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Notation

Causal Conditioning pmf

P (yn||xn) ,

n
∏

i=1

P (yi|x
i, yi−1)

P (yn|xn) =
n

∏

i=1

P (yi|x
n, yi−1)

Causal Conditioning entropy

H(Y n||Xn) , E[− log P (Y n||Xn)]

H(Y n|Xn) , E[− log P (Y n|Xn)]

Directed Information

I(Xn → Y n) , H(Y n) − H(Y n||Xn)

I(Xn;Y n) , H(Y n) − H(Y n|Xn)
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Notation

Causal Conditioning pmf

P (yn||xn) ,

n
∏

i=1

P (yi|x
i, yi−1)

P (yn||xn−1) ,

n
∏

i=1

P (yi|x
i−1, yi−1)

Causal Conditioning entropy

H(Y n||Xn) , E[− log P (Y n||Xn)]

H(Y n||Xn−1) , E[− log P (Y n||Xn−1)]

Directed Information

I(Xn → Y n) , H(Y n) − H(Y n||Xn)

I(Xn−1 → Y n) , H(Y n) − H(Y n||Xn−1)
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Directed information and causal conditioning
characterizes

1 rate reduction in losless compression due to causal side
information at the decoder,

2 the gain in growth rate in horse-race gambling due to
causal side information

3 channel capacity with feedback,
4 rate distortion with feedforward,
5 causal MMSE for additive Gaussian noise,
6 stock investment with causal side information,
7 measure of causal relevance between processes,
8 actions with causal constraint such as “to feed or not to

feed back”,
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Directed information optimization

How to find

max
p(xn||yn−1)

I(Xn → Y n).

Recall

I(Xn → Y n) =

n
∑

i=1

I(Xi;Yi|Y
i−1)

= H(Y n) − H(Y n||Xn)

=
∑

yn,xn

p(xn, yn) log
p(yn‖xn)

p(yn)

P (xn, yn) can be expressed by the chain-rule

p(xn, yn) = p(xn||yn−1)p(yn||xn)
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Property of the optimization problem

max
p(xn||yn−1)

I(Xn → Y n)

Good news
I(Xn → Y n) is convex in p(xn||yn−1) for a fixed p(yn||xn).
p(xn||yn−1) is a convex set.
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Property of the optimization problem

max
p(xn||yn−1)

I(Xn → Y n)

Good news
I(Xn → Y n) is convex in p(xn||yn−1) for a fixed p(yn||xn).
p(xn||yn−1) is a convex set.

Bad news
Not easy to describe p(xn||yn−1) using linear equations.
Contrary to p(xn) where

p(xn) ≥ 0 ∀xn.
∑

xn

p(xn) = 1.
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Property of the optimization problem

max
p(xn||yn−1)

I(Xn → Y n)

Good news
I(Xn → Y n) is convex in p(xn||yn−1) for a fixed p(yn||xn).
p(xn||yn−1) is a convex set.

Bad news
Not easy to describe p(xn||yn−1) using linear equations.
Contrary to p(xn) where

p(xn) ≥ 0 ∀xn.
∑

xn

p(xn) = 1.

I(Xn → Y n) non-convex in p(x1), ..., p(xn|x
n−1, yn−1)

Cannot optimize each term in
∑

i I(Xi;Yi|Y
i−1) or in

∑

i I(Xi;Y
n
i |Xi−1, Y i−1), separately.
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The Alternating maximization procedure
Lemma (double maximization)

max
p(xn‖yn−1)

I(Xn → Y n) = max
p(xn‖yn−1),q(xn|yn)

I(Xn → Y n).
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The Alternating maximization procedure
Lemma (double maximization)

max
p(xn‖yn−1)

I(Xn → Y n) = max
p(xn‖yn−1),q(xn|yn)

I(Xn → Y n).

Let f(u1, u2), be a convex fun and we want to find

max
u1∈A1,u2∈A2

f(u1, u2).

The procedure is

u
(k+1)
1 = arg max

u1∈A1

f(u
(k)
1 , u

(k)
2 ), u

(k+1)
2 = arg max

u2∈A2

f(u
(k+1)
1 , u

(k)
2 ).

f (k) = f(u
(k)
1 , u

(k)
2 ).

