Optimization of the Directed Information

Haim Permuter

Ben-Gurion University, Israel

1st Munich Workshop on Bidirectional Communication and Directed Information May 2012

Notation

Causal Conditioning pmf

$$P(y^{n}||x^{n}) \triangleq \prod_{i=1}^{n} P(y_{i}|x^{i}, y^{i-1})$$
$$P(y^{n}|x^{n}) = \prod_{i=1}^{n} P(y_{i}|x^{n}, y^{i-1})$$

Causal Conditioning entropy

$$\begin{array}{rcl} H(Y^n||X^n) & \triangleq & E[-\log P(Y^n||X^n)] \\ H(Y^n|X^n) & \triangleq & E[-\log P(Y^n|X^n)] \end{array}$$

Directed Information

$$I(X^n \to Y^n) \triangleq H(Y^n) - H(Y^n || X^n)$$

$$I(X^n; Y^n) \triangleq H(Y^n) - H(Y^n |X^n)$$

Notation

Causal Conditioning pmf

$$P(y^{n}||x^{n}) \triangleq \prod_{i=1}^{n} P(y_{i}|x^{i}, y^{i-1})$$
$$P(y^{n}||x^{n-1}) \triangleq \prod_{i=1}^{n} P(y_{i}|x^{i-1}, y^{i-1})$$

Causal Conditioning entropy

$$H(Y^{n}||X^{n}) \triangleq E[-\log P(Y^{n}||X^{n})]$$
$$H(Y^{n}||X^{n-1}) \triangleq E[-\log P(Y^{n}||X^{n-1})]$$

Directed Information

$$I(X^n \to Y^n) \triangleq H(Y^n) - H(Y^n || X^n)$$

$$I(X^{n-1} \to Y^n) \triangleq H(Y^n) - H(Y^n || X^{n-1})$$

Directed information and causal conditioning characterizes

- rate reduction in losless compression due to causal side information at the decoder,
- the gain in growth rate in horse-race gambling due to causal side information
- Channel capacity with feedback,
- rate distortion with feedforward,
- causal MMSE for additive Gaussian noise,
- stock investment with causal side information,
- measure of causal relevance between processes,
- actions with causal constraint such as "to feed or not to feed back",

Directed information optimization

How to find

$$\max_{p(x^n||y^{n-1})} I(X^n \to Y^n).$$

Recall

$$I(X^{n} \to Y^{n}) = \sum_{i=1}^{n} I(X^{i}; Y_{i}|Y^{i-1})$$

= $H(Y^{n}) - H(Y^{n}||X^{n})$
= $\sum_{y^{n}, x^{n}} p(x^{n}, y^{n}) \log \frac{p(y^{n}||x^{n})}{p(y^{n})}$

 $P(x^n, y^n)$ can be expressed by the chain-rule

$$p(x^{n}, y^{n}) = p(x^{n}||y^{n-1})p(y^{n}||x^{n})$$

$$\max_{p(x^n||y^{n-1})} I(X^n \to Y^n)$$

Good news

- $I(X^n \to Y^n)$ is convex in $p(x^n || y^{n-1})$ for a fixed $p(y^n || x^n)$.
- $p(x^n||y^{n-1})$ is a convex set.

$$\max_{p(x^n||y^{n-1})} I(X^n \to Y^n)$$

Good news

• $I(X^n \to Y^n)$ is convex in $p(x^n || y^{n-1})$ for a fixed $p(y^n || x^n)$.

•
$$p(x^n||y^{n-1})$$
 is a convex set.

Bad news

• Not easy to describe $p(x^n || y^{n-1})$ using linear equations. Contrary to $p(x^n)$ where

$$p(x^n) \ge 0 \quad \forall x^n.$$
$$\sum_{x^n} p(x^n) = 1.$$

$$\max_{p(x^n||y^{n-1})} I(X^n \to Y^n)$$

Good news

• $I(X^n \to Y^n)$ is convex in $p(x^n || y^{n-1})$ for a fixed $p(y^n || x^n)$.

