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© definition and properties of discrete-time directed
information

@ review of results involving directed information in

o feedback capacity

gambling

lossless compression
feedforwad rate distortion
multi-user information theory
9 causality measure

© © ¢ ©

@ definition and properties of continuous-time directed
information
© continuous-time directed information in

@ estimation
@ continuous time communication
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Definitions (Discrete Time)
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Definitions (Discrete Time)

Directed Information [Massey90]
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Causal Conditioning

[Kramer98]
H(Y"||X") = E[-log P(Y"||X")]
H(Y"|X") £ E[-logP(Y"|X")]
P@y"z") & J]Pwila’,y™")
=1
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Channels with feedback

Encoder Channel with memory Decoder
xz‘(m, 2 ) ] P(yi|xl7yz ) . m(y ) A_»
" i Yi m
A
Unit Delay |« Time-Invariang
zi~1(Yi-1) zi(ys) Function i

Directed information characterizes the channel capacity.

C = lim

=00 Qan|zn ) N

1
max —I(X" —Y")

[Massey90, Kramer98, Tatikonda/Mitter10, Kim10,
P/Goldsmith/Weissman10]
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Key Property: Chain rule

causal conditioning

n

P(y"la™) £ ] Pluila', v ),
=1
n

Q"|ly" ) £ [[ Q™" v

i=1

chain rule

P(a",y") = Q@"[ly" " P(y"[la""")
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Conservation Law

](Xn; Yn) — ](Xn SN Yn) + ](Y‘n*l SN Xn) [MaSSeyO6]
Recall P(z",y") = P(a"|[y" ) P(y"[|z")
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Conservation Law

I(X™Y™) =1(X" - Y") + I[(Y"! — X") [Massey06]
Recall P(z",y") = P(«"|[y" ") P(y"[]z")

P X
Ix5Ye) = E_IDW]
P IXM P YY)
= BT hypE ]
T Pyrxn PX"Y"Y)
R R Zvey ] E[I PX7) ]

= (X" > Y")4+I(Y" - Xx™).
In case that we have deterministic feedback z;(y;):
I(X™Y") = (X" = Y™+ (27— X™).
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Conservation Law

I(X™Y™) =1(X" - Y") + I[(Y"! — X") [Massey06]
Recall P(z",y") = P(«"|[y" ") P(y"[]z")

P X
Ix5Ye) = E_IDW]
P IXM P YY)
= BT hypE ]
T Pyrxn PX"Y"Y)
R R Zvey ] E[I PX7) ]

= I(X" > Y")+I(y" 1 — X").
In case that we have deterministic feedback z;(y;):
I(X™Y") = (X" = Y™+ (27— X™).
If there is no feedback, z; = null, then
I(X™Y™) = I(X" = Y™ +0.
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Directed Information as a functional of causal

conditioning

Z(Q(a"[ly" ), P(y"[la"))

= Y QP ) s o )

Do Q™ ly 1) Py 2™

xn7yn
HY™) - HY™"|X")
= I(X" > Y™

@ Causal-conditioning Q(z"||y" ') and P(y"||z")) are
convex sets.

@ Directed information is concave in Q(z"||y" ') and convex
in P(y"||2")

@ Blaut-Arimoto or Geometric programming can be used for
computing maxg gn|jy»-1) I (X" — Y") [Naiss/P11]
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Example: Blackwell's Channel/Trapdoor

Channel/Chemocal Channel

Introduced by David Blackwell in 1961. [Ash65], [Ahlswede &
Kaspi 87], [Ahlswede 98], [Kobayashi 02] [Berger91].

Robert B. Ash

Nty

INFORMATION
THEORY
Fig. 7.1 ]i\als];mefle
(a) Ash book (b) D. Blackwell

Cpp = log Y12 simple scheme [P/Cuff/Weissman/Van-Roy09].
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Example: Issing Channel

@ Introduced by Berger in 1990 and it models inter-symbol
interference.

@ The channel behaves as a Z-channel or S-channel,
depending on the previous input.

Tp-1=0 Tpo1 =1

14%_1 1N\

® O = maxo<,<; 2227 simple scheme [P/Elischo11].
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Portfolio Theory and Gambling

Consider a horse-race market
@ X, - the horse that wins at time 3.
@ Y, - side information available at time 3.

