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Abstract—We establish that the feedback capacity of the trap-
door channel is the logarithm of the golden ratio and provide a
simple communication scheme that achieves capacity. As part of
the analysis, we formulate a class of dynamic programs that char-
acterize capacities of unifilar finite-state channels. The trapdoor
channel is an instance that admits a simple closed-form solution.

Index Terms—Bellman equation, chemical channel, constrained
coding, directed information, feedback capacity, golden-ratio, infi-
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I. INTRODUCTION

DAVID Blackwell, who has done fundamental work both
in information theory and in stochastic dynamic program-

ming, introduced the trapdoor channel in 1961 [1] as a “simple
two-state channel.” The channel is depicted in Fig. 1, and a
detailed discussion of this channel appears in an information
theory book by Ash [2], where indeed the channel is shown on
the cover of the book.

The channel behaves as follows. Balls labeled “ ” or “ ” are
used to communicate through the channel. The channel starts
with a ball already in it. To use the channel, a ball is inserted
into the channel by the transmitter, and the receiver receives one
of the two balls in the channel with equal probability. The ball
that does not exit the channel remains inside for the next channel
use.

Another appropriate name for this channel is chemical
channel. This name suggests a physical system in which the
concentrations of chemicals are used to communicate, such as
might be the case in some cellular biological systems as shown
by Berger [3]. The transmitter adds molecules to the channel,
and the receiver samples molecules randomly from the channel.
The trapdoor channel is the most basic realization of this type
of channel; it has only two types of molecules, and there are
only three possible concentrations, , or, equivalently,
only one molecule remains in the channel between uses.

Although the trapdoor channel is very simple to describe, its
capacity has been an open problem for over 45 years [1]. The
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Fig. 1. The trapdoor (chemical) channel.

zero-error capacity was found by Ahlswede et al. [4], [5] to be
0.5 bits per channel use. More recently, Kobayashi and Morita
[6] derived a recursion for the conditional probabilities of output
sequences of length given the input sequences and used it
to show that the capacity of this channel is strictly larger than
0.5 bits. Ahlswede and Kaspi [4] considered two modes of the
channel called the permuting jammer channel and the permuting
relay channel. In the first mode, there is a jammer in the channel
that attempts to frustrate the message sender by selective release
of balls in the channel. In the second mode, where the sender is
in the channel, a helper supplies balls of a fixed sequence at the
input, and the sender is restricted to permuting this sequence.
The helper collaborates with the message sender in the channel
to increase his ability to transmit distinct messages to the re-
ceiver. Ahlswede and Kaspi [4] gave answers for specific cases
of both situations, and Kobayashi [7] established the answer to
the general permuting relay channel. Additional results for spe-
cific cases of the permuting jammer channel can be found in [8],
[9].

In this paper, we consider the trapdoor channel with feed-
back. We derive the feedback capacity of the trapdoor channel
by solving an equivalent dynamic programming problem. Our
work consists of two main steps. The first step is formulating the
feedback capacity of the trapdoor channel as an infinite-horizon
dynamic program, and the second step is finding explicitly the
exact solution of that program.

Formulating the feedback capacity problem as a dynamic pro-
gram appeared in Tatikonda’s thesis [10] and in work by Yang,
Kavčić, and Tatikonda [11] [12], Chen and Berger [13], and re-
cently in a work by Tatikonda and Mitter [14]. Yang et al. have
shown in [11] that if a channel has a one-to-one mapping be-
tween the input and the state, it is possible to formulate feed-
back capacity as a dynamic programming problem and to find
an approximate solution by using the value iteration algorithm
[15]. The authors of [11] have also formulated in [12] the feed-
back capacity of a stationary additive Gaussian-noise channel
with a rational noise power spectrum of finite order1 as a dy-
namic program. Chen and Berger [13] showed that if the state
of the channel is a function of the output, then it is possible to
formulate the feedback capacity as a dynamic program with a
finite number of states.

1In subsequent work, Kim [16], [17] showed that the optimal input distribu-
tion for this family of channels is stationary, which was a long-standing conjec-
ture.
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Fig. 2. Unifilar FSC with feedback.

TABLE I
THE PROBABILITY OF THE OUTPUT � GIVEN THE INPUT �

AND THE STATE �

Our work provides the dynamic programming formula-
tion and a computational algorithm for finding the feedback
capacity of a family of channels called unifilar finite state
channels (FSCs), which include the channels considered in
[11], [13]. We use value iteration [15] to find an approximate
solution and to generate a conjecture for the exact solution,
and the Bellman equation [18] to verify the optimality of the
conjectured solution. As a result, we are able to show that the
feedback capacity of the trapdoor channel is , where
is the golden ratio, . In addition, we present a simple
encoding/decoding scheme that achieves this capacity.

