The Capacity of the Trapdoor Channel with Feedback

Haim Permuter

Based on work with
Paul Cuff, Benjamin Van Roy and Tsachy Weissman
Stanford University

Main Results of the Talk

1. capacity of the trapdoor channel with feedback
2. simple scheme that achieves feedback capacity

The trapdoor channel

$$
s_{0}=0
$$

The trapdoor channel

$$
\begin{aligned}
& s_{0}=0, \\
& x_{1}=1
\end{aligned}
$$

The trapdoor channel

$$
s_{t}=s_{t-1} \oplus x_{t} \oplus y_{t}
$$

$$
\begin{aligned}
& s_{0}=0 \\
& x_{1}=1, s_{1}=1, y_{1}=0
\end{aligned}
$$

The trapdoor channel

$$
s_{t}=s_{t-1} \oplus x_{t} \oplus y_{t}
$$

$$
\begin{aligned}
& s_{0}=0 \\
& x_{1}=1, s_{1}=1, y_{1}=0 \\
& x_{2}=0
\end{aligned}
$$

The trapdoor channel

Channel

$s_{t}=s_{t-1} \oplus x_{t} \oplus y_{t}$

$$
\begin{aligned}
& s_{0}=0 \\
& x_{1}=1, s_{1}=1, y_{1}=0 \\
& x_{2}=0, s_{2}=1, y_{2}=0
\end{aligned}
$$

The trapdoor channel

$$
\begin{aligned}
& s_{0}=0 \\
& x_{1}=1, s_{1}=1, y_{1}=0, \\
& x_{2}=0, s_{2}=1, y_{2}=0, \\
& x_{3}=1
\end{aligned}
$$

The trapdoor channel

$$
\begin{aligned}
& s_{0}=0 \\
& x_{1}=1, s_{1}=1, y_{1}=0, \\
& x_{2}=0, s_{2}=1, y_{2}=0, \\
& x_{3}=1, s_{3}=1, y_{3}=1
\end{aligned}
$$

The trapdoor channel

Introduced by David Blackwell in 1961. [Ash65], [Ahlswede \& Kaspi 87], [Ahlswede 98], [Kobayashi 02].

(a) Ash book

Fig. 7.1 A simple two-state channel.
(b) D. Blackwell

Another appropriate name for this channel is chemical channel.

Communication setting

Figure 1: Unifilar FSC with feedback

Finite State Channel(FSC) property: $p\left(y_{i}, s_{i} \mid x^{i}, s^{i-1}, y^{i-1}\right)=p\left(y_{i}, s_{i} \mid x_{i}, s_{i-1}\right)$

Unifilar channel [Ziv85]: $s_{t}=f\left(s_{t-1}, x_{t}, y_{t}\right)$

Main ingredients

1. Directed information.

Main ingredients

1. Directed information.
2. Dynamic program average-reward.

Main ingredients

1. Directed information.
2. Dynamic program average-reward.
3. Value iteration.

Main ingredients

1. Directed information.
2. Dynamic program average-reward.
3. Value iteration.
4. Bellman equation.

Main ingredients

1. Directed information.
2. Dynamic program average-reward.
3. Value iteration.
4. Bellman equation.
5. Homework question given by Tom Cover.

Feedback capacity of FSC

Lower and Upper bound

$$
\begin{aligned}
& C_{F B} \geq \lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{i} \mid x^{i-1}, y^{i-1}\right)\right\}_{i=1}^{N}} \min _{s_{0}} I\left(X^{N} \rightarrow Y^{N} \mid s_{0}\right) \\
& C_{F B} \leq \lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{i} \mid x^{i-1}, y^{i-1}\right)\right\}_{i=1}^{N}} \max _{s_{0}} I\left(X^{N} \rightarrow Y^{N} \mid s_{0}\right)
\end{aligned}
$$

[Permuter, Weissman and Goldmith ISIT06]
where

$$
I\left(X^{n} \rightarrow Y^{n}\right) \triangleq \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
$$

