Optimization of the Directed Information

Haim Permuter
Ben-Gurion University, Israel

1st Munich Workshop on Bidirectional Communication and Directed Information

May 2012

Notation

Causal Conditioning pmf

$$
\begin{aligned}
P\left(y^{n}| | x^{n}\right) & \triangleq \prod_{i=1}^{n} P\left(y_{i} \mid x^{i}, y^{i-1}\right) \\
P\left(y^{n} \mid x^{n}\right) & =\prod_{i=1}^{n} P\left(y_{i} \mid x^{n}, y^{i-1}\right)
\end{aligned}
$$

Causal Conditioning entropy

$$
\begin{aligned}
H\left(Y^{n} \| X^{n}\right) & \triangleq E\left[-\log P\left(Y^{n} \| X^{n}\right)\right] \\
H\left(Y^{n} \mid X^{n}\right) & \triangleq E\left[-\log P\left(Y^{n} \mid X^{n}\right)\right]
\end{aligned}
$$

Directed Information

$$
\begin{aligned}
I\left(X^{n} \rightarrow Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n}| | X^{n}\right) \\
I\left(X^{n} ; Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right)
\end{aligned}
$$

Notation

Causal Conditioning pmf

$$
\begin{aligned}
P\left(y^{n} \| x^{n}\right) & \triangleq \prod_{i=1}^{n} P\left(y_{i} \mid x^{i}, y^{i-1}\right) \\
P\left(y^{n} \| x^{n-1}\right) & \triangleq \prod_{i=1}^{n} P\left(y_{i} \mid x^{i-1}, y^{i-1}\right)
\end{aligned}
$$

Causal Conditioning entropy

$$
\begin{aligned}
H\left(Y^{n} \| X^{n}\right) & \triangleq E\left[-\log P\left(Y^{n} \| X^{n}\right)\right] \\
H\left(Y^{n} \| X^{n-1}\right) & \triangleq E\left[-\log P\left(Y^{n} \| X^{n-1}\right)\right]
\end{aligned}
$$

Directed Information

$$
\begin{aligned}
I\left(X^{n} \rightarrow Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n} \| X^{n}\right) \\
I\left(X^{n-1} \rightarrow Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n} \| X^{n-1}\right)
\end{aligned}
$$

Directed information and causal conditioning characterizes

(1) rate reduction in losless compression due to causal side information at the decoder,
(2) the gain in growth rate in horse-race gambling due to causal side information
(3) channel capacity with feedback,
(4) rate distortion with feedforward,
(5) causal MMSE for additive Gaussian noise,
(6) stock investment with causal side information,
((measure of causal relevance between processes,
(8) actions with causal constraint such as "to feed or not to feed back",

Directed information optimization

How to find

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

Recall

$$
\begin{aligned}
I\left(X^{n} \rightarrow Y^{n}\right) & =\sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =H\left(Y^{n}\right)-H\left(Y^{n} \| X^{n}\right) \\
& =\sum_{y^{n}, x^{n}} p\left(x^{n}, y^{n}\right) \log \frac{p\left(y^{n} \| x^{n}\right)}{p\left(y^{n}\right)}
\end{aligned}
$$

$P\left(x^{n}, y^{n}\right)$ can be expressed by the chain-rule

$$
p\left(x^{n}, y^{n}\right)=p\left(x^{n} \| y^{n-1}\right) p\left(y^{n} \| x^{n}\right)
$$

Property of the optimization problem

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

Good news

- $I\left(X^{n} \rightarrow Y^{n}\right)$ is convex in $p\left(x^{n} \| y^{n-1}\right)$ for a fixed $p\left(y^{n} \| x^{n}\right)$.
- $p\left(x^{n} \| y^{n-1}\right)$ is a convex set.

Property of the optimization problem

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

Good news

- $I\left(X^{n} \rightarrow Y^{n}\right)$ is convex in $p\left(x^{n} \| y^{n-1}\right)$ for a fixed $p\left(y^{n} \| x^{n}\right)$.
- $p\left(x^{n}| | y^{n-1}\right)$ is a convex set.

Bad news

- Not easy to describe $p\left(x^{n} \| y^{n-1}\right)$ using linear equations. Contrary to $p\left(x^{n}\right)$ where

$$
\begin{aligned}
p\left(x^{n}\right) & \geq 0 \forall x^{n} \\
\sum_{x^{n}} p\left(x^{n}\right) & =1
\end{aligned}
$$

Property of the optimization problem

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

Good news

- $I\left(X^{n} \rightarrow Y^{n}\right)$ is convex in $p\left(x^{n} \| y^{n-1}\right)$ for a fixed $p\left(y^{n} \| x^{n}\right)$.
- $p\left(x^{n}| | y^{n-1}\right)$ is a convex set.