•
$$p(x^n||y^{n-1})$$
 is a convex set.

Bad news

• Not easy to describe $p(x^n || y^{n-1})$ using linear equations. Contrary to $p(x^n)$ where

$$p(x^n) \ge 0 \quad \forall x^n.$$
$$\sum_{x^n} p(x^n) = 1.$$

• $I(X^n \to Y^n)$ non-convex in $p(x_1), ..., p(x_n | x^{n-1}, y^{n-1})$

$$\max_{p(x^n||y^{n-1})} I(X^n \to Y^n)$$

Good news

• $I(X^n \to Y^n)$ is convex in $p(x^n || y^{n-1})$ for a fixed $p(y^n || x^n)$.

•
$$p(x^n||y^{n-1})$$
 is a convex set.

Bad news

• Not easy to describe $p(x^n || y^{n-1})$ using linear equations. Contrary to $p(x^n)$ where

$$p(x^n) \ge 0 \quad \forall x^n.$$
$$\sum_{x^n} p(x^n) = 1.$$

- $I(X^n \to Y^n)$ non-convex in $p(x_1), ..., p(x_n | x^{n-1}, y^{n-1})$
- Cannot optimize each term in $\sum_i I(X^i; Y_i | Y^{i-1})$ or in $\sum_i I(X_i; Y_i^n | X^{i-1}, Y^{i-1})$, separately.

The Alternating maximization procedure

Lemma (double maximization)

$$\max_{p(x^n || y^{n-1})} I(X^n \to Y^n) = \max_{p(x^n || y^{n-1}), q(x^n || y^n)} I(X^n \to Y^n).$$

The Alternating maximization procedure

Lemma (double maximization)

$$\max_{p(x^n \| y^{n-1})} I(X^n \to Y^n) = \max_{p(x^n \| y^{n-1}), q(x^n | y^n)} I(X^n \to Y^n).$$

Let $f(u_1, u_2)$, be a convex fun and we want to find

$$\max_{u_1\in\mathcal{A}_1, u_2\in\mathcal{A}_2} f(u_1, u_2).$$

The procedure is

$$\begin{split} u_1^{(k+1)} &= \arg\max_{u_1\in\mathcal{A}_1}\,f(u_1^{(k)},u_2^{(k)}),\; u_2^{(k+1)} = \arg\max_{u_2\in\mathcal{A}_2}\,f(u_1^{(k+1)},u_2^{(k)}).\\ f^{(k)} &= f(u_1^{(k)},u_2^{(k)}). \end{split}$$

Theorem (The Alternating maximization procedure)

$$\lim_{k \to \infty} f^{(k)} = \max_{u_1 \in \mathcal{A}_1, u_2 \in \mathcal{A}_2} f(u_1, u_2).$$

Compute by the alternating maximization procedure

$$\max_{p(x^n||y^{n-1})} \max_{q(x^n|y^n)} I(X^n \to Y^n).$$

Compute by the alternating maximization procedure

$$\max_{p(x^n \parallel y^{n-1})} \max_{q(x^n \mid y^n)} I(X^n \to Y^n).$$

1st Step

Lemma (max_{$q(x^n|y^n)$} $I(X^n \to Y^n)$)

For fixed $p(x^n || y^{n-1})$, $q^*(x^n | y^n)$ that achieves $\max_{q(x^n | y^n)} I(X^n \to Y^n)$, is

$$q^*(x^n|y^n) = \frac{p(x^n||y^{n-1})p(y^n||x^n)}{\sum_{x^n} p(x^n||y^{n-1})p(y^n||x^n)}.$$