Feedback capacity of FSC

Lower and Upper bound

$$
\begin{aligned}
& C_{F B} \geq \lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{i} \mid x^{i-1}, y^{i-1}\right)\right\}_{i=1}^{N}} \min _{s_{0}} I\left(X^{N} \rightarrow Y^{N} \mid s_{0}\right) \\
& C_{F B} \leq \lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{i} \mid x^{i-1}, y^{i-1}\right)\right\}_{i=1}^{N}} \max _{s_{0}} I\left(X^{N} \rightarrow Y^{N} \mid s_{0}\right)
\end{aligned}
$$

where

$$
I\left(X^{n} \rightarrow Y^{n}\right) \triangleq \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
$$

In the trapdoor channel any state s_{t} can be reached from any state s_{t-1} with positive probability and hence we get

$$
C_{F B}=\lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{i} \mid x^{i-1}, y^{i-1}\right)\right\}_{i=1}^{N}} I\left(X^{N} \rightarrow Y^{N}\right)
$$

Directed information

Directed Information was defined by Massey in 1990,

$$
I\left(X^{n} \rightarrow Y^{n}\right) \triangleq \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
$$

Directed information

Directed Information was defined by Massey in 1990,

$$
\begin{aligned}
I\left(X^{n} \rightarrow Y^{n}\right) & \triangleq \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
I\left(X^{n} ; Y^{n}\right) & =\sum_{i=1}^{n} I\left(X^{n} ; Y_{i} \mid Y^{i-1}\right)
\end{aligned}
$$

Directed information - intuition

If there is no feedback

$$
I\left(X^{n} ; Y^{n}\right)=I\left(X^{n} \rightarrow Y^{n}\right)
$$

Directed information - intuition

If there is no feedback

$$
I\left(X^{n} ; Y^{n}\right)=I\left(X^{n} \rightarrow Y^{n}\right)
$$

Perfect feedback

$$
I\left(X^{n} ; Y^{n}\right)=I\left(X^{n} \rightarrow Y^{n}\right)+I\left(Y^{n-1} \rightarrow X^{n}\right)
$$

Directed information - intuition

If there is no feedback

$$
I\left(X^{n} ; Y^{n}\right)=I\left(X^{n} \rightarrow Y^{n}\right)
$$

Perfect feedback

$$
I\left(X^{n} ; Y^{n}\right)=I\left(X^{n} \rightarrow Y^{n}\right)+I\left(Y^{n-1} \rightarrow X^{n}\right)
$$

Deterministic feedback $k_{i}\left(y_{i}\right)$

$$
I\left(X^{n} ; Y^{n}\right)=I\left(X^{n} \rightarrow Y^{n}\right)+I\left(K^{n-1} \rightarrow X^{n}\right)
$$

Feedback capacity

$$
C_{F B}=\lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{t} \mid x^{t-1}, y^{t-1}\right)\right\}_{t=1}^{N}} I\left(X^{N} \rightarrow Y^{N}\right)
$$

Feedback capacity

$$
\begin{aligned}
C_{F B} & =\lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{t} \mid x^{t-1}, y^{t-1}\right)\right\}_{t=1}^{N}} I\left(X^{N} \rightarrow Y^{N}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{t} \mid x^{t-1}, y^{t-1}\right)\right\}_{t=1}^{N}} \sum_{t=1}^{N} I\left(X^{t} ; Y_{t} \mid Y^{t-1}\right)
\end{aligned}
$$

Feedback capacity

$$
\begin{aligned}
C_{F B} & =\lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{t} \mid x^{t-1}, y^{t-1}\right)\right\}_{t=1}^{N}} I\left(X^{N} \rightarrow Y^{N}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{t} \mid x^{t-1}, y^{t-1}\right)\right\}_{t=1}^{N}} \sum_{t=1}^{N} I\left(X^{t} ; Y_{t} \mid Y^{t-1}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{t} \mid s_{t-1}, y^{t-1}\right)\right\}_{t=1}^{N}} \sum_{t=1}^{N} I\left(X_{t}, S_{t-1} ; Y_{t} \mid Y^{t-1}\right)
\end{aligned}
$$