Bad news

- Not easy to describe $p\left(x^{n} \| y^{n-1}\right)$ using linear equations. Contrary to $p\left(x^{n}\right)$ where

$$
\begin{aligned}
p\left(x^{n}\right) & \geq 0 \forall x^{n} \\
\sum_{x^{n}} p\left(x^{n}\right) & =1
\end{aligned}
$$

- $I\left(X^{n} \rightarrow Y^{n}\right)$ non-convex in $p\left(x_{1}\right), \ldots, p\left(x_{n} \mid x^{n-1}, y^{n-1}\right)$

Property of the optimization problem

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

Good news

- $I\left(X^{n} \rightarrow Y^{n}\right)$ is convex in $p\left(x^{n} \| y^{n-1}\right)$ for a fixed $p\left(y^{n} \| x^{n}\right)$.
- $p\left(x^{n} \| y^{n-1}\right)$ is a convex set.

Bad news

- Not easy to describe $p\left(x^{n} \| y^{n-1}\right)$ using linear equations. Contrary to $p\left(x^{n}\right)$ where

$$
\begin{aligned}
p\left(x^{n}\right) & \geq 0 \forall x^{n} \\
\sum_{x^{n}} p\left(x^{n}\right) & =1
\end{aligned}
$$

- $I\left(X^{n} \rightarrow Y^{n}\right)$ non-convex in $p\left(x_{1}\right), \ldots, p\left(x_{n} \mid x^{n-1}, y^{n-1}\right)$
- Cannot optimize each term in $\sum_{i} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)$ or in $\sum_{i} I\left(X_{i} ; Y_{i}^{n} \mid X^{i-1}, Y^{i-1}\right)$, separately.

The Alternating maximization procedure

Lemma (double maximization)

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)=\max _{p\left(x^{n} \| y^{n-1}\right), q\left(x^{n} \mid y^{n}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

The Alternating maximization procedure

Lemma (double maximization)

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)=\max _{p\left(x^{n} \| y^{n-1}\right), q\left(x^{n} \mid y^{n}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

Let $f\left(u_{1}, u_{2}\right)$, be a convex fun and we want to find

$$
\max _{u_{1} \in \mathcal{A}_{1}, u_{2} \in \mathcal{A}_{2}} f\left(u_{1}, u_{2}\right)
$$

The procedure is

$$
\begin{gathered}
u_{1}^{(k+1)}=\arg \max _{u_{1} \in \mathcal{A}_{1}} f\left(u_{1}^{(k)}, u_{2}^{(k)}\right), u_{2}^{(k+1)}=\arg \max _{u_{2} \in \mathcal{A}_{2}} f\left(u_{1}^{(k+1)}, u_{2}^{(k)}\right) \\
f^{(k)}=f\left(u_{1}^{(k)}, u_{2}^{(k)}\right)
\end{gathered}
$$

Theorem (The Alternating maximization procedure)

$$
\lim _{k \rightarrow \infty} f^{(k)}=\max _{u_{1} \in \mathcal{A}_{1}, u_{2} \in \mathcal{A}_{2}} f\left(u_{1}, u_{2}\right)
$$

BA for directed information

Compute by the alternating maximization procedure

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} \max _{q\left(x^{n} \mid y^{n}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

BA for directed information

Compute by the alternating maximization procedure

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} \max _{q\left(x^{n} \mid y^{n}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

1st Step

Lemma $\left(\max _{q\left(x^{n} \mid y^{n}\right)} I\left(X^{n} \rightarrow Y^{n}\right)\right)$

For fixed $p\left(x^{n} \| y^{n-1}\right), q^{*}\left(x^{n} \mid y^{n}\right)$ that achieves
$\max _{q\left(x^{n} \mid y^{n}\right)} I\left(X^{n} \rightarrow Y^{n}\right)$, is

$$
q^{*}\left(x^{n} \mid y^{n}\right)=\frac{p\left(x^{n} \| y^{n-1}\right) p\left(y^{n} \| x^{n}\right)}{\sum_{x^{n}} p\left(x^{n} \| y^{n-1}\right) p\left(y^{n} \| x^{n}\right)}
$$