The remainder of the paper is organized as follows. Sec-
tion II defines the channel setting and the notation throughout
the paper. Section III states the main results of the paper.
Section IV presents the capacity of a unifilar FSC in terms
of directed information. Section V introduces the dynamic
programming framework and shows that the feedback capacity
of the unifilar FSC can be characterized as the optimal average
reward of a dynamic program. Section VI shows an explicit
solution for the capacity of the trapdoor channel by using the
dynamic programming formulation. Section VII discusses a
simple communication scheme that achieves the capacity of the
trapdoor channel with feedback, and Section VIII concludes
this work.

II. CHANNEL MODELS AND PRELIMINARIES

We use subscripts and superscripts to denote vectors in the
following ways: and for

. Moreover, we use lower case to denote sample values,
upper case to denote random variables, calligraphic letter
to denote the alphabet, and to denote the cardinality of the
alphabet. The probability distributions are denoted by when
the arguments specify the distribution, e.g.,

. In this paper, we consider only channels for which
the input, denoted by , and the output, denoted
by , are from finite alphabets, and , respec-
tively. In addition, we consider only the family of FSC known as

unifilar channels as discussed by Ziv [19]. An FSC is a channel
that, for each time index, has one of a finite number of possible
states, , and has the property that

. A unifilar FSC also has the property that the
state is deterministic given :

Definition 1: An FSC is called a unifilar FSC if there exists
a time-invariant function such that the state evolves ac-
cording to the equation

(1)

We also define a connected FSC as follows.

Definition 2: We say that an FSC is connected if for any state
there exists an integer and an input distribution of the

form that may depend on , such that the prob-
ability that the channel reaches from any starting state , in
less than time steps, is positive. That is

(2)

We assume a communication setting that includes feedback
as shown in Fig. 2. At time , the transmitter (encoder) knows
the message and the feedback samples . The output of
the encoder at time is denoted by and is a function of the
message and the feedback. The channel is a unifilar FSC and
the output of the channel enters the decoder (receiver). The
encoder receives the feedback sample with one unit delay.

A. Trapdoor Channel Is a Unifilar FSC

The state of the trapdoor channel, which is described in the
Introduction and shown in Fig. 1, is the ball, or , that is in the
channel before the transmitter transmits a new ball. Let

be the ball that is transmitted at time , and
be the state of the channel when ball is transmitted. The prob-
ability of the output given the input and the state of the
channel is shown in Table I.

The trapdoor channel is a unifilar FSC. It has the property that
the next state is a deterministic function of the state , the
input , and the output . For a feasible tuple, ,
the next state is given by the equation

(3)

where denotes the binary XOR operation.
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Fig. 3. The trapdoor channel as a permuting channel. Going from left to right,
there is a probability of one half that two adjacent bits switch places.

B. Trapdoor Channel Is a Permuting Channel

It is interesting to note, although not consequential in this
paper, that the trapdoor channel is a permuting channel [20],
where the output is a permutation of the input (Fig. 3). At each
time , a new bit is added to the sequence and the channel
switches the new bit with the previous one in the sequence with
probability .

III. MAIN RESULTS

• The capacity of the trapdoor channel with feedback is

(4)

Furthermore, there exists a simple capacity achieving
scheme which will be presented in Section VII.

• The problem of finding the capacity of a connected unifilar
channel (Fig. 2) can be formulated as an average-reward
dynamic program, where the state of the dynamic pro-
gram is the probability mass function over the states con-
ditioned on prior outputs, and the action is the stochastic
matrix . By finding a solution to the average-re-
ward Bellman equation, we find the exact capacity of the
channel.

• As a byproduct of our analysis, we also derive a closed-
form solution to an infinite horizon average-reward dy-
namic program with a continuous state-space.

IV. THE CAPACITY FORMULA FOR A UNIFILAR CHANNEL

WITH FEEDBACK

The main goal of this section is to prove the following the-
orem, which allows us to formulate the problem as a dynamic
program.

Theorem 1: The feedback capacity of a connected unifilar
FSC when initial state is known at the encoder and decoder
can be expressed as

(5)

where denotes the set of all distributions
such that for

.

Theorem 1 is a direct consequence of Theorem 3 and (26) in
Lemma 4, which are proved in this section.

For any finite-state channel with perfect feedback, as shown
in Fig. 2, the capacity was shown in [21], [22] to be bounded as

(6)

The term is the directed information2 defined
originally by Massey in [29] as

(7)

The initial state is denoted as and is the causally
conditional distribution defined in [21], [26] as

(8)

The directed information in (6) is under the distribution of
which is uniquely determined by the causal condi-

tioning and by the channel.
In our communication setting, we are assuming that the ini-

tial state is known both to the decoder and to the encoder. This
assumption allows the encoder to know the state of the channel
at any time because is a deterministic function of the pre-
vious state, input and output. In order to take into account this
assumption, we use a trick of allowing a fictitious time epoch
before the first actual use of the channel in which the input does
not influence the output nor the state of channel, and the only
thing that happens is that the output equals and is fed back to
the encoder such that at time both the encoder and the de-
coder know the state . Let be the fictitious time before
starting the use of the channel. According to the trick, ,
and the input can be chosen arbitrarily because it does not
have any influence whatsoever. For this scenario, the directed
information term in (6) becomes