(X, Y;),iid Kelly[56]
The optimal strategy is to invest the capital proportional to
P(z|y). The increase in the growth rate due to side information
Yis

AW =nI(X;Y).

(X;,Y;) general processes [P.&Kim&Weissman ISITO08]

The optimal strategy is to invest the capital proportional to
P(z;|z=1, y%). The increase in the growth rate due to causal
side information is

AW = I(Y" — X™).
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Lossless compression

@ X, - stationary source.

@ Y - side information available at the encoder and causally
at the decoder.

lossless compression with causal side information  [Osvaldo/P 11]
The minimum rate needed to reconstruct the process {X;}

1
R= lim —H(X"||Y™)
n—oo N,
The reduction in the compression rate due to causal side

information is

AR = lim L(H(X™ — H(X"||[Y™) = lim ~I(Y" — X")

n—oo N n—oo N
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More results involving directed information

@ Memoryless networks with feedback [Gerhard98]

Rate distortion with feedforward [Weiss-
man/Merhav03][Venkataramanan/Pradhan07][Naiss/P11]

Broadcast with feedback [Deborah/Goldsmith10]
Finite state MAC with feedback[P/Weissman/Chen10]
Compound channels with feedback [Shrader/P. 10]

Quantity causality [Colman et. al10][Zhao et al 10][Rao et
al 08][Mathai et all07]...
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Continuous time

In discrete time

n
I(X" = Y™ &) I(X5 Yy,
i=1

How to define directed information in continuous-time?
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Continuous time

In discrete time
n . .
I(X" = Y™ &) I(X5 Yy,
=1
How to define directed information in continuous-time?

Recall continuous-value mutual information is defined as

I(X;Y) = SngI([X]Q; Y]p),

where 9, and P are partitions.

Main idea: use time-partition!
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Time-partition

@ For a continuous-time process { X}, let
Xb={X,:a<s<b}.
@ Lett = (t1,t9,...,t,) denote an n-dimensional vector
0<ti <t <--- <t <T.
o Let X, * denote
Tt t t tn T
X7 (Xol,th, . ,th*l,th> .
@ Directed information as a function of the time-partition

I; (Xg — YOT) L7 (XT’t — YOT’t>

- (g )
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Directed-information in continuous-time

Directed information between X/ and Y’ is defined as
I(Xg —Yy) £infl; (X5 —Y5'),

where the infimum is over all partitions t .

Note that for continuous-value we had suprimum, and for
continuous-time we use infimum.
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Directed-information in continuous-time

Directed information between X/ and Y’ is defined as

I(Xg —Yy) £infl; (X5 —Y5'),

where the infimum is over all partitions t .

Note that for continuous-value we had suprimum, and for
continuous-time we use infimum.

Lemma

If t" is a refinement of t, then Iy, (X{ — V) < It (X — Y{).
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Directed-information in continuous-time

Directed information between X/ and Y’ is defined as

I(Xg —Yy) £infl; (X5 —Y5'),

where the infimum is over all partitions t .

Note that for continuous-value we had suprimum, and for
continuous-time we use infimum.

Lemma

If t" is a refinement of t, then Iy, (X{ — V) < It (X — Y{).
For different durations we zero-pad at the beginning

I(Xg ° = Y5) = 1((05Xg ~°) = Yg).
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[(X§ = Y§) < I(Xg;Yy)
Monotonicity: I(X} — Y{) is monotone non-decreasing in
t
Invariance to time scaling: If ¢ is monotone strictly
increasing and continuous, and (X, Ysu)) = (X:,Y7)

T Ty _ v o(T) o-o(T)
then 1(x — ) = 1 (X3 — V()
Coincidence of directed and mutual information: If the
Markov relation Y — X! — X/ (no feedback) holds then

I(X3 -YH) =1(x8:Y)

Equivalent to discrete-time if the process is piecewise
constant.
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Conservation law

@ If the continuity condition

lim [I1(X0:Yg) + 1(X] — Yy |¥g)] = I(Xg — Yy)

6—0+

holds then the directed information
T— T . ) T
DT = xF) & i 1 (47— )

exists and

1T =) +1 (v~ = XT) = 1 (X337

(this is continuous-time analogue of the conservation
lawl (U™ — V™) + [(V"t — U™ = (U™, V"))
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Estimation: Duncan’s Theorem

Theorem ( Duncan 1970 )

Let XI' be a signal of finite average power fOT E[X?)dt < oo,
independent of the standard Brownian motion {B;} , and let
Y{ satisfy dY; = X;dt + dB; . Then

1 T
5/0 E [(X, - EIX|YS))?] dt = 1 (X35 Yy)

@ relationship holds regardless of distribution of X1

@ The GSV theorem, 5 [;" mmse(snr’)dsnr’ = I(snr), is
related.
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Breakdown of the Duncan Relationship

@ Duncan stipulates independence between X! and
channel noise {B;}

@ excludes scenarios where evolution of X; is affected by
channel noise.

