Random Delay in Network Coding for Bidirectional Relaying

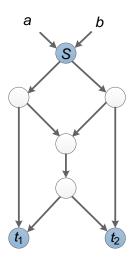
Niv Voskoboynik, Haim Permuter and Asaf Cohen

Ben Gurion University

June, 2014

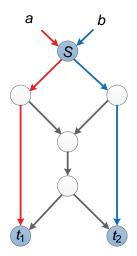
What is Network Coding?

Butterfly network



What is Network Coding?

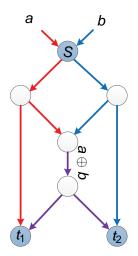
Using simple routing:



< A

What is Network Coding?

Using Network Coding:

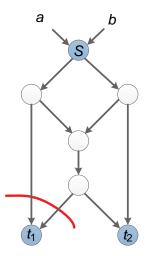


BGU-ECE

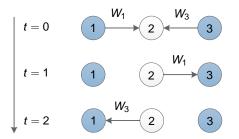
Max-Flow Min-Cut Theorem

The maximum value of a flow is equal to the minimum cut

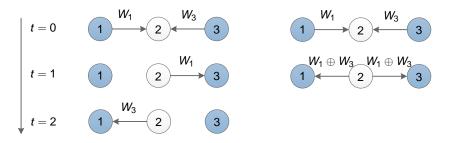
(R.Ahlswede et al. 2000)



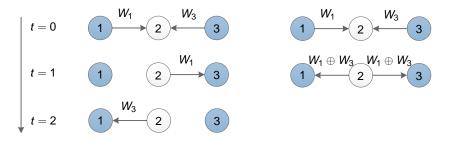
(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))



< 17 ▶



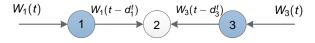
< 17 ▶



• Decoding: $(W_1 \oplus W_3) \oplus W_3 = W_1$

Motivation - Random Delay

Challenge: Random delay



• At time *t*: Node 2 has $W_1(t - d_1^t)$ and $W_3(t - d_3^t)$, where $d_1^t, d_3^t \sim unif(1, 2, ..., D)$

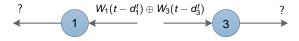
A (1) > A (2) > A

Motivation - Random Delay

Challenge: Random delay

• At time t: Node 2 has $W_1(t - d_1^t)$ and $W_3(t - d_3^t)$, where $d_1^t, d_3^t \sim unif(1, 2, ..., D)$

Problem: How to decode?



• With which message to XOR with?

Motivation - Random Delay

Challenge: Random delay

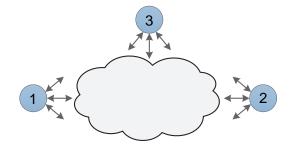


• At time t: Node 2 has $W_1(t - d_1^t)$ and $W_3(t - d_3^t)$, where $d_1^t, d_3^t \sim unif(1, 2, ..., D)$

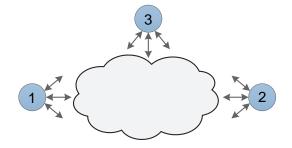
Problem: How to decode?

- With which message to XOR with?
- Which message is decoded?

Find a coding scheme for a bidirectional graph with random delay

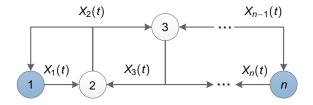


Find a coding scheme for a bidirectional graph with random delay



Approach: Use building blocks

One generalization of the first example is a line topology (Y.Wu *et al.* 2004)



• Assuming $d_1^t, d_n^t = 1, \forall t$

- Assuming $d_1^t, d_n^t = 1, \forall t$
- Node r transmits:

$$X_r(t) = W_1(t - (r - 1)) + W_n(t - (n - r))$$

A (1) > A (2) > A

- Assuming $d_1^t, d_n^t = 1, \forall t$
- Node r transmits:

$$X_r(t) = W_1(t - (r - 1)) + W_n(t - (n - r))$$
$$X_1(t) = W_1(t) + W_n(t - (n - 1))$$