2nd Step

Lemma $(\max_{p(x^n \parallel y^{n-1})} I(X^n \to Y^n))$

For fixed $q(x^n|y^n)$, $p^*(x^n||y^{n-1})$ that achieves $\max_{p(x^n||y^{n-1})} I(X^n \to Y^n)$, is: Starting from i = n, compute $p(x_i|x^{i-1}, y^{i-1})$

$$p_i = p^*(x_i | x^{i-1}, y^{i-1}) = \frac{p'(x^i, y^{i-1})}{\sum_{x_i} p'(x^i, y^{i-1})},$$

where

$$p'(x^{i}, y^{i-1}) = \prod_{\substack{x_{i+1}^{n}, y_{i}^{n}}} \left[\frac{q(x^{n}|y^{n})}{\prod_{j=i+1}^{n} p_{j}} \right]^{\prod_{j=i}^{n} p(y_{j}|x^{j}, y^{j-1})\prod_{j=i+1}^{n} p_{j}}$$

and do so **backwards** until i = 1.

• Exchange
$$p(x^n || y^{n-1})$$
 by the set $\{p_i\}_{i=1}^n$ where $p_i = p(x_i | x^{i-1}, y^{i-1})$

$$\max_{p(x^n \parallel y^{n-1})} I(X^n \to Y^n) = \max_{p_1} \max_{p_2} \dots \max_{p_n} I(X^n \to Y^n)$$

• Exchange
$$p(x^n || y^{n-1})$$
 by the set $\{p_i\}_{i=1}^n$ where $p_i = p(x_i | x^{i-1}, y^{i-1})$

 $\max_{p(x^n \parallel y^{n-1})} I(X^n \to Y^n) = \max_{p_1} \max_{p_2} \dots \max_{p_n} I(X^n \to Y^n)$

• $I(X^n \to Y^n)$ is concave in each p_i .

• Exchange
$$p(x^n\|y^{n-1})$$
 by the set $\{p_i\}_{i=1}^n$ where $p_i = p(x_i|x^{i-1},y^{i-1})$

$$\max_{p(x^n \parallel y^{n-1})} I(X^n \to Y^n) = \max_{p_1} \max_{p_2} \dots \max_{p_n} I(X^n \to Y^n)$$

- $I(X^n \to Y^n)$ is concave in each p_i .
- For fixed $q(x^n|y^n)$, p_i^* that achieves $\max_{p_i} I(X^n \to Y^n)$, depends only on

$$q(x^n|y^n), p_{i+1}, p_{i+2}, ..., p_n$$

• Exchange
$$p(x^n\|y^{n-1})$$
 by the set $\{p_i\}_{i=1}^n$ where $p_i = p(x_i|x^{i-1},y^{i-1})$

$$\max_{p(x^n \mid\mid y^{n-1})} I(X^n \to Y^n) = \max_{p_1} \max_{p_2} \dots \max_{p_n} I(X^n \to Y^n)$$

- $I(X^n \to Y^n)$ is concave in each p_i .
- For fixed $q(x^n|y^n)$, p_i^* that achieves $\max_{p_i} I(X^n \to Y^n)$, depends only on

$$q(x^n|y^n), p_{i+1}, p_{i+2}, ..., p_n$$

Hence we can find

$$\max_{p_1} \dots \left(\max_{p_{n-1}} \left(\max_{p_n} I(X^n \to Y^n) \right) \right)$$

despite being nonconvex.

Using Step 1 and 2 we can compute

$$I_L = \sum_{y^n, x^n} p(y^n \| x^n) r(x^n \| y^{n-1}) \log \frac{q(x^n | y^n)}{p(x^n \| y^{n-1})}.$$

which converges from below to $\max_{p(x^n || y^{n-1})} I(X^n \to Y^n)$ • We also have an upper bound

$$I_U = \max_{x_1} \sum_{y_1} \max_{x_2} \cdots \sum_{y_{n-1}} \max_{x_n} \sum_{y_n} p(y^n \| x^n) \log \frac{p(y^n \| x^n)}{\sum_{x'^n} p(y^n \| x'^n) p(x'^n \| y^{n-1})}$$

The algorithm terminate when

$$|I_U - I_L| \le \epsilon$$

maximizing the directed information for BSC(0.3)

Bounds on capacity of any FSC

$$\overline{C}_n = \max_{s_0} \max_{p(x^n || y^{n-1})} \frac{1}{n} I(X^n \to Y^n | s_0) + \frac{1}{n},$$

$$\underline{C}_n = \max_{p(x^n || y^{n-1})} \min_{s_0} \frac{1}{n} I(X^n \to Y^n | s_0) - \frac{1}{n}.$$

Directed information rate

Infinite-letter case

For two cases we have analytical solution using dynamic programming for unifilar channels. First case: Trapdoor channel.

