{n-1})}{P(X^{n})} \right] \\ &= I(X^{n} \to Y^{n}) + I(Y^{n-1} \to X^{n}). \end{aligned}$$

Conservation Law $I(X^n; Y^n) = I(X^n \to Y^n) + I(Y^{n-1} \to X^n)$ [Massey06] Recall $P(x, y) = P(x^n, y) + I(Y^{n-1} \to X^n)$ [Massey06]

$$\begin{aligned} \operatorname{\mathsf{Recall}} P(x^n, y^n) &= P(x^n || y^{n-1}) P(y^n || x^n) \\ I(X^n; Y^n) &= \mathbf{E} \left[\ln \frac{P(Y^n, X^n)}{P(Y^n) P(X^n)} \right] \\ &= \mathbf{E} \left[\ln \frac{P(Y^n || X^n) P(X^n || Y^{n-1})}{P(Y^n) P(X^n)} \right] \\ &= \mathbf{E} \left[\ln \frac{P(Y^n || X^n)}{P(Y^n)} \right] + \mathbf{E} \left[\ln \frac{P(X^n || Y^{n-1})}{P(X^n)} \right] \\ &= I(X^n \to Y^n) + I(Y^{n-1} \to X^n). \end{aligned}$$

In case that we have deterministic feedback $z_i(y_i)$:

$$I(X^n;Y^n) = I(X^n \to Y^n) + I(Z^{n-1} \to X^n).$$

Conservation Law $I(X^n; Y^n) = I(X^n \to Y^n) + I(Y^{n-1} \to X^n)$ [Massey06]

$$\begin{aligned} \operatorname{Recall} P(x^{n}, y^{n}) &= P(x^{n} || y^{n-1}) P(y^{n} || x^{n}) \\ I(X^{n}; Y^{n}) &= \mathbf{E} \left[\ln \frac{P(Y^{n}, X^{n})}{P(Y^{n}) P(X^{n})} \right] \\ &= \mathbf{E} \left[\ln \frac{P(Y^{n} || X^{n}) P(X^{n} || Y^{n-1})}{P(Y^{n}) P(X^{n})} \right] \\ &= \mathbf{E} \left[\ln \frac{P(Y^{n} || X^{n})}{P(Y^{n})} \right] + \mathbf{E} \left[\ln \frac{P(X^{n} || Y^{n-1})}{P(X^{n})} \right] \\ &= I(X^{n} \to Y^{n}) + I(Y^{n-1} \to X^{n}). \end{aligned}$$

In case that we have deterministic feedback $z_i(y_i)$:

$$I(X^n;Y^n) = I(X^n \to Y^n) + I(Z^{n-1} \to X^n).$$

If there is no feedback, $z_i = null$, then

$$I(X^n; Y^n) = I(X^n \to Y^n) + 0.$$

Directed Information as a functional of causal conditioning

$$\begin{aligned} \mathcal{I}(Q(x^{n}||y^{n-1}), P(y^{n}||x^{n})) \\ &= \sum_{x^{n}, y^{n}} Q(x^{n}||y^{n-1}) P(y^{n}||x^{n}) \ln \frac{P(y^{n}||x^{n})}{\sum_{x^{n}} Q(x^{n}||y^{n-1}) P(y^{n}||x^{n})} \\ &= H(Y^{n}) - H(Y^{n}||X^{n}) \end{aligned}$$

$$= I(X^n \to Y^n)$$

- Causal-conditioning $Q(x^n||y^{n-1})$ and $P(y^n||x^n))$ are convex sets.
- Directed information is concave in $Q(x^n||y^{n-1})$ and convex in $P(y^n||x^n)$
- Blaut-Arimoto or Geometric programming can be used for computing $\max_{Q(x^n||y^{n-1})} I(X^n \to Y^n)$ [Naiss/P11]

Example: Blackwell's Channel/Trapdoor Channel/Chemocal Channel

Introduced by David Blackwell in 1961. [Ash65], [Ahlswede & Kaspi 87], [Ahlswede 98], [Kobayashi 02] [Berger91].

Example: Issing Channel

- Introduced by Berger in 1990 and it models inter-symbol interference.
- The channel behaves as a Z-channel or S-channel, depending on the previous input.

• $C = \max_{0 \le x \le 1} \frac{2H_b(x)}{3+x}$, simple scheme [P/Elischo11].