2nd Step

Lemma $\left(\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)\right)$

For fixed $q\left(x^{n} \mid y^{n}\right), p^{*}\left(x^{n} \| y^{n-1}\right)$ that achieves $\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)$, is:
Starting from $i=n$, compute $p\left(x_{i} \mid x^{i-1}, y^{i-1}\right)$

$$
p_{i}=p^{*}\left(x_{i} \mid x^{i-1}, y^{i-1}\right)=\frac{p^{\prime}\left(x^{i}, y^{i-1}\right)}{\sum_{x_{i}} p^{\prime}\left(x^{i}, y^{i-1}\right)},
$$

where
$p^{\prime}\left(x^{i}, y^{i-1}\right)=\prod_{x_{i+1}^{n}, y_{i}^{n}}\left[\frac{q\left(x^{n} \mid y^{n}\right)}{\prod_{j=i+1}^{n} p_{j}}\right]^{\prod_{j=i}^{n} p\left(y_{j} \mid x^{j}, y^{j-1}\right) \prod_{j=i+1}^{n} p_{j}}$,
and do so backwards until $i=1$.

Main ideas of 2nd Step

- Exchange $p\left(x^{n} \| y^{n-1}\right)$ by the set $\left\{p_{i}\right\}_{i=1}^{n}$ where $p_{i}=p\left(x_{i} \mid x^{i-1}, y^{i-1}\right)$
$\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)=\max _{p_{1}} \max _{p_{2}} \ldots \max _{p_{n}} I\left(X^{n} \rightarrow Y^{n}\right)$

Main ideas of 2nd Step

- Exchange $p\left(x^{n} \| y^{n-1}\right)$ by the set $\left\{p_{i}\right\}_{i=1}^{n}$ where

$$
p_{i}=p\left(x_{i} \mid x^{i-1}, y^{i-1}\right)
$$

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)=\max _{p_{1}} \max _{p_{2}} \ldots \max _{p_{n}} I\left(X^{n} \rightarrow Y^{n}\right)
$$

- $I\left(X^{n} \rightarrow Y^{n}\right)$ is concave in each p_{i}.

Main ideas of 2nd Step

- Exchange $p\left(x^{n} \| y^{n-1}\right)$ by the set $\left\{p_{i}\right\}_{i=1}^{n}$ where

$$
p_{i}=p\left(x_{i} \mid x^{i-1}, y^{i-1}\right)
$$

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)=\max _{p_{1}} \max _{p_{2}} \ldots \max _{p_{n}} I\left(X^{n} \rightarrow Y^{n}\right)
$$

- $I\left(X^{n} \rightarrow Y^{n}\right)$ is concave in each p_{i}.
- For fixed $q\left(x^{n} \mid y^{n}\right)$, p_{i}^{*} that achieves $\max _{p_{i}} I\left(X^{n} \rightarrow Y^{n}\right)$, depends only on

$$
q\left(x^{n} \mid y^{n}\right), p_{i+1}, p_{i+2}, \ldots, p_{n}
$$

Main ideas of 2nd Step

- Exchange $p\left(x^{n} \| y^{n-1}\right)$ by the set $\left\{p_{i}\right\}_{i=1}^{n}$ where $p_{i}=p\left(x_{i} \mid x^{i-1}, y^{i-1}\right)$

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)=\max _{p_{1}} \max _{p_{2}} \ldots \max _{p_{n}} I\left(X^{n} \rightarrow Y^{n}\right)
$$

- $I\left(X^{n} \rightarrow Y^{n}\right)$ is concave in each p_{i}.
- For fixed $q\left(x^{n} \mid y^{n}\right)$, p_{i}^{*} that achieves $\max _{p_{i}} I\left(X^{n} \rightarrow Y^{n}\right)$, depends only on

$$
q\left(x^{n} \mid y^{n}\right), p_{i+1}, p_{i+2}, \ldots, p_{n}
$$

- Hence we can find

$$
\max _{p_{1}} \ldots\left(\max _{p_{n-1}}\left(\max _{p_{n}} I\left(X^{n} \rightarrow Y^{n}\right)\right)\right)
$$

despite being nonconvex.