Theorem (The Alternating maximization procedure)

lim
k→∞

f (k) = max
u1∈A1,u2∈A2

f(u1, u2).

H. Permuter Optimization of the Directed Information



BA for directed information

Compute by the alternating maximization procedure

max
p(xn‖yn−1)

max
q(xn|yn)

I(Xn → Y n).
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BA for directed information

Compute by the alternating maximization procedure

max
p(xn‖yn−1)

max
q(xn|yn)

I(Xn → Y n).

1st Step

Lemma (maxq(xn|yn) I(Xn → Y n))

For fixed p(xn‖yn−1), q∗(xn|yn) that achieves
maxq(xn|yn) I(Xn → Y n), is

q∗(xn|yn) =
p(xn‖yn−1)p(yn‖xn)

∑

xn p(xn‖yn−1)p(yn‖xn)
.
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2nd Step

Lemma (maxp(xn‖yn−1) I(Xn → Y n))

For fixed q(xn|yn) , p∗(xn‖yn−1) that achieves
maxp(xn‖yn−1) I(Xn → Y n), is:
Starting from i = n, compute p(xi|x

i−1, yi−1)

pi = p∗(xi|x
i−1, yi−1) =

p′(xi, yi−1)
∑

xi
p′(xi, yi−1)

,

where

p′(xi, yi−1) =
∏

xn
i+1

,yn
i

[

q(xn|yn)
∏n

j=i+1 pj

]

∏n
j=i p(yj |xj ,yj−1)

∏n
j=i+1

pj

,

and do so backwards until i = 1.
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Main ideas of 2nd Step

Exchange p(xn‖yn−1) by the set {pi}
n
i=1 where

pi = p(xi|x
i−1, yi−1)

max
p(xn‖yn−1)

I(Xn → Y n) = max
p1

max
p2

...max
pn

I(Xn → Y n)
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Main ideas of 2nd Step

Exchange p(xn‖yn−1) by the set {pi}
n
i=1 where

pi = p(xi|x
i−1, yi−1)

max
p(xn‖yn−1)

I(Xn → Y n) = max
p1

max
p2

...max
pn

I(Xn → Y n)

I(Xn → Y n) is concave in each pi.
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Main ideas of 2nd Step

Exchange p(xn‖yn−1) by the set {pi}
n
i=1 where

pi = p(xi|x
i−1, yi−1)

max
p(xn‖yn−1)

I(Xn → Y n) = max
p1

max
p2

...max
pn

I(Xn → Y n)

I(Xn → Y n) is concave in each pi.
For fixed q(xn|yn) , p∗i that achieves maxpi

I(Xn → Y n),
depends only on

q(xn|yn), pi+1, pi+2, ..., pn
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Main ideas of 2nd Step

Exchange p(xn‖yn−1) by the set {pi}
n
i=1 where

pi = p(xi|x
i−1, yi−1)

max
p(xn‖yn−1)

I(Xn → Y n) = max
p1

max
p2

...max
pn

I(Xn → Y n)

I(Xn → Y n) is concave in each pi.
For fixed q(xn|yn) , p∗i that achieves maxpi

I(Xn → Y n),
depends only on

q(xn|yn), pi+1, pi+2, ..., pn

Hence we can find

max
p1

...

(

max
pn−1

(

max
pn

I(Xn → Y n)

))

despite being nonconvex.
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BA for directed information

Using Step 1 and 2 we can compute

IL =
∑

yn,xn

p(yn‖xn)r(xn‖yn−1) log
q(xn|yn)

p(xn‖yn−1)
.

which converges from below to maxp(xn‖yn−1) I(Xn → Y n)

We also have an upper bound

IU = max
x1

∑

y1

max
x2

· · ·
∑

yn−1

max
xn

∑

yn

p(yn‖xn) log
p(yn‖xn)

∑

x′n p(yn‖x′n)p(x′n‖yn−1)

The algorithm terminate when

|IU − IL| ≤ ǫ
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maximizing the directed information for BSC(0.3)
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Bounds on capacity of any FSC

Cn = max
s0

max
p(xn‖yn−1)

1

n
I(Xn → Y n|s0) +

1

n
,

Cn = max
p(xn‖yn−1)

min
s0

1

n
I(Xn → Y n|s0) −

1

n
.
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Directed information rate
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Infinite-letter case

For two cases we have analytical solution using dynamic
programming for unifilar channels.
First case: Trapdoor channel.