Portfolio Theory and Gambling

Consider a horse-race market

- X_i the horse that wins at time *i*.
- Y_i side information available at time *i*.

(X_i, Y_i) , i.i.d

Kelly[56]

The optimal strategy is to invest the capital proportional to P(x|y). The increase in the growth rate due to side information Y is

$$\Delta W = nI(X;Y).$$

(X_i, Y_i) general processes

[P.&Kim&Weissman ISIT08]

The optimal strategy is to invest the capital proportional to $P(x_i|x^{i-1},y^i)$. The increase in the growth rate due to *causal* side information is

$$\Delta W = I(Y^n \to X^n).$$

- X_i stationary source.
- *Y_i* side information available at the encoder and *causally* at the decoder.

lossless compression with causal side information [Osvaldo/P 11]

The minimum rate needed to reconstruct the process $\{X_i\}$

$$R = \lim_{n \to \infty} \frac{1}{n} H(X^n || Y^n)$$

The reduction in the compression rate due to *causal* side information is

$$\Delta R = \lim_{n \to \infty} \frac{1}{n} (H(X^n) - H(X^n || Y^n)) = \lim_{n \to \infty} \frac{1}{n} I(Y^n \to X^n)$$

More results involving directed information

- Memoryless networks with feedback [Gerhard98]
- Rate distortion with feedforward [Weissman/Merhav03][Venkataramanan/Pradhan07][Naiss/P11]
- Broadcast with feedback [Deborah/Goldsmith10]
- Finite state MAC with feedback[P/Weissman/Chen10]
- Compound channels with feedback [Shrader/P. 10]
- Quantity causality [Colman et. al10][Zhao et al 10][Rao et al 08][Mathai et all07]...

In discrete time

$$I(X^n \to Y^n) \triangleq \sum_{i=1}^n I(X^i; Y_i | Y^{i-1}).$$

How to define directed information in continuous-time?

In discrete time

$$I(X^n \to Y^n) \triangleq \sum_{i=1}^n I(X^i; Y_i | Y^{i-1}).$$

How to define directed information in continuous-time?

Recall continuous-value mutual information is defined as

$$I(X;Y) = \sup_{\mathcal{Q},\mathcal{P}} I([X]_{\mathcal{Q}};[Y]_{\mathcal{P}}),$$

where Q, and P are partitions.

Main idea: use time-partition!

Time-partition

- For a continuous-time process $\{X_t\}$, let $X_a^b = \{X_s : a \le s < b\}.$
- Let $\mathbf{t} = (t_1, t_2, \dots, t_n)$ denote an *n*-dimensional vector

$$0 \le t_1 \le t_2 \le \dots \le t_n < T.$$

• Let $X_0^{T,t}$ denote

$$X_0^{T,\mathbf{t}} = \left(X_0^{t_1}, X_{t_1}^{t_2}, \dots, X_{t_{n-1}}^{t_n}, X_{t_n}^T\right).$$

Directed information as a function of the time-partition

$$I_{\mathbf{t}} \left(X_0^T \to Y_0^T \right) \triangleq I \left(X_0^{T, \mathbf{t}} \to Y_0^{T, \mathbf{t}} \right)$$
$$= \sum_{i=1}^n I \left(X_0^{t_i}; Y_{t_{i-1}}^{t_i} | Y_0^{t_{i-1}} \right)$$

Directed-information in continuous-time

Definition

Directed information between X_0^T and Y_0^T is defined as

$$I\left(X_0^T \to Y_0^T\right) \triangleq \inf_{\mathbf{t}} I_{\mathbf{t}}\left(X_0^T \to Y_0^T\right),$$

where the infimum is over all partitions $\ensuremath{\mathbf{t}}$.

Note that for continuous-value we had suprimum, and for continuous-time we use infimum.

Directed-information in continuous-time

Definition

Directed information between X_0^T and Y_0^T is defined as

$$I\left(X_0^T \to Y_0^T\right) \triangleq \inf_{\mathbf{t}} I_{\mathbf{t}}\left(X_0^T \to Y_0^T\right),$$

where the infimum is over all partitions $\ensuremath{\mathbf{t}}$.

Note that for continuous-value we had suprimum, and for continuous-time we use infimum.