@ for an extreme example, consider case X;. = Y}
@ in this case the causal MMSE

E [(Xt - E[Xt‘Yot])z] =0

while the mutual information
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An Extension of Duncan’s Theorem

Let {B;} be a standard Brownian motion, let {WW;} be
independent of {B;} , and let {(X;,Y;)} satisfy

X; €o(Y{,Wg) and dY; = Xdt + dB,.

Then, provided {X;} has finite average power
fo [X2]dt < o0,

1 T
L B B o= 1 (5 ).
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The Poisson Channel

The following is the analogue of Duncan’s theorem for Poisson
noise.

Theorem

Let XI' be a non-negative signal satisfyin
0 g g g

E [ X, log X;|dt < oo and, conditioned on X', let Y/ be a
Poisson point process with rate function XI . Then

T
/o E [¢(X:) — ¢ (B[X[Yg])] dt = I (X5 ;Y ) ,

where ¢(a) = alog a
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The Poisson Channel

The following is the analogue of Duncan’s theorem for Poisson
noise.

Theorem

Let XI' be a non-negative signal satisfyin
0 g g g

E [ X, log X;|dt < oo and, conditioned on X', let Y/ be a
Poisson point process with rate function XI . Then

T
/o E [¢(X:) — ¢ (B[X[Yg])] dt = I (X5 ;Y ) ,

where ¢(a) = alog a

Note similarly as in Gaussian case:
@ breaks down in presence of feedback

@ in above theorem can replace I (X{;Y{) by
I(Xg = Yy)
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An Extended ‘Duncan’s Theorem’ for the Poisson

Channel

Theorem
Let Y; be a point process and X; be its
FY -predictable intensity. Then, provided
E [ X, log X;|dt < oo,

T
| Bl - o (BLXNED] de =1 (4F - 1)
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Continuous-time communication

Encoder Channel ecoder
Me{1,...,277} = x v, P8
Message we(m,yy ) [ 9(Xe, Zi) | (yg)

Message est.

Yia

Delay A |-=

@ The channel of the form Y; = ¢(Xy, Z;), where Z, is a block
ergodic process.

@ The encoder assigns a symbol z;(m, yé*A)
@ Message M independent of the noise process {Z;}.

C(A) =sup{R: R is achievable with feedback delay A} (1)
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Capacity result

() :

1
lim 7 Sup I(xt -yl

L
T—o00 Sa
where the supremum in is over
X, _ {gtwt, YY)tz
gt(Ut) t < A,
The limit is shown to exist due to super-additivity.

Theorem

For this channel
C(A) < CY(A),
C(A) > Cl(A) forall A’ > A.

Since C1(A) is a decreasing function in A, C(A) = C1(A) for
any A > 0 except of a set of points of measure zero.
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summary

I(X™; Y™) amount of uncertainty about Y reduced by
knowing X"

I(X™ — Y™) amount of uncertainty about Y™ reduced by
knowing X™ causally.

Important role for discrete-time directed information in
network information theory with feedback, feed-forward
rate distortion, causality measure, horse-race market and
lossless compression with causal side information.

For continuous-time the idea of time-partition is useful.

We saw an important role of directed information in
continuous-time estimation and feedback-capacity.
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summary

I(X™; Y™) amount of uncertainty about Y reduced by
knowing X"

I(X™ — Y™) amount of uncertainty about Y™ reduced by
knowing X™ causally.

Important role for discrete-time directed information in
network information theory with feedback, feed-forward
rate distortion, causality measure, horse-race market and
lossless compression with causal side information.

For continuous-time the idea of time-partition is useful.
We saw an important role of directed information in
continuous-time estimation and feedback-capacity.

Thank you very much!
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