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Main Results of the Talk

1. capacity of the trapdoor channel with feedback

2. simple scheme that achieves feedback capacity
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The trapdoor channel

Introduced by David Blackwell in 1961. [Ash65], [Ahlswede & Kaspi 87],
[Ahlswede 98], [Kobayashi 02].

(a) Ash book (b) D. Blackwell

Another appropriate name for this channel is chemical channel.



Communication setting
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Figure 1: Unifilar FSC with feedback

Finite State Channel(FSC) property: p(yi, si|x
i, si−1, yi−1) = p(yi, si|xi, si−1)

Unifilar channel [Ziv85]: st = f(st−1, xt, yt)



Main ingredients

1. Directed information.



Main ingredients

1. Directed information.

2. Dynamic program average-reward.



Main ingredients

1. Directed information.

2. Dynamic program average-reward.

3. Value iteration.



Main ingredients

1. Directed information.

2. Dynamic program average-reward.

3. Value iteration.

4. Bellman equation.



Main ingredients

1. Directed information.

2. Dynamic program average-reward.

3. Value iteration.

4. Bellman equation.

5. Homework question given by Tom Cover.
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Directed information - intuition

If there is no feedback

I(Xn;Y n) = I(Xn → Y n)

Perfect feedback

I(Xn;Y n) = I(Xn → Y n) + I(Y n−1 → Xn)

Deterministic feedback ki(yi)

I(Xn; Y n) = I(Xn → Y n) + I(Kn−1 → Xn)
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Feedback capacity and dynamic programming(DP)

DP consists of of states βt−1, actions ut(βt−1), and disturbance wt.

state:
βt−1 = p(st−1|y

t−1), β ∈ [0, 1]

action:
ut = p(xt|st−1), ut ∈ [0, 1]× [0, 1]

disturbance:
wt = yt−1,

βt = F (βt−1, ut, wt), t = 1, 2, 3, . . . ,

reward function per unit time

g(βt−1, ut) = I(Xt, St−1; Yt|βt−1).

[Tatikonda00], [Yang, Kavc̆ić and Tatikonda05]



Dynamic programing operator, T

The dynamic programming operator T is given by

(TJ)(β) = sup
u∈U
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Properties

• Preservation of concavity: if J is concave then TJ is concave.

• Preservation of continuity: if J is continuous then TJ is continuous.

• Preservation of symmetry: if J is symmetric then TJ is symmetric.
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Computational study

Executed 20 value iterations: Jk+1(β) = (TJk)(β)

CFB ≈ 0.694

HW question from Prof. Cover class

Entropy rate. Find the maximum entropy rate of the following two-state Markov
chain:

BA
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Solution: The entropy rate is log2 φ = 0.6942..., where φ is the golden ratio:

φ =
√

5+1
2 .



20th Value iteration
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Conjecture of the solution to Bellman equation
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Bellman equation

Theorem 1. If there exists (J(β), ρ) that satisfies

J(β) = (TJ)(β)− ρ,

then ρ is the optimal average reward.



Verifying our conjecture

Construct value iteration function Jk(β) as follows. Let J0(β) be the pointwise
maximum among concave functions satisfying J0(β) = J̃(β) for β ∈ [b1, b4]

Jk+1(β) = (TJk)(β)− ρ̃,

• concave, continuous and symmetric

• fixed point: for β ∈ [b1, b4] ,Jk(β) = J̃(β)

• monotonically nonincreasing in k

• converges uniformly to J∗(β)

Since the sequence Jk+1 = TJk − ρ̃1 converges uniformly and T is sup-norm
continuous, J∗ = TJ∗ − ρ̃1.



A scheme that achieves capacity

Question

Number of sequences. To first order in the exponent, what is the number of
binary sequences of length n with no two consecutive 1’s?

00101010100101...

Solution The number of sequences of length n with this property, is the nth

Fibonachi number, fn
.
= φn.

The scheme

Let us denote rn such a sequence. Map each message m to a sequence [rn(m)].
encoder: xt = st−1 ⊕ rt, t = 1, ..., n and xn+1 = sn.
decoder: The decoder can decode this sequence error-free!
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Number of sequences. To first order in the exponent, what is the number of
binary sequences of length n with no two consecutive 1’s?

00101010100101...

Solution The number of sequences of length n with this property, is the nth

Fibonachi number, fn
.
= φn.

The scheme

Let us denote such a sequence by rn. Map each message m to a sequence [rn(m)].
encoder: xt = st−1 ⊕ rt, t = 1, ..., n and xn+1 = sn.
decoder: The decoder can decode this sequence error-free!
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Conclusions

• The capacity of the trapdoor channel with feedback is

CFB = log2 φ,

where φ is the golden ratio.

• There is a simple scheme that achieves the feedback capacity of the trapdoor
channel.

• Closed form solution to an infinite horizon average-reward dynamic.

Thank You!