• • • • • • • • • • • •

- Assuming $d_1^t, d_n^t = 1, \forall t$
- Node r transmits:

$$X_r(t) = W_1(t - (r - 1)) + W_n(t - (n - r))$$

$$X_1(t) = W_1(t) + W_n(t - (n - 1))$$

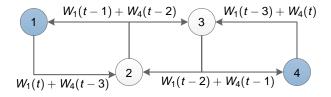
Generated by

$$X_r(t) = X_{r+1}(t-1) + X_{r-1}(t-1) + X_r(t-2)$$

- E 🕨

Example

A line topology with four nodes



< A > < > >

A generalization to random delay

$$X_r(t) = W_1(p) + W_n(q)$$

Summary

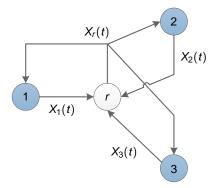
• A coding scheme for a line topology with rate of 1

Summary

- A coding scheme for a line topology with rate of 1
- A first building block for a general topology

Building Block 2 - Star Topology

A star topology with three source nodes



< 17 ▶

Node r transmits:

$$X_r(t) = a_1 W_1(t-1) + a_2 W_2(t-1) + a_3 W_3(t-1)$$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

• Node *r* transmits:

$$X_r(t) = a_1 W_1(t-1) + a_2 W_2(t-1) + a_3 W_3(t-1)$$

$$X_r(t+1) = b_1 W_1(t-1) + b_2 W_2(t-1) + b_3 W_3(t-1)$$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Node r transmits:

$$X_r(t) = a_1 W_1(t-1) + a_2 W_2(t-1) + a_3 W_3(t-1)$$

$$X_r(t+1) = b_1 W_1(t-1) + b_2 W_2(t-1) + b_3 W_3(t-1)$$

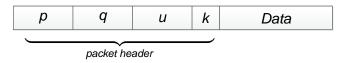
Generated by

$$X_r(t+2) = X_1(t) + X_2(t) + X_3(t)$$

4 A N

A generalization to random delay

$$X_r(t) = k_1 W_1(p) + k_2 W_2(q) + k_3 W_3(u).$$



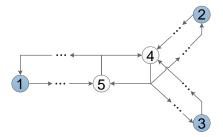
(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Summary

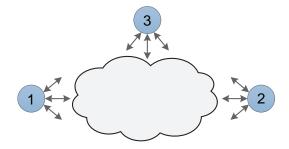
• A coding scheme for a star topology with rate of 0.5

Summary

- A coding scheme for a star topology with rate of 0.5
- A combination is called a line-star topology



• We define a bidirectional graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$



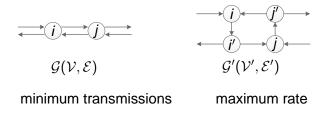
Wired Model

• We construct an equivalent graph $\mathcal{G}'(\mathcal{V}', \mathcal{E}')$

3 ×

Wired Model

• We construct an equivalent graph $\mathcal{G}'(\mathcal{V}', \mathcal{E}')$



General Topology

Upper Bound

• $C_{i,j}$ is the value of the cut-set bound between *i* and *j*

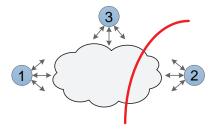
4 A N

→ ∃ →

General Topology

Upper Bound

- *C_{i,j}* is the value of the cut-set bound between *i* and *j*
- $h = \min_{i \in S} C_{i,S \setminus \{i\}}$



General Topology

• *R_i* is the transmission rate of node *i*

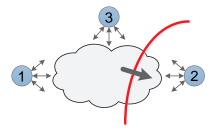
- **→** - **→** -

- R_i is the transmission rate of node i
- Assumption: all rates are equal $(R_i = R, \forall i \in S)$

4 A N

∃ >

- R_i is the transmission rate of node i
- Assumption: all rates are equal ($R_i = R, \forall i \in S$)
- Upper bound: $R \leq \frac{h}{2}$