BA for directed information

- Using Step 1 and 2 we can compute

$$
I_{L}=\sum_{y^{n}, x^{n}} p\left(y^{n} \| x^{n}\right) r\left(x^{n} \| y^{n-1}\right) \log \frac{q\left(x^{n} \mid y^{n}\right)}{p\left(x^{n} \| y^{n-1}\right)}
$$

which converges from below to $\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)$

- We also have an upper bound

$$
I_{U}=\max _{x_{1}} \sum_{y_{1}} \max _{x_{2}} \cdots \sum_{y_{n-1}} \max _{x_{n}} \sum_{y_{n}} p\left(y^{n} \| x^{n}\right) \log \frac{p\left(y^{n} \| x^{n}\right)}{\sum_{x^{\prime n}} p\left(y^{n} \| x^{\prime n}\right) p\left(x^{\prime n} \| y^{n-1}\right)}
$$

- The algorithm terminate when

$$
\left|I_{U}-I_{L}\right| \leq \epsilon
$$

maximizing the directed information for $\operatorname{BSC}(0.3)$

Bounds on capacity of any FSC

$$
\begin{aligned}
\bar{C}_{n} & =\max _{s_{0}} \max _{p\left(x^{n} \| y^{n-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n} \mid s_{0}\right)+\frac{1}{n} \\
\underline{C}_{n} & =\max _{p\left(x^{n} \| y^{n-1}\right)} \min _{s_{0}} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n} \mid s_{0}\right)-\frac{1}{n}
\end{aligned}
$$

Directed information rate

Infinite-letter case

For two cases we have analytical solution using dynamic programming for unifilar channels.
First case: Trapdoor channel.

(a) Ash book

Fig. 7.1 A simple two-state channel.
(b) D. Blackwell

$$
C_{f b}=\log \phi \text { Golden Ratio: } \phi=\frac{\sqrt{5}+1}{2}
$$

Ising Channel

- Introduced by Berger and Bonomi [1990].

Ising Channel

- Introduced by Berger and Bonomi [1990].
- if $x_{t}=x_{t-1}$, then $y_{t}=x_{t}$.
- if $x_{t} \neq x_{t-1}$, then $Y_{t} \sim \operatorname{Bernouli}\left(\frac{1}{2}\right)$.

Ising Channel

- Introduced by Berger and Bonomi [1990].
- if $x_{t}=x_{t-1}$, then $y_{t}=x_{t}$.
- if $x_{t} \neq x_{t-1}$, then $Y_{t} \sim \operatorname{Bernouli}\left(\frac{1}{2}\right)$.
- The Ising channel graphical model:

$$
x_{t-1}=1
$$

$$
x_{t-1}=0
$$

Ising Channel

- Introduced by Berger and Bonomi [1990].
- if $x_{t}=x_{t-1}$, then $y_{t}=x_{t}$.
- if $x_{t} \neq x_{t-1}$, then $Y_{t} \sim \operatorname{Bernouli}\left(\frac{1}{2}\right)$.
- The Ising channel graphical model:

$$
x_{t-1}=1
$$

$$
x_{t-1}=0
$$

Q: How can one achieve $R=\frac{1}{2}$?

Ising channel

- Simple model for inference inter-symbol.

Ising channel

- Simple model for inference inter-symbol.
- The zero-error capacity of the Ising channel is 0.5 bit per channel use.

Ising channel

- Simple model for inference inter-symbol.
- The zero-error capacity of the Ising channel is 0.5 bit per channel use.
- The capacity without feedback found to be bounded approximately by $0.5031 \leq C \leq 0.6723$.

Ising channel

- Simple model for inference inter-symbol.
- The zero-error capacity of the Ising channel is 0.5 bit per channel use.
- The capacity without feedback found to be bounded approximately by $0.5031 \leq C \leq 0.6723$.
- The feedback capacity is $C=\max _{0 \leq a \leq 1} \frac{2 H(a)}{3+a} \approx 0.575522$, where $z \approx 0.4503$.

Ising channel

- Simple model for inference inter-symbol.
- The zero-error capacity of the Ising channel is 0.5 bit per channel use.
- The capacity without feedback found to be bounded approximately by $0.5031 \leq C \leq 0.6723$.
- The feedback capacity is $C=\max _{0 \leq a \leq 1} \frac{2 H(a)}{3+a} \approx 0.575522$, where $z \approx 0.4503$.
- We formulate an equivalent problem using dynamic programming (DP).

Ising channel

- Simple model for inference inter-symbol.
- The zero-error capacity of the Ising channel is 0.5 bit per channel use.
- The capacity without feedback found to be bounded approximately by $0.5031 \leq C \leq 0.6723$.
- The feedback capacity is $C=\max _{0 \leq a \leq 1} \frac{2 H(a)}{3+a} \approx 0.575522$, where $z \approx 0.4503$.
- We formulate an equivalent problem using dynamic programming (DP).
- The DP leads to a simple capacity achieving coding scheme.

