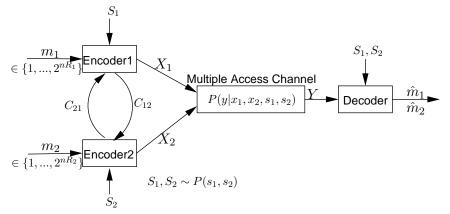
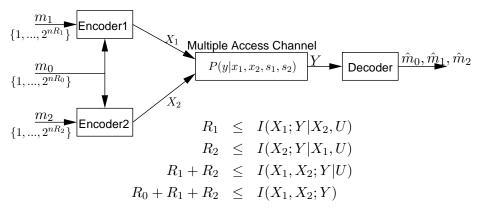
Cooperation in Multiple Access Channels with States

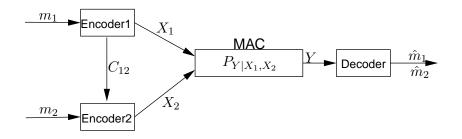

H. Permuter S. BGU T

S. Shamai Technion A. Somekh-Baruch Bar-Ilan

IEEEI Nov 2010

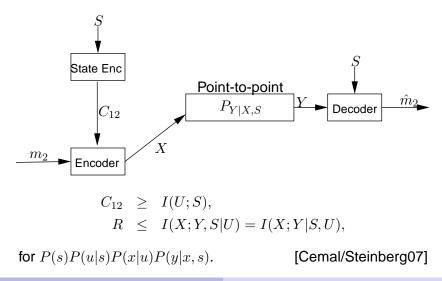

Permuter/Shamai/Somekh-Baruch Cooperation in Multiple Access Channels with States

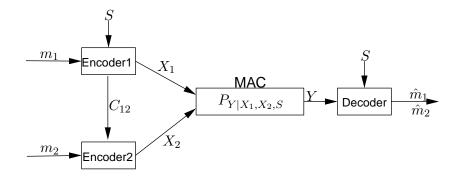
The communication setting considered in the talk


- Encoders have different partial state information
- This setting captures the idea of, simultaneously, sharing a part of the private messages m_1, m_2 and sharing the information on channel state (S_1, S_2) .

Background : Memoryless MAC (Mulitple Acess Channel) with common message

for $P(u)P(x_1|u)P(x_2|u)P(y|x_1,x_2)$. [Slepien/Wolf73]


Memoryless MAC - Message cooperation


• Optimal coding scheme: Encoder 2 obtains part of the private message m_1 and use it as common message scheme m'_0 . $R'_0 = C_{12}$, $R'_1 = R_1 - C_{12}$, $R'_2 = R_2$.

[Willems82]

Special case: Point-to-point with encoded state information

Message-state cooperation

- Encopder 1 and Decoder have state information
- This setting captures the idea of, simultaneously, sharing a part of the private message m_1 and sharing the information on channel state *S*.

$$S^n, M \in \{\underbrace{1, ..., 2^{nR_m}}_{\textbf{Encoder}} \boxed{\begin{array}{c} T(S^n, m) \\ \{1, ..., 2^{nR}\} \end{array}} \textbf{decoder} \underbrace{\begin{array}{c} U^n(T) \\ \textbf{decoder} \end{array}}_{\textbf{C}}$$

 $S^n \text{ is i.i.d., } S \sim P(s)$

Generate a sequence U^n such that

• U^n is jointly typical with S^n , i.e.,

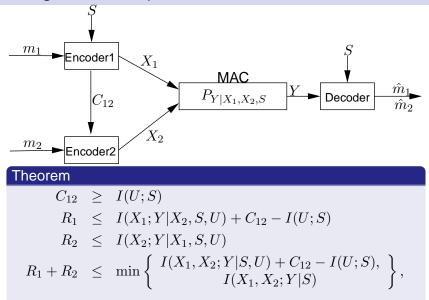
$$\lim_{n \to \infty} \Pr\{(U^n, S^n) \in T_{\epsilon}^{(n)}(U, S)\} = 1,$$