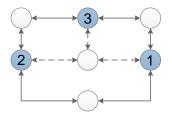
Coding Scheme

• Partition each network \mathcal{G}' into line and star networks

< A > < > >

Coding Scheme

- Partition each network G' into line and star networks
- \mathcal{R} represents the line topologies
- Q represents the star topologies



Lemma

There exist \mathcal{R} and \mathcal{Q} such that $|\mathcal{R}| + \frac{|\mathcal{Q}|}{2} \geq \frac{h}{2}$

(N.Voskoboynik et al. 2014)

イロト イ団ト イヨト イヨト

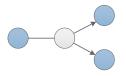
Lemma

There exist \mathcal{R} and \mathcal{Q} such that $|\mathcal{R}| + \frac{|\mathcal{Q}|}{2} \ge \frac{h}{2}$

(N.Voskoboynik et al. 2014)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Element in Q:

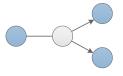


Lemma

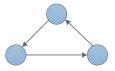
There exist \mathcal{R} and \mathcal{Q} such that $|\mathcal{R}| + \frac{|\mathcal{Q}|}{2} \geq \frac{h}{2}$

(N.Voskoboynik et al. 2014)

• Element in Q:



• Element in R:



• Find \mathcal{R}

∃ >

- Find \mathcal{R}
- At each line use the coding scheme from building block 1

< A >

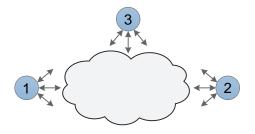
- Find \mathcal{R}
- At each line use the coding scheme from building block 1
- Find Q

∃ >

- Find \mathcal{R}
- At each line use the coding scheme from building block 1
- Find Q
- At each star use the coding scheme from building block 2

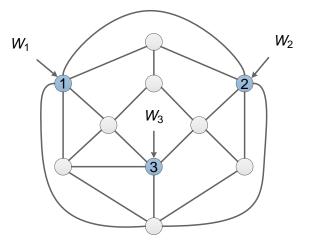
Summary

• Using line and star topologies, we construct a coding scheme for a general topology



Example 1

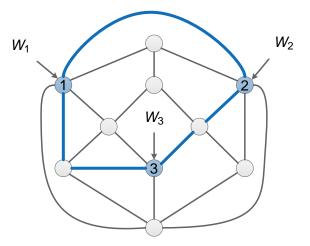
h = 4 and therefore, the upper bound is 2



イロト イ理ト イヨト イヨ

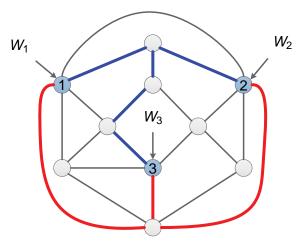
Example 1

The set \mathcal{R} includes one ring, i.e., $|\mathcal{R}| = 1$



Example 1

The set \mathcal{Q} includes two star networks, i.e., $|\mathcal{Q}| = 2$



イロト イ理ト イヨト イヨ

Maximum values of $|\mathcal{R}|$ and $|\mathcal{Q}|$ in a graph $\mathcal{G}(\mathcal{V},\mathcal{E})$

Maximum value	General graph	Complete graph
$ \mathcal{R} $	$\lfloor \frac{ \mathcal{V} }{3} \rfloor$	1
$ \mathcal{Q} $	$ \mathcal{V} -2$	$ \mathcal{V} -3$

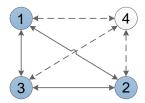


Figure: Complete graph

D	\sim		OF.
ъ	Gι	J-E	CE

Random Delay in Network Coding

Coding scheme for practical NC is presented

- 4 ∃ ▶

- Coding scheme for practical NC is presented
- The coding scheme obviates the need for synchronicity

- Coding scheme for practical NC is presented
- The coding scheme obviates the need for synchronicity
- Equal rate upper bound is achieved

- Coding scheme for practical NC is presented
- The coding scheme obviates the need for synchronicity
- Equal rate upper bound is achieved

Thank You!