(9)

The input distribution becomes

(10)

where is defined as

Therefore, the capacity of a unifilar channel with feedback for
which the initial state, , is known both at the encoder and the
decoder is bounded as

(11)

2In addition to feedback capacity, directed information has recently been used
in rate distortion [23], [24], [25], network capacity [26], [27] and computational
biology [28].
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Lemma 2: If the finite-state channel is connected, then for any
input distribution and any , there exists an
input distribution such that

(12)

where is a constant that does not depend on . The
term denotes the directed information in-
duced by the input distribution , where is
the initial state. Similarly, the term de-
notes the directed information induced by the input distribution

where is the initial state.
Proof: Construct as follows. Use an input

distribution, which has a positive probability of reaching in
time epochs, until the time that the channel first reaches . Such
an input distribution exists because the channel is connected.
Denote the first time that the state of the channel equals by

. After time , operate exactly as would (had time started
then). Namely, for

Then

(13)

where

follows from the triangle inequality and Lemma 3 in
[21], which claims that for any arbitrary random variables

, the inequality
always holds.

follows from using the special structure of
.

follows from the triangle inequality.

follows from the fact that in the first absolute value,
terms cancel and therefore only terms remain where

each one is bounded by . In the
second absolute value there are terms, also
bounded by .

The proof is completed by noting that and
are upper-bounded, respectively, by and , where

Geometric , and is the minimum probability of
reaching in less than steps from any state . Because
the random variable has a geometric distribution,
and are finite and, consequently, so are and .

Theorem 3: The feedback capacity of a connected unifilar
FSC, when the initial state is known at the encoder and decoder,
is given by

(14)
Proof: The proof of the theorem contains four main equal-

ities, which are proven separately.

(15)

(16)

(17)

(18)

Proof of Equality (15) and (16): As a result of Lemma 2

(19)

(20)

where

follows from the definition of conditional entropy.

follows from the exchange between the summation and
the maximization. The exchange is possible because max-
imization is over causally conditional distributions that
depend on .
follows from Lemma 2.

follows from the observation that the distribution
that achieves the maximum in

(19) and in (20) is the same:
. This observa-

tion allows us to exchange the order of the minimum and
the maximum.
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Equations (19) and (20) can be repeated also with in-
stead of , and hence we get

(21)

By using (20) and (21), we get that the upper bound and the
lower bound in (11) are equal, and therefore (15) and (16) hold.

Proof of Equality (17): Using the property that the next
state of the channel is a deterministic function of the input,
output, and current state, we get

(22)

Equality is due to the fact that is a deterministic
function of the tuple . Equality is due to the
fact that . By
combining (16) and (22), we get (17).

Proof of Equality (18): It will suffice to prove
by induction that if we have two input distributions

and
that induce the same distributions , then
the distributions are equal under both
inputs. First, let us verify the equality for

(23)

Since and are not influenced by the input
distribution, and since is equal for both input distribu-
tions, then is also equal for both input distributions.
Now, we assume that is equal under both input
distributions, and we need to prove that is also
equal under both input distributions. The term ,
which can be written as

(24)
First we notice that if is equal for both cases,
then is necessarily equal for both cases be-
cause is a deterministic function of the tuple ,
and therefore both input distributions induce the same .
The distribution is the same under both input dis-
tributions by assumption, and does not depend
on the input distribution.

The next lemma shows that it is possible to switch between
the limit and the maximization in the capacity formula. This
is necessary for formulating the problem, as we do in the next
section, as an average-reward dynamic program.

Lemma 4: For any FSC, the following equality holds:

(25)
And, in particular, for a connected unifilar FSC

(26)

On the left-hand side of the equations appears because, as
shown in [22], the limit exists due to the super-additivity prop-
erty of the sequence.

Proof: We prove (25), which holds for any FSC. For the
case of unifilar channel, the left-hand side of (25) is proven to
be equal to the left-hand side of (26) in (15)–(18). By the same
arguments as in (15)–(18), the right-hand side of (25) and (26)
are also equal.

Define

(27)

In order to prove that the equality holds, we will use two prop-
erties of that were proved in [22, Theorem 13].

The first property is that is a super additive sequence,
namely, for any two positive integers and that sums to

(28)
The second property, which is a result of the first, is that

(29)

Now, consider

(30)
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The limit of the left-hand side of the equation in the lemma
implies that, there exists such that for all

Let us choose , and let be the input
distribution that attains the maximum. Let us construct

(31)

Then, we get

(32)

where is the directed information induced
by the input and the channel. The left inequality
holds because is only one possible input dis-
tribution among all . The right inequality
holds because the special structure of transforms
the whole expression of normalized directed information into an
average of infinite sums of terms that each term is directed infor-
mation between blocks of length . Because for each block the
inequality holds, then it holds also for the average of the blocks.
The inequality may not hold on the last block, but because we
average over an increasing number of blocks, its influence di-
minishes.