Channel notation and DP formulation

Notation	Meaning
t	Time $(\in \mathbb{N})$
x_{t}	Channel Input at time $t(\in \mathcal{X})$
$s_{t}\left(=x_{t-1}\right)$	Channel State at time $t(\in \mathcal{S})$
y_{t}	Channel Output at time $t(\in \mathcal{Y})$

Channel notation and DP formulation

Notation	Meaning
t	Time $(\in \mathbb{N})$
x_{t}	Channel Input at time $t(\in \mathcal{X})$
$s_{t}\left(=x_{t-1}\right)$	Channel State at time $t(\in \mathcal{S})$
y_{t}	Channel Output at time $t(\in \mathcal{Y})$

Ising channel	DP
$p\left(s_{t}=0 \mid y^{t}\right)$, prob. of the channel state to be 0 given the output	z_{t}, the DP state
y_{t}, the channel output	w_{t}, the DP disturbance
$p\left(x_{t} \mid s_{t-1}\right)$, channel input prob. given the channel state at time $t-1$	u_{t}, the DP action
$p\left(s_{t}=0 \mid y^{t}\right)$ as a function	$z_{t}=F\left(z_{t-1}, u_{t-1}, w_{t-1}\right)$,
of $p\left(s_{t-1}=0 \mid y^{t-1}\right)$ and input dist.	states evolving
$I\left(X_{t}, S_{t-1} ; Y_{t} \mid y^{t-1}\right)$	$g\left(z_{t-1}, u_{t}\right)$, reward function

DP numerical evaluation

value fun. on the $20^{\text {th }}$ iteration, J_{20}

Histogram of Z

DP and its relation to the coding scheme

	$z_{t}=p_{0}$	$z_{t}=p_{1}$	$z_{t}=p_{2}$	$z_{t}=p_{3}$
$y_{t}=0$	$z_{t+1}=p_{3}$	$z_{t+1}=p_{3}$	$z_{t+1}=p_{3}$	$z_{t+1}=p_{2}$
$y_{t}=1$	$z_{t+1}=p_{1}$	$z_{t+1}=p_{0}$	$z_{t+1}=p_{0}$	$z_{t+1}=p_{0}$
$p\left(x_{t}=1 \mid x_{t-1}=1\right)$	a	1	1	irrelevant
$p\left(x_{t}=0 \mid x_{t-1}=0\right)$	irrelevant	1	1	a

DP and its relation to the coding scheme

	$z_{t}=p_{0}$	$z_{t}=p_{1}$	$z_{t}=p_{2}$	$z_{t}=p_{3}$
$y_{t}=0$	$z_{t+1}=p_{3}$	$z_{t+1}=p_{3}$	$z_{t+1}=p_{3}$	$z_{t+1}=p_{2}$
$y_{t}=1$	$z_{t+1}=p_{1}$	$z_{t+1}=p_{0}$	$z_{t+1}=p_{0}$	$z_{t+1}=p_{0}$
$p\left(x_{t}=1 \mid x_{t-1}=1\right)$	a	1	1	irrelevant
$p\left(x_{t}=0 \mid x_{t-1}=0\right)$	irrelevant	1	1	a

DP and its relation to the coding scheme

- Alternate between 0 and 1 with prob. $1-a$.

DP and its relation to the coding scheme

- Alternate between 0 and 1 with prob. $1-a$.
- If the output $y_{t+1} \neq s_{t}$, then decode $x_{t+1}=y_{t+1}$

DP and its relation to the coding scheme

- Alternate between 0 and 1 with prob. $1-a$.
- If the output $y_{t+1} \neq s_{t}$, then decode $x_{t+1}=y_{t+1}$
- If the output $y_{t+1}=s_{t}$ repeat the last input

DP and its relation to the coding scheme

- Alternate between 0 and 1 with prob. $1-a$.
- If the output $y_{t+1} \neq s_{t}$, then decode $x_{t+1}=y_{t+1}$
- If the output $y_{t+1}=s_{t}$ repeat the last input

$$
C=\frac{H(1-a)}{a \cdot 2+(1-a) \cdot\left(2 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}\right)}=\frac{H(a)}{\frac{3}{2}+\frac{a}{2}}
$$

Summary

- Convexity can be exploited to calculate

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

using alternating maximization procedure.

- DP can be formulated for Unifilar channel and numerically calculated.
- For some cases, such as Trapdoor-Channel and Ising-Channel the DP can be solved analytically.
- DP solution can lead to an optimal and concrete coding scheme.

Summary

- Convexity can be exploited to calculate

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

using alternating maximization procedure.

- DP can be formulated for Unifilar channel and numerically calculated.
- For some cases, such as Trapdoor-Channel and Ising-Channel the DP can be solved analytically.
- DP solution can lead to an optimal and concrete coding scheme.

> Thank you very much!