Lemma

If \mathbf{t}' is a refinement of \mathbf{t} , then $I_{\mathbf{t}'}\left(X_0^T \to Y_0^T\right) \leq I_{\mathbf{t}}\left(X_0^T \to Y_0^T\right)$.

Directed-information in continuous-time

Definition

Directed information between X_0^T and Y_0^T is defined as

$$I\left(X_0^T \to Y_0^T\right) \triangleq \inf_{\mathbf{t}} I_{\mathbf{t}}\left(X_0^T \to Y_0^T\right),$$

where the infimum is over all partitions $\ensuremath{\mathbf{t}}$.

Note that for continuous-value we had suprimum, and for continuous-time we use infimum.

Lemma

If \mathbf{t}' is a refinement of \mathbf{t} , then $I_{\mathbf{t}'}\left(X_0^T \to Y_0^T\right) \leq I_{\mathbf{t}}\left(X_0^T \to Y_0^T\right)$.

For different durations we zero-pad at the beginning

$$I(X_0^{T-\delta} \to Y_0^T) := I((0_0^{\delta} X_0^{T-\delta}) \to Y_0^T).$$

Properties

- $I\left(X_0^T \to Y_0^T\right) \le I\left(X_0^T; Y_0^T\right)$
- Monotonicity: $I(X_0^t \to Y_0^t)$ is monotone non-decreasing in t
- Invariance to time scaling: If ϕ is monotone strictly increasing and continuous, and $(\tilde{X}_{\phi(t)}, \tilde{Y}_{\phi(t)}) = (X_t, Y_t)$, then $I(X_0^T \to Y_0^T) = I\left(\tilde{X}_{\phi(0)}^{\phi(T)} \to \tilde{Y}_{\phi(0)}^{\phi(T)}\right)$
- <u>Coincidence of directed and mutual information</u>: If the Markov relation $Y_0^t X_0^t X_t^T$ (no feedback) holds then

$$I\left(X_0^T \to Y_0^T\right) = I\left(X_0^T; Y_0^T\right)$$

• Equivalent to discrete-time if the process is piecewise constant.

If the continuity condition

$$\lim_{\delta \to 0^+} [I(X_0^{\delta}; Y_0^{\delta}) + I(X_{\delta}^T \to Y_{\delta}^T | Y_0^{\delta})] = I(X_0^T \to Y_0^T)$$

holds then the directed information

$$I\left(Y_0^{T-} \to X_0^T\right) \triangleq \lim_{\delta \to 0^+} I\left(Y_0^{T-\delta} \to X_0^T\right)$$

exists and

$$I\left(X_0^T \to Y_0^T\right) + I\left(Y_0^{T-} \to X_0^T\right) = I\left(X_0^T; Y_0^T\right)$$

(this is continuous-time analogue of the conservation ${\rm law}I(U^n\to V^n)+I(V^{n-1}\to U^n)=I(U^n;V^n)$)

Theorem (Duncan 1970)

Let X_0^T be a signal of finite average power $\int_0^T E[X_t^2]dt < \infty$, independent of the standard Brownian motion $\{B_t\}$, and let Y_0^T satisfy $dY_t = X_t dt + dB_t$. Then

$$\frac{1}{2} \int_0^T E\left[(X_t - E[X_t | Y_0^t])^2 \right] dt = I\left(X_0^T; Y_0^T \right)$$

- relationship holds regardless of distribution of X_0^T
- The GSV theorem, $\frac{1}{2} \int_0^{snr} mmse(snr')dsnr' = I(snr)$, is related.

Breakdown of the Duncan Relationship

- Duncan stipulates independence between X_0^T and channel noise $\{B_t\}$
- excludes scenarios where evolution of *X_t* is affected by channel noise.
- for an extreme example, consider case $X_{t+\epsilon} = Y_t$
- In this case the causal MMSE

$$E\left[(X_t - E[X_t|Y_0^t])^2\right] = 0$$

while the mutual information

$$I\left(X_0^T; Y_0^T\right) = \infty$$

Theorem

Let $\{B_t\}$ be a standard Brownian motion, let $\{W_t\}$ be independent of $\{B_t\}$, and let $\{(X_t, Y_t)\}$ satisfy

 $X_t \in \sigma(Y_0^{t-}, W_0^T)$ and $dY_t = X_t dt + dB_t$.