V. FEEDBACK CAPACITY AND DYNAMIC PROGRAMMING

In this section, we characterize the feedback capacity of the
unifilar FSC as the optimal average reward of a dynamic pro-
gram. Further, we present the Bellman equation, which can be
solved to determine this optimal average reward.

A. Dynamic Programs

Here we introduce a formulation for average-reward dy-
namic programs. Each problem instance is defined by a
septuple . We will explain the roles of
the components of this tuple.

We consider a discrete-time dynamic system evolving ac-
cording to

(33)

where each state takes values in a Borel space , each action
takes values in a compact subset of a Borel space, and each

disturbance takes values in a measurable space . The initial
state is drawn from a distribution . Each disturbance is
drawn from a distribution , which depends only
on the state and action . All functions considered in this
paper are assumed to be measurable, though we will not mention
this each time we introduce a function or a set of functions.

The history summarizes informa-
tion available prior to selection of the th action. The action

is selected by a function , which maps histories to ac-
tions. In particular, given a policy , actions

are generated according to . Note that given the
history and a policy , one can compute
past states and actions . A policy

is referred to as stationary if there is a function
such that for all and . With

some abuse of terminology, we will sometimes refer to such a
function itself as a stationary policy.

We consider an objective of maximizing average reward,
given a bounded reward function . The average
reward for a policy is defined by

where the subscript indicates that actions are generated by the
policy . The optimal average reward is defined
by

B. The Bellman Equation

An alternative characterization of the optimal average reward
is offered by the Bellman equation. This equation offers a mech-
anism for verifying that a given level of average reward is op-
timal. It also leads to a characterization of optimal policies.
The following result, which we will later use, encapsulates the
Bellman equation and its relation to the optimal average reward
and optimal policies.

Theorem 5: If and a bounded function
satisfy

(34)

then . Further, if there is a function such
that attains the supremum for each , then for

with for each .

This result follows immediately from Theorem 6.1 of [18]. It
shows that if there exists a that satisfies the Bellman
equation, then is the optimal average reward, is a stationary
policy that achieves the optimum, and the policy depends on the
history only through the state . It is convenient to define
a dynamic programming operator by

for all functions . Then, Bellman’s equation can be written as
. It is also useful to define for each stationary policy

an operator

The operators and obey some well-known properties.
First, they are monotonic, i.e., for bounded functions and

such that and . Second,
they are nonexpansive with respect to the sup-norm, i.e., for
bounded functions and and
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. Third, as a consequence of non-
expansiveness, is continuous with respect to the sup-norm.3

C. Feedback Capacity as a Dynamic Program

We will now formulate a dynamic program such that the op-
timal average reward equals the feedback capacity of a unifilar
channel as presented in Theorem 1. This entails defining the sep-
tuple based on properties of the unifilar
channel and then verifying that the optimal average reward is
equal to the capacity of the channel.

Let denote the -dimensional vector of channel state
probabilities given information available to the decoder at time
. In particular, each component corresponds to a channel state

and is given by . We consider the states of
the dynamic program to be . Hence, the state space
is the -dimensional unit simplex. Each action is taken to
be the matrix of conditional probabilities of the input given
the previous state of the channel. Hence, the action space

is the set of stochastic matrices of dimension . The
disturbance is taken to be the channel output . The distur-
bance space is the output alphabet .

The initial state distribution is concentrated at the prior
distribution of the initial channel state . Note that the channel
state is conditionally independent of the past given the pre-
vious channel state , the input probabilities , and the cur-
rent output . Hence, .
More concretely, given a policy , is
given in (35) at the bottom of the page, where is the indi-
cator function. Note that is given by the channel
model. Hence, is determined by , and , and, there-
fore, there is a function such that .

The distribution of the disturbance is

Conditional independence from and given is
due to the fact that the channel output is determined by the

3The proof of the properties of � are entirely analogous to the proofs of
Propositions 1.2.1 and 1.2.4 in [15, vol. II].

previous channel state and current input. More concretely

(36)

Hence, there is a disturbance distribution that
depends only on and .

We consider a reward of . Note that the
reward depends only on the probabilities
for all and . Further

(37)

Recall that is given by the channel model. Hence,
the reward depends only on and .

Given an initial state and a policy and
are determined by . Further, is condi-

tionally independent of given and as shown in (37).
Hence

(38)

It follows that the optimal average reward is

Table II summarizes the dynamic programming formulation.
The table identifies the septuple for
the feedback capacity problem, where the channel is a unifilar
channel. In this formulation, the action depends on the whole

(35)
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TABLE II
THE DYNAMIC PROGRAMMING FORMULATION THAT CORRESPONDS TO THE

FEEDBACK CAPACITY PROBLEM OF A UNIFILAR CHANNEL

history ; however, for the trapdoor channel, we will be able
to restrict the dependency to only , and show that it takes
one of only four possible values with probability one. This is
done in Section VI-D by utilizing Theorem 5.