 $C_{fb} = \log \phi$ Golden Ratio: $\phi = \frac{\sqrt{5}+1}{2}$

Introduced by Berger and Bonomi [1990].

Ising Channel

- Introduced by Berger and Bonomi [1990].
- if $x_t = x_{t-1}$, then $y_t = x_t$.
- if $x_t \neq x_{t-1}$, then $Y_t \sim Bernouli(\frac{1}{2})$.

Ising Channel

- Introduced by Berger and Bonomi [1990].
- if $x_t = x_{t-1}$, then $y_t = x_t$.
- if $x_t \neq x_{t-1}$, then $Y_t \sim Bernouli(\frac{1}{2})$.
- The Ising channel graphical model:

Ising Channel

- Introduced by Berger and Bonomi [1990].
- if $x_t = x_{t-1}$, then $y_t = x_t$.
- if $x_t \neq x_{t-1}$, then $Y_t \sim Bernouli(\frac{1}{2})$.
- The Ising channel graphical model:

Q: How can one achieve $R = \frac{1}{2}$?

• Simple model for inference inter-symbol.

- Simple model for inference inter-symbol.
- The zero-error capacity of the Ising channel is 0.5 bit per channel use.

- Simple model for inference inter-symbol.
- The zero-error capacity of the Ising channel is 0.5 bit per channel use.
- The capacity *without feedback* found to be bounded approximately by $0.5031 \le C \le 0.6723$.

- Simple model for inference inter-symbol.
- The zero-error capacity of the Ising channel is 0.5 bit per channel use.
- The capacity *without feedback* found to be bounded approximately by $0.5031 \le C \le 0.6723$.
- The feedback capacity is $C = \max_{0 \le a \le 1} \frac{2H(a)}{3+a} \approx 0.575522$, where $z \approx 0.4503$.

- Simple model for inference inter-symbol.
- The zero-error capacity of the Ising channel is 0.5 bit per channel use.
- The capacity *without feedback* found to be bounded approximately by $0.5031 \le C \le 0.6723$.
- The feedback capacity is $C = \max_{0 \le a \le 1} \frac{2H(a)}{3+a} \approx 0.575522$, where $z \approx 0.4503$.
- We formulate an equivalent problem using dynamic programming (DP).

- Simple model for inference inter-symbol.
- The zero-error capacity of the Ising channel is 0.5 bit per channel use.
- The capacity *without feedback* found to be bounded approximately by $0.5031 \le C \le 0.6723$.
- The feedback capacity is $C = \max_{0 \le a \le 1} \frac{2H(a)}{3+a} \approx 0.575522$, where $z \approx 0.4503$.
- We formulate an equivalent problem using dynamic programming (DP).
- The DP leads to a simple capacity achieving coding scheme.

Channel notation and DP formulation

Notation	Meaning			
t	Time $(\in \mathbb{N})$			
x_t	Channel Input at time $t \in \mathcal{X}$			
$s_t(=x_{t-1})$	Channel State at time $t \ (\in S)$			
y_t	Channel Output at time $t \ (\in \mathcal{Y})$			

Channel notation and DP formulation

Notation	Meaning			
t	Time $(\in \mathbb{N})$			
x_t	Channel Input at time $t \in \mathcal{X}$			
$s_t(=x_{t-1})$	Channel State at time $t \ (\in S)$			
y_t	Channel Output at time $t \ (\in \mathcal{Y})$			