Then, provided $\{X_t\}~$ has finite average power $\int_0^T E[X_t^2] dt < \infty$,

$$\frac{1}{2} \int_0^T E\left[(X_t - E[X_t | Y_0^t])^2 \right] dt = I\left(X_0^T \to Y_0^T \right).$$

The Poisson Channel

The following is the analogue of Duncan's theorem for Poisson noise.

Theorem

Let X_0^T be a non-negative signal satisfying $E \int_0^T |X_t \log X_t| dt < \infty$ and, conditioned on X_0^T , let Y_0^T be a Poisson point process with rate function X_0^T . Then

$$\int_0^T E\left[\phi(X_t) - \phi\left(E[X_t|Y_0^t]\right)\right] dt = I\left(X_0^T; Y_0^T\right)$$

where $\phi(\alpha) = \alpha \log \alpha$

The Poisson Channel

The following is the analogue of Duncan's theorem for Poisson noise.

Theorem

Let X_0^T be a non-negative signal satisfying $E \int_0^T |X_t \log X_t| dt < \infty$ and, conditioned on X_0^T , let Y_0^T be a Poisson point process with rate function X_0^T . Then

$$\int_0^T E\left[\phi(X_t) - \phi\left(E[X_t|Y_0^t]\right)\right] dt = I\left(X_0^T; Y_0^T\right),$$

where $\phi(\alpha) = \alpha \log \alpha$

Note similarly as in Gaussian case:

- breaks down in presence of feedback
- in above theorem can replace $I\left(X_0^T;Y_0^T\right)\,$ by $I\left(X_0^T\to Y_0^T\right)$

An Extended 'Duncan's Theorem' for the Poisson Channel

Theorem

Let Y_t be a point process and X_t be its \mathcal{F}_t^Y -predictable intensity. Then, provided $E \int_0^T |X_t \log X_t| dt < \infty$,

$$\int_0^T E\left[\phi(X_t) - \phi\left(E[X_t|Y_0^t]\right)\right] dt = I\left(X_0^T \to Y_0^T\right)$$

Continuous-time communication

- The channel of the form $Y_t = g(X_t, Z_t)$, where Z_t is a block ergodic process.
- The encoder assigns a symbol $x_t(m, y_0^{t-\Delta})$
- Message M independent of the noise process $\{Z_t\}$.

Definition

 $C(\Delta) = \sup\{R : R \text{ is achievable with feedback delay } \Delta\}$ (1)

$$C^{I}(\Delta) \triangleq \lim_{T \to \infty} \frac{1}{T} \sup_{\mathcal{S}_{\Delta}} I(X_{0}^{T} \to Y_{0}^{T}),$$

where the supremum in is over

$$X_t = \begin{cases} g_t(U_t, Y_0^{t-\Delta}) & t \ge \Delta, \\ g_t(U_t) & t < \Delta, \end{cases}$$

The limit is shown to exist due to super-additivity.

Theorem

For this channel

$$\begin{split} &C(\Delta) \leq C^{I}(\Delta), \\ &C(\Delta) \geq C^{I}(\Delta') \quad \text{for all } \Delta' > \Delta. \end{split}$$

Since $C^{I}(\Delta)$ is a decreasing function in Δ , $C(\Delta) = C^{I}(\Delta)$ for any $\Delta \geq 0$ except of a set of points of measure zero.

- *I*(*Xⁿ*; *Yⁿ*) amount of uncertainty about *Yⁿ* reduced by knowing *Xⁿ*
- *I*(*Xⁿ* → *Yⁿ*) amount of uncertainty about *Yⁿ* reduced by knowing *Xⁿ* causally.
- Important role for discrete-time directed information in network information theory with feedback, feed-forward rate distortion, causality measure, horse-race market and lossless compression with causal side information.
- For continuous-time the idea of time-partition is useful.
- We saw an important role of directed information in continuous-time estimation and feedback-capacity.

- *I*(*Xⁿ*; *Yⁿ*) amount of uncertainty about *Yⁿ* reduced by knowing *Xⁿ*
- *I*(*Xⁿ* → *Yⁿ*) amount of uncertainty about *Yⁿ* reduced by knowing *Xⁿ* causally.
- Important role for discrete-time directed information in network information theory with feedback, feed-forward rate distortion, causality measure, horse-race market and lossless compression with causal side information.
- For continuous-time the idea of time-partition is useful.
- We saw an important role of directed information in continuous-time estimation and feedback-capacity.

Thank you very much!