The dynamic programming formulation that is presented here
is an extension of the formulation presented in [11] by Yang,
Kavc̆ić, and Tatikonda. In [11], the formulation is for channels
with the property that the state is deterministically identified by
the previous inputs, and here we allow the state to be determined
by the previous outputs and inputs.

VI. SOLUTION FOR THE TRAPDOOR CHANNEL

The trapdoor channel presented in Section II is a simple ex-
ample of a unifilar FSC. In this section, we present an explicit
solution to the associated dynamic program, which yields the
feedback capacity of the trapdoor channel as well as an optimal
encoder–decoder pair. The analysis begins with a computational
study using numerical dynamic programming techniques. The
results give rise to conjectures about the average reward, the
differential value function, and an optimal policy. These con-
jectures are proved to be true through verifying that they satisfy
Bellman’s equation.

A. The Dynamic Program

In Section V-C, we formulated a class of dynamic programs
associated with unifilar channels. From here on, we will focus
on the particular instance from this class that represents the trap-
door channel.

Using the same notation as in Section V-C, the state
would be the vector of channel state probabilities

. However, to simplify notation, we
will consider the state to be the first component; that is,

. This comes with no loss of gener-
ality—the second component can be derived from the first since
the pair sums to one. The action is a stochastic matrix

(39)

The disturbance is the channel output .

The state evolves according to , where
we obtain the function explicitly using relations from (3),
(35), and Table I as shown in the equation at the bottom of the
page.These expressions can be simplified by defining

(40)

(41)

so that

if

if .

Note that, given , the action defines the pair and
vice versa. From here on, we will represent the action in terms
of and . Because is required to be a stochastic matrix,
and are constrained by and .

Recall from (38) that the reward function is given by

This reward can be computed from the conditional probabilities
. Using the expressions for these condi-

tional probabilities provided in Table III, we obtain

where, with some abuse of notation, we use to denote the
binary entropy function: .

We now have a dynamic program—the objective is to maxi-
mize over all policies the average reward . The capacity of
the trapdoor channel is the maximum of the average reward .

if

if .
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Fig. 4. Results from 20 value iterations. On the top-left side, the value function � is plotted. On the top-right and bottom-left, the optimal action-parameters �
and � with respect to the 20th iteration are plotted. On the bottom-right, the relative state frequencies of the associated Markov process of � with the policy that is
optimal with respect to � is plotted.

TABLE III
THE CONDITIONAL DISTRIBUTION ��� � � � 	 �
 � � �

In the context of the trapdoor channel, the dynamic program-
ming operator takes the form

(42)

By Theorem 5, if we identify a scalar and bounded function
that satisfy Bellman’s equation, , then is the

optimal average reward. Further, if for each , then
the stationary policy is an optimal policy.

B. Computational Study

We carried out computations to develop an understanding of
solutions to Bellman’s equation. For this purpose, we used the
value iteration algorithm, which in our context generates a se-
quence of iterates according to

(43)

initialized with . For each and is the max-
imal expected reward over time periods given that the system
starts in state . Since rewards are positive, for each
grows with . For each , we define a differential reward func-
tion . These functions capture differ-
ences among values for different states . Under certain
conditions, such as those presented in [30], the sequence con-
verges uniformly to a function that solves Bellman’s equation.
We will neither discuss such conditions nor verify that they hold.
Rather, we will use the algorithm heuristically in order to de-
velop intuition and conjectures.

Value iteration as described above cannot be implemented on
a computer because it requires storing and updating a function
with infinite domain and optimizing over an infinite number
of actions. To address this, we discretize the state and action
spaces, approximating the state space using a uniform grid with
2000 points in the unit interval and restricting actions and
to values in a uniform grid with 4000 points in the unit interval.

We executed 20 value iterations. Fig. 4 plots the function
and actions that maximize the right-hand side of (43) with

. We also simulated the system, selecting actions and
in each time period to maximize this expression. This led to an
average reward of approximately . In the right-bottom side
of Fig. 4, we plot the relative state frequencies of the associated
Markov process. Note that the distribution concentrates around
four points which are approximately and

.
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Fig. 5. The Markov chain of question 1.

C. Conjectures

The results obtained from value iteration were, amazingly,
close to the answers of two questions posed in an information
theory class at Stanford taught by Prof. Thomas Cover. Here is
a simplified version of the questions given to the class.

1) Entropy rate. Find the maximum entropy rate of the two-
state Markov chain (Fig. 5) with transition matrix

(44)

where is the free parameter to maximize over.
2) Number of sequences. To first order in the exponent, what

is the number of binary sequences of length with no two
’s in a row?

The entropy rate of the Markov chain of question 1 is given
by , and when maximizing over , we get that

and the entropy rate is . It can be shown that
the number of sequences of length that do not have two

’s in a row is the th number in the Fibonacci sequence. This
can be proved by induction in the following way. Let us denote

the number of sequences of length with the condi-
tion of not having two ’s in a row that are ending with “ ” and
with “ ,” respectively. For the sequences that end with “ ” we
can either add a next bit “ ” or “ ,” and for the sequences that
end with : ,” we can add only “ .” Hence,
and . By repeating this logic, we get that be-
haves as a Fibonacci sequence. To first order in the exponent,
the Fibonacci number behaves as

where the number is called the golden ratio. The golden
ratio is also known to be a positive number that solves the equa-
tion , and it appears in many math, science, and even
artistic contexts [31]. As these problems illustrate, the number
of typical sequences created by the Markov process given in
question 1 is, to first order in the exponent, equal to the number
of binary sequences that do not have two ’s in a row.