(a) Ash book (b) D. Blackwell

Cfb = log φ Golden Ratio: φ =
√

5+1
2
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Ising Channel

Introduced by Berger and Bonomi [1990].
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Ising Channel

Introduced by Berger and Bonomi [1990].

if xt = xt−1, then yt = xt.

if xt 6= xt−1, then Yt ∼ Bernouli(1
2).
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Ising Channel

Introduced by Berger and Bonomi [1990].

if xt = xt−1, then yt = xt.

if xt 6= xt−1, then Yt ∼ Bernouli(1
2).

The Ising channel graphical model:
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Ising Channel

Introduced by Berger and Bonomi [1990].

if xt = xt−1, then yt = xt.

if xt 6= xt−1, then Yt ∼ Bernouli(1
2).

The Ising channel graphical model:
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xt−1 = 1

xt yt

xt−1 = 0

xt yt

Q: How can one achieve R = 1
2?
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Ising channel

Simple model for inference inter-symbol.
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Ising channel

Simple model for inference inter-symbol.

The zero-error capacity of the Ising channel is 0.5 bit per
channel use.
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Ising channel

Simple model for inference inter-symbol.

The zero-error capacity of the Ising channel is 0.5 bit per
channel use.

The capacity without feedback found to be bounded
approximately by 0.5031 ≤ C ≤ 0.6723.
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Ising channel

Simple model for inference inter-symbol.

The zero-error capacity of the Ising channel is 0.5 bit per
channel use.

The capacity without feedback found to be bounded
approximately by 0.5031 ≤ C ≤ 0.6723.

The feedback capacity is C = max0≤a≤1
2H(a)
3+a

≈ 0.575522,
where z ≈ 0.4503.
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Ising channel

Simple model for inference inter-symbol.

The zero-error capacity of the Ising channel is 0.5 bit per
channel use.

The capacity without feedback found to be bounded
approximately by 0.5031 ≤ C ≤ 0.6723.

The feedback capacity is C = max0≤a≤1
2H(a)
3+a

≈ 0.575522,
where z ≈ 0.4503.

We formulate an equivalent problem using dynamic
programming (DP).
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Ising channel

Simple model for inference inter-symbol.

The zero-error capacity of the Ising channel is 0.5 bit per
channel use.

The capacity without feedback found to be bounded
approximately by 0.5031 ≤ C ≤ 0.6723.

The feedback capacity is C = max0≤a≤1
2H(a)
3+a

≈ 0.575522,
where z ≈ 0.4503.

We formulate an equivalent problem using dynamic
programming (DP).

The DP leads to a simple capacity achieving coding
scheme.
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Channel notation and DP formulation

Notation Meaning

t Time (∈ N)

xt Channel Input at time t (∈ X )

st(= xt−1) Channel State at time t (∈ S)

yt Channel Output at time t (∈ Y)
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Channel notation and DP formulation

Notation Meaning

t Time (∈ N)

xt Channel Input at time t (∈ X )

st(= xt−1) Channel State at time t (∈ S)

yt Channel Output at time t (∈ Y)

Ising channel DP

p(st = 0|yt), prob. of the channel zt, the DP state
state to be 0 given the output

yt, the channel output wt, the DP disturbance
p(xt|st−1), channel input prob. ut, the DP action

given the channel state at time t − 1

p(st = 0|yt) as a function zt = F (zt−1, ut−1, wt−1),
of p(st−1 = 0|yt−1) and input dist. states evolving

I(Xt, St−1;Yt|y
t−1) g(zt−1, ut), reward function
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DP numerical evaluation
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DP and its relation to the coding scheme
zt = p0 zt = p1 zt = p2 zt = p3

yt = 0 zt+1 = p3 zt+1 = p3 zt+1 = p3 zt+1 = p2

yt = 1 zt+1 = p1 zt+1 = p0 zt+1 = p0 zt+1 = p0

p(xt = 1|xt−1 = 1) a 1 1 irrelevant
p(xt = 0|xt−1 = 0) irrelevant 1 1 a

.
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DP and its relation to the coding scheme
zt = p0 zt = p1 zt = p2 zt = p3

yt = 0 zt+1 = p3 zt+1 = p3 zt+1 = p3 zt+1 = p2

yt = 1 zt+1 = p1 zt+1 = p0 zt+1 = p0 zt+1 = p0

p(xt = 1|xt−1 = 1) a 1 1 irrelevant
p(xt = 0|xt−1 = 0) irrelevant 1 1 a

.