2 there exists a function $g(U^n)$ such that

$$\lim_{n \to \infty} \Pr\{g(U^n) \neq M\} = 0.$$

Simplified problem-solution

$$S^n, M \in \{\underbrace{1, ..., 2^{nR_m}}_{\textbf{\{1, ..., 2^{nR}\}}} \textbf{Encoder} \underbrace{T(S^n, m)}_{\{1, ..., 2^{nR}\}} \textbf{decoder} \underbrace{U^n(T)}_{\textbf{\{1, ..., 2^{nR}\}}} \textbf{decoder} \underbrace{U^n(T)}_{\textbf{[1, ..., 2^{nR}]}} \textbf{decoder} \underbrace{U$$

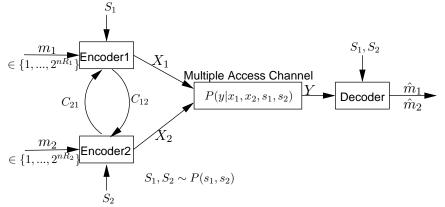

 S^n is i.i.d., $S \sim P(s)$

Theorem

 $R > R_m + I(U;S)$ and $H(U|S) \ge R_m$.

- Generate 2^{nR_m} bins, in each bin $2^{n(I(U;S)+\epsilon)}$ codewords, generated i.i.d. $\sim P(u)$.
- The message is associated with Bin.
- Solution A codeword is chosen from the bin to be jointly typical with S^n .

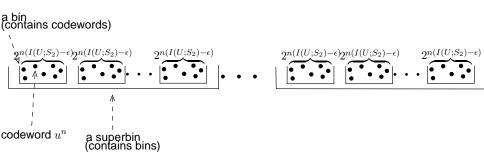
Message-state cooperation



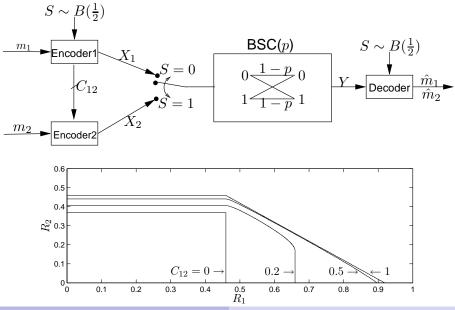
for distributions $P(s)P(u, x_1|s)P(x_2|u)P(y|x_1, x_2, s)$.

Permuter/Shamai/Somekh-Baruch

Cooperation in Multiple Access Channels with States

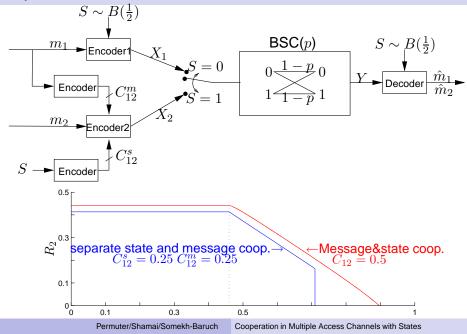

General case

Here a double binning is needed.


- First layer for generating coordination, as in Wyner-Ziv.
- Second layer for transmitting a message.

Combining message and state using new double binning

 consists of two-layer bins (codes), where in the first layer we have bins(codes) that contain codewords and in the second layer we have superbins that contain bins.


Example

Permuter/Shamai/Somekh-Baruch

Cooperation in Multiple Access Channels with States

Separate links for state and for coordination

- We investigated MAC with cooperating encoders and partial state information.
- The cooperation has a two-fold purpose:
 - generating empirical state coordination
 - sharing the private messages
- Double binning- an optimal technique for combining state and message
- Message and state cooperation strictly increases the capacity.

- We investigated MAC with cooperating encoders and partial state information.
- The cooperation has a two-fold purpose:
 - generating empirical state coordination
 - sharing the private messages
- Double binning- an optimal technique for combining state and message
- Message and state cooperation strictly increases the capacity.

Thank you very much !