Let us consider a policy for the dynamic program associated
with a binary random process that is created by the Markov
chain from question 1 (see Fig. 5) and inspired by the commu-
nication scheme introduced in Section VII. Let the state of the
Markov process indicate if the input to the channel will be the
same or different from the state of the channel. In other words,
if at time the binary Markov sequence is “ ,” then the input to
the channel is equal to the state of the channel, i.e., .
Otherwise, the input to the channel complements the state of the

Fig. 6. The transition between � and � , under the policy ��� ��.

channel, i.e., . This scheme uniquely defines the
distribution

if
if .

(45)

This distribution is derived from the fact that for the trapdoor
channel the state evolves according to (3) which can be written
as

(46)

Hence, if then necessarily also .
This means that the tuple defines the state of the
Markov chain at time and the tuple defines
the state of the Markov chain at time . Having the distri-
bution , for the following four values of

, the
corresponding actions and , which are defined in (40),
(41), are

It can be verified, by using (35), that the only values of ever
reached are

(47)

and the transitions are a function of , shown graphically in
Fig. 6. Our goal is to prove that an extension of this policy is
indeed optimal. Based on the answer to question 1, we conjec-
tured that the entropy rate is the average reward, i.e.,

(48)

It is interesting to notice that all the numbers appearing above
can be written in terms of the golden ratio . In par-
ticular, and

.
By inspection of Fig. 4, we let and be linear over the inter-

vals , and , and we get the form presented
in Table IV.
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TABLE IV
CONJECTURED POLICY WHICH IN THE NEXT SECTION

WILL BE PROVEN TO BE TRUE

We now propose differential values for . If
we assume that and maximize the right-hand side of the
Bellman equation (34) for with and ,
we obtain

(49)

(50)

The equation for the range is implied by the
symmetry relation: .

If a scalar and function solve Bellman’s equation, so do
and for any scalar . Therefore, there is no loss of

generality in setting . From (49) we have that

(51)

In addition, by symmetry considerations we can deduce that
, and from (49) we obtain

(52)

The argument of the last term in (50), which we denote here as
, is in for . Hence, we can

apply (50) twice. Namely, we substitute the last term in (50) with
the identity given in (50), and by using simple algebra, such as

, we obtain4

(53)

where . By symmetry, we obtain

(54)

where .

4It is also possible to verify that �� defined in (53) satisfies (50) by substi-
tuting ��, collecting terms, and using the following algebraic facts:�� ���

�� � ��������� � ���� � ��� � and �� � � � �

��� � � �
�
�� � � .

The conjectured policy , which is given in Table IV, and
the conjectured differential value , which is given in (51)–(54),
are plotted in Fig. 7.

D. Verification

In this section, we verify that the conjectures made in the pre-
vious section are correct. Our verification process proceeds as
follows. First, we establish that if a function is
concave, so is . In other words, value iteration retains con-
cavity. We then consider a version of value iteration involving
an iteration . Since subtracting a constant
does not affect concavity, this iteration also retains concavity.
We prove that if a function is the pointwise maximum among
concave functions that are equal to in the interval , then
each iterate is also concave and equal to in this interval.
Further, the sequence is pointwise nonincreasing. These prop-
erties of the sequence imply that it converges to a function
that again is concave and equal to in the interval . This
function together with satisfies Bellman’s equation. Given
this, Theorem 5 verifies our conjectures.

We begin with a lemma that will be useful in showing that
value iteration retains concavity.

Lemma 6: Let be concave on
for all and

Then is concave.

The proof of Lemma 6 is given in the Appendix.

Lemma 7: The operator , defined in (42), retains concavity
and continuity. Namely

• if is concave then is concave,
• if is continuous then is continuous.

Proof (Concavity): It is well known that the binary entropy
function is concave, so the reward function

is concave in .
Next, we show that if is concave, then

is concave in . Let and . We
will show that, for any

(55)

Dividing both sides by , we get

(56)
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Fig. 7. A conjecture about the optimal solution based on the 20th value iteration of the dynamic program which is shown in Fig. 4 and on the communication
scheme derived from the questions given by Prof. Cover. On the top-left, the conjectured differential value ����� is plotted for � � �� � � �. On the top-right side
and bottom-left, the conjectured policy ������� ������ is plotted for � � �� � � �.

Note that the last inequality is true because of the concavity of
. It follows that

(57)

is concave in ). Since

it is concave by Lemma 6.

Proof (Continuity): Note that the binary entropy function
is continuous. Further, and are con-

tinuous over the region . It
follows that is continuous over the region

. Hence

is continuous over .