DP state p0

D: p(xt = 0|yt) = 0

E: p(xt+1 = xt) = a

DP state p3

D: p(xt = 0|yt) = 1

E: p(xt+1 = xt) = a

DP states p1, p2

E: xt+1 = xt

D: Waits

yt+1 = 1

yt+1 = 0

yt+1 = 1

yt+1 = 1

yt+1 = 0

yt+1 = 0
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DP and its relation to the coding scheme

Alternate between 0 and 1 with prob. 1 − a.

DP state p0

D: p(xt = 0|yt) = 0

E: p(xt+1 = xt) = a

DP state p3

D: p(xt = 0|yt) = 1

E: p(xt+1 = xt) = a

DP states p1, p2

E: xt+1 = xt

D: Waits

yt+1 = 1

yt+1 = 0

yt+1 = 1

yt+1 = 1

yt+1 = 0

yt+1 = 0
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DP and its relation to the coding scheme

Alternate between 0 and 1 with prob. 1 − a.
If the output yt+1 6= st, then decode xt+1 = yt+1

DP state p0

D: p(xt = 0|yt) = 0

E: p(xt+1 = xt) = a

DP state p3

D: p(xt = 0|yt) = 1

E: p(xt+1 = xt) = a

DP states p1, p2

E: xt+1 = xt

D: Waits

yt+1 = 1

yt+1 = 0

yt+1 = 1

yt+1 = 1

yt+1 = 0

yt+1 = 0
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DP and its relation to the coding scheme

Alternate between 0 and 1 with prob. 1 − a.
If the output yt+1 6= st, then decode xt+1 = yt+1

If the output yt+1 = st repeat the last input

DP state p0

D: p(xt = 0|yt) = 0

E: p(xt+1 = xt) = a

DP state p3

D: p(xt = 0|yt) = 1

E: p(xt+1 = xt) = a

DP states p1, p2

E: xt+1 = xt

D: Waits

yt+1 = 1

yt+1 = 0

yt+1 = 1

yt+1 = 1

yt+1 = 0

yt+1 = 0
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DP and its relation to the coding scheme

Alternate between 0 and 1 with prob. 1 − a.
If the output yt+1 6= st, then decode xt+1 = yt+1

If the output yt+1 = st repeat the last input

C =
H(1 − a)

a · 2 + (1 − a) · (2 · 1
2 + 1 · 1

2)
=

H(a)
3
2 + a

2

DP state p0

D: p(xt = 0|yt) = 0

E: p(xt+1 = xt) = a

DP state p3

D: p(xt = 0|yt) = 1

E: p(xt+1 = xt) = a

DP states p1, p2

E: xt+1 = xt

D: Waits

yt+1 = 1

yt+1 = 0

yt+1 = 1

yt+1 = 1

yt+1 = 0

yt+1 = 0
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Summary

Convexity can be exploited to calculate

max
p(xn||yn−1)

I(Xn → Y n)

using alternating maximization procedure.

DP can be formulated for Unifilar channel and numerically
calculated.

For some cases, such as Trapdoor-Channel and
Ising-Channel the DP can be solved analytically.

DP solution can lead to an optimal and concrete coding
scheme.
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Summary

Convexity can be exploited to calculate

max
p(xn||yn−1)

I(Xn → Y n)

using alternating maximization procedure.

DP can be formulated for Unifilar channel and numerically
calculated.

For some cases, such as Trapdoor-Channel and
Ising-Channel the DP can be solved analytically.

DP solution can lead to an optimal and concrete coding
scheme.

Thank you very much!
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