Ising channel	DP	
$p(s_t = 0 y^t)$, prob. of the channel	z_t , the DP state	
state to be 0 given the output		
y_t , the channel output	w_t , the DP disturbance	
$p(x_t s_{t-1})$, channel input prob.	u_t , the DP action	
given the channel state at time $t-1$		
$p(s_t = 0 y^t)$ as a function	$z_t = F(z_{t-1}, u_{t-1}, w_{t-1}),$	
of $p(s_{t-1} = 0 y^{t-1})$ and input dist.	states evolving	
$I(X_t, S_{t-1}; Y_t y^{t-1})$	$g(z_{t-1}, u_t)$, reward function	

DP numerical evaluation

H. Permuter Optimization of the Directed Information

	$z_t = p_0$	$z_t = p_1$	$z_t = p_2$	$z_t = p_3$
$y_t = 0$	$z_{t+1} = p_3$	$z_{t+1} = p_3$	$z_{t+1} = p_3$	$z_{t+1} = p_2$
$y_t = 1$	$z_{t+1} = p_1$	$z_{t+1} = p_0$	$z_{t+1} = p_0$	$z_{t+1} = p_0$
$p(x_t = 1 x_{t-1} = 1)$	a	1	1	irrelevant
$p(x_t = 0 x_{t-1} = 0)$	irrelevant	1	1	a

	$z_t = p_0$	$z_t = p_1$	$z_t = p_2$	$z_t = p_3$				
$y_t = 0$	$z_{t+1} = p_3$	$z_{t+1} = p_3$	$z_{t+1} = p_3$	$z_{t+1} = p_2$				
$y_t = 1$	$z_{t+1} = p_1$	$z_{t+1} = p_0$	$z_{t+1} = p_0$	$z_{t+1} = p_0$				
$p(x_t = 1 x_{t-1} = 1)$	a	1	1	irrelevant				
$p(x_t = 0 x_{t-1} = 0)$	irrelevant	1	1	a				
DP state p_0 D: $p(x_t = 0 y^t) = 0$ E: $p(x_{t+1} = x_t) = 0$	DP state p_0 D: $p(x_t = 0 y^t) = 0$ E: $p(x_{t+1} = x_t) = a$ $y_{t+1} = 1$ D: $p(x_t = 0 y^t) = 1$ E: $p(x_{t+1} = x_t) = a$ D: $p(x_t = 0 y^t) = 1$ E: $p(x_{t+1} = x_t) = a$							
$y_{t+1} = 1$ $y_{t+1} = 1$ $y_{t+1} = 1$ $y_{t+1} = 1$ $p_{t+1} = x_t$ $y_{t+1} = 0$ $y_{t+1} = 0$								

• Alternate between 0 and 1 with prob. 1 - a.

- Alternate between 0 and 1 with prob. 1 a.
- If the output $y_{t+1} \neq s_t$, then decode $x_{t+1} = y_{t+1}$

- Alternate between 0 and 1 with prob. 1 a.
- If the output $y_{t+1} \neq s_t$, then decode $x_{t+1} = y_{t+1}$
- If the output $y_{t+1} = s_t$ repeat the last input

- Alternate between 0 and 1 with prob. 1 a.
- If the output $y_{t+1} \neq s_t$, then decode $x_{t+1} = y_{t+1}$
- If the output $y_{t+1} = s_t$ repeat the last input

Convexity can be exploited to calculate

```
\max_{p(x^n||y^{n-1})} I(X^n \to Y^n)
```

using alternating maximization procedure.

- DP can be formulated for Unifilar channel and numerically calculated.
- For some cases, such as Trapdoor-Channel and Ising-Channel the DP can be solved analytically.
- DP solution can lead to an optimal and concrete coding scheme.

Convexity can be exploited to calculate

```
\max_{p(x^n||y^{n-1})} I(X^n \to Y^n)
```

using alternating maximization procedure.

- DP can be formulated for Unifilar channel and numerically calculated.
- For some cases, such as Trapdoor-Channel and Ising-Channel the DP can be solved analytically.
- DP solution can lead to an optimal and concrete coding scheme.

Thank you very much!