Let us construct value iteration function as follows.
Let be the pointwise maximum among concave func-
tions satisfying for , where is

defined in (51)–(54). Note that is concave and that for
is a linear extrapolation from the boundary

of . Let

(58)

and

(59)

The following lemma shows several properties of the se-
quence of functions including the uniform convergence.
The uniform convergence is needed for verifying the conjec-
ture, while the other properties are intermediate steps in proving
the uniform convergence.

Lemma 8: The following properties hold:

8.1 for all is concave and continuous in ;

8.2 for all is symmetric around , i.e.,

(60)

8.3 for all and is a fixed point, i.e.,

(61)

and the stationary policy , where
are defined in Table IV, satisfies
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8.4 is uniformly bounded in and , i.e.,

(62)

8.5 is monotonically nonincreasing in , i.e.,

(63)

8.6 converges uniformly to

Proof of 8.1: Since is concave and continuous,
and since the operator retains continuity and concavity (see
Lemma 7), it follows that is concave and continuous for
every .

Proof of 8.2: We prove this property by induction. First
notice that is symmetric and satisfies .
Now let us show that if it holds for , then it holds for .

Let denote the expression maximized to obtain
, i.e.,

(64)

Notice that . Also observe that replacing
the argument with in yields the same result as
exchanging between and . From those two observations it
follows that and from the definition of

given in (58) it follows that .

Proof of 8.3: We prove this property by induction. Notice
that satisfies for . We assume that

satisfies , and then we will prove the property
for . Later in this proof, we will show that for

(65)

Since for all (see (49)–(54)),
it follows that for all .

Now, let us show that (65) holds. Recall that in the proof of
Lemma 7, (64), we showed that is concave in .
The derivative with respect to is

(66)

The derivative with respect to is entirely analogous and can
be obtained by mutually exchanging and .

For , the action is feasible
and

Moreover, it is straightforward to check that the derivatives of
are zero at , and since is concave,

attains the maximum. Hence, for
.

For and . Note

that and are in . Using

expressions for given in (53) and (54), we can write deriva-
tives of at as

(67)

(68)

Note that is the maximum of the feasible set and
that the derivative of with respect to at is pos-
itive. In addition, is in the interior of the feasible set
and the derivative of with respect to at is zero.
Since is concave, any feasible change in will de-
crease the value of the function. Hence,
for . The situation for is completely anal-
ogous.

Proof of 8.4: From Propositions 8.1–8.3, it follows that the
maximum over of is attained at and

for all . Furthermore, because of concavity and symmetry the
minimumm of is attained at and . Hence, it
is enough to show that is uniformly bounded from below
for all .

For , let us consider the action and
and for the action . Now let us prove

that under this policy , which is less than or equal to the
optimal value, is uniformly bounded.

Under this policy, becomes

(69)

where and are constant: .
Iterating (69) times, we get

(70)

Since is uniformly bounded for all . Finally, since
, then is also bounded from below.

Proof of 8.5: By Proposition 8.1, is concave for each
and by Proposition 8.3, for . Since
is the pointwise maximum of functions satisfying this condition,
we must have . It is easy to see that is a monotonic op-
erator. As such, for all . Proposition 8.4 establishes
that the sequence is bounded below, and therefore it converges
pointwise.
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Proof of 8.6: By Proposition 8.1, each is concave and
continuous. Further, by Proposition 8.5, the sequence has a
pointwise limit which is concave. Concavity of implies
continuity [32, Theorem 10.1] over . Let be the contin-
uous extension of from to . Since is concave,

.
By Proposition 8.5, . It follows from continuity of
that . Hence, for

. Recalling that , we have .
Since the iterates are continuous and monotonically non-

increasing and their pointwise limit is continuous, con-
verges uniformly by Dini’s theorem [33].

The following theorem verifies our conjectures.

Theorem 9: The function and scalar satisfy
. Further, is the optimal average reward and there is an

optimal policy that takes actions and
whenever .

Proof: Since the sequence converges
uniformly and is sup-norm continuous, . It
follows from Theorem 5 that is the optimal average reward.
Together with Proposition 8.3, this implies existence of an op-
timal policy that takes actions and
whenever .

VII. A CAPACITY-ACHIEVING SCHEME

In this section, we describe a simple encoder and decoder
pair that provides error-free communication through the trap-
door channel with feedback and known initial state. We then
show that the rates achievable with this encoding scheme are
arbitrarily close to capacity.

It will be helpful to discuss the input and output of the channel
in different terms. Recall that the state of the channel is known
to the transmitter because it is a deterministic function of the
previous state, input, and output, and the initial state is known.
Let the input action be one of the following:

input ball is same as state,
input ball is opposite of state.

Also, let the output be recorded differentially as

received ball is same as previous,
received ball is opposite of previous,

where is undefined and irrelevant for our scheme.

A. Encode/Decode Scheme

Encoding: Each message is mapped to a unique binary se-
quence of actions that ends with and has no occurrences
of two ’s in a row. The input to the channel is derived from the
action and the state as .

Decoding: The channel outputs are recorded differentially
as for . Decoding of the ac-
tion sequence is accomplished in reverse order, beginning with

by construction.

TABLE V
DECODING EXAMPLE

Lemma 10: If is known to the decoder, can be cor-
rectly decoded. Furthermore, the decoding rule is

Case 1 If then

Case 2 If then

Proof of Case 1: By construction there are never two ’s
in a row.

Proof of Case 2: Recall that the trapdoor channel has the
property that for all ,

(71)

Hence, if , then

(72)

Finally, this implies that

(73)

where is due to (71) and to (72).

Decoding Example: Table V shows an example of decoding
a sequence of actions for .

B. Rate

Under this encoding scheme, the number of admis-
sible unique action sequences is the number of binary se-
quences of length without any repeating ’s. This
is known to be exponentially equivalent to , where
is the golden ratio (see question 2 in Section VI-C). Since

, rates arbitrary close to are
achievable.

C. Remarks

Early Decoding: Decoding can often begin before the entire
block is received. From the decoding rule, it is easy to see that
we can decode without knowledge of for any such
that . Decoding can begin from any such point and
work backward.
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Preparing the Channel: This communication scheme can
still be implemented even if the initial state of the channel is
not known as long as some channel uses are expended to pre-
pare the channel for communication. The repeating sequence

can be used to flush the channel until the state be-
comes evident. As soon as the output of the channel is different
from the input, both the transmitter (through feedback) and the
receiver know that the state is the previous input. At that point,
zero-error communication can begin as described above.

This flushing method requires a random and unbounded
number of channel uses. However, it only needs to be performed
once, after which multiple blocks of communication can be ac-
complished.Theexpectednumberof requiredchanneluses is ,
which is derived by conditioning on the initial state and noticing
that the number of pairs of channel uses needed is geometrically
distributed. For a detailed finite block-length zero-error commu-
nication scheme over the trapdoor channel see [37].

Permuting Relay Channel Similarity: The permuting relay
channel described in [4] has the same capacity as the trapdoor
channel with feedback. A connection can be made using the
communication scheme described in this section.

The permuting relay channel supposes that the transmitter
chooses an input distribution to the channel that is independent
of the message to be sent. The transmitter lives inside the trap-
door channel and chooses which of the two balls will be released
to the receiver in order to send the message. Without proof here,
let us assume that the deterministic input is optimal.
Now we count how many distinguishable outputs are possible.

It is helpful to view this as a permutation channel as described
in Section II, but now the permuting is not done randomly but
deliberately. Notice that for this input sequence, after each time
that a pair of different numbers is permuted, the next pair of
numbers will be the same, and the associated action will have
no consequence. Therefore, the number of distinguishable per-
mutations can be easily shown to be related to the number of
unique binary sequences without two ’s in a row.

Three Channels Have the Same Feedback Capacity: The en-
coding/decoding scheme in this section allows zero-error com-
munication. Therefore, this scheme could also be used to com-
municate with feedback through the permuting jammer channel
from [4], which assumes that the trapdoor channel behavior is
not random but is the worst possible to make communication
difficult.

In the permuting relay channel [4], all information (input and
output) is available to the transmitter, so feedback is irrelevant.
Thus, we find that the feedback capacity is the same for the
trapdoor, permuting jammer, and permuting relay channels.

Constrained Coding: The capacity-achieving scheme re-
quires uniquely mapping a message to a sequence with the
constraint of having no two ’s in a row. A practical way of
accomplishing this is by a technique called enumeration [34].
The technique translates the message into codewords and vice
versa by invoking an algorithmic procedure rather then using
a lookup table. Vast literature on coding a source word into a
constrained sequence can be found in [35] and [36].

VIII. CONCLUSION AND FURTHER WORK

This paper gives an information-theoretic formulation for the
feedback capacity of a connected unifilar finite-state channel

and it shows that the feedback capacity expression can be formu-
lated as an average-reward dynamic program. For the trapdoor
channel, we were able to solve explicitly the dynamic program-
ming problem and to show that the capacity of the channel is
the log of the golden ratio. Furthermore, we were able to find a
simple encoding/decoding scheme that achieves this capacity.

There are several directions in which this work can be ex-
tended.

• Generalization: Extend the trapdoor channel definition. It
is possible to add parameters to the channel and make it
more general. For instance, there could be a parameter that
determines which ball from the two has the higher proba-
bility of being the output of the channel. Other parameters
might include the number of balls that can be in the channel
at the same time or the number of different types of balls
that are used. These tie in nicely with viewing the trapdoor
channel as a chemical channel.

• Unifilar FSC Problems: Find connected unifilar FSCs that
can be solved, similar to the way we solved the trapdoor
channel.

• Dynamic Programming: Classify a family of average-re-
ward dynamic programs that have analytic solutions.

APPENDIX

Proof of Lemma 6: For any and

(74)

Step is a change of variable
. Step is due to concavity of

.
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