Feedback capacity

$$
\begin{aligned}
C_{F B} & =\lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{t} \mid x^{t-1}, y^{t-1}\right)\right\}_{t=1}^{N}} I\left(X^{N} \rightarrow Y^{N}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{t} \mid x^{t-1}, y^{t-1}\right)\right\}_{t=1}^{N}} \sum_{t=1}^{N} I\left(X^{t} ; Y_{t} \mid Y^{t-1}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \max _{\left\{p\left(x_{t} \mid s_{t-1}, y^{t-1}\right)\right\}_{t=1}^{N}} \sum_{t=1}^{N} I\left(X_{t}, S_{t-1} ; Y_{t} \mid Y^{t-1}\right) \\
& =\sup _{\left\{p\left(x_{t} \mid s_{t-1}, y^{t-1}\right)\right\}_{t \geq 1}} \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{t=1}^{N} I\left(X_{t}, S_{t-1} ; Y_{t} \mid Y^{t-1}\right)
\end{aligned}
$$

Feedback capacity and dynamic programming(DP)

DP consists of of states β_{t-1}, actions $u_{t}\left(\beta_{t-1}\right)$, and disturbance w_{t}.
state:

$$
\beta_{t-1}=p\left(s_{t-1} \mid y^{t-1}\right), \quad \beta \in[0,1]
$$

action:

$$
u_{t}=p\left(x_{t} \mid s_{t-1}\right), \quad u_{t} \in[0,1] \times[0,1]
$$

disturbance:

$$
\begin{gathered}
w_{t}=y_{t-1} \\
\beta_{t}=F\left(\beta_{t-1}, u_{t}, w_{t}\right), \quad t=1,2,3, \ldots
\end{gathered}
$$

reward function per unit time

$$
g\left(\beta_{t-1}, u_{t}\right)=I\left(X_{t}, S_{t-1} ; Y_{t} \mid \beta_{t-1}\right)
$$

[Tatikonda00], [Yang, Kavčić and Tatikonda05]

Dynamic programing operator, T

The dynamic programming operator T is given by

$$
(T J)(\beta)=\sup _{u \in \mathcal{U}}\left(g(\beta, u)+\int P_{w}(d w \mid \beta, u) J(F(\beta, u, w))\right)
$$

Dynamic programing operator, T

The dynamic programming operator T is given by

$$
\begin{aligned}
& (T J)(\beta)=\sup _{u \in \mathcal{U}}\left(g(\beta, u)+\int P_{w}(d w \mid \beta, u) J(F(\beta, u, w))\right) \\
(T J)(\beta)= & \sup _{0 \leq \delta \leq \beta, 0 \leq \gamma \leq 1-\beta}\left(H\left(\frac{1}{2}+\frac{\delta-\gamma}{2}\right)+\delta+\gamma-1+\frac{1+\delta-\gamma}{2} J\left(\frac{2 \delta}{1+\delta-\gamma}\right)\right. \\
& \left.+\frac{1-\delta+\gamma}{2} J\left(1-\frac{2 \gamma}{1-\delta+\gamma}\right)\right)
\end{aligned}
$$

Properties

- Preservation of concavity: if J is concave then $T J$ is concave.
- Preservation of continuity: if J is continuous then $T J$ is continuous.
- Preservation of symmetry: if J is symmetric then $T J$ is symmetric.

Computational study

Executed 20 value iterations: $\quad J_{k+1}(\beta)=\left(T J_{k}\right)(\beta)$

Computational study

Executed 20 value iterations: $\quad J_{k+1}(\beta)=\left(T J_{k}\right)(\beta)$

$$
C_{F B} \approx 0.694
$$

Computational study

Executed 20 value iterations: $\quad J_{k+1}(\beta)=\left(T J_{k}\right)(\beta)$

$$
C_{F B} \approx 0.694
$$

HW question from Prof. Cover class
Entropy rate. Find the maximum entropy rate of the following two-state Markov chain:

Computational study

Executed 20 value iterations: $\quad J_{k+1}(\beta)=\left(T J_{k}\right)(\beta)$

$$
C_{F B} \approx 0.694
$$

HW question from Prof. Cover class
Entropy rate. Find the maximum entropy rate of the following two-state Markov chain:

Solution: The entropy rate is $\log _{2} \phi=0.6942 \ldots$, where ϕ is the golden ratio: $\phi=\frac{\sqrt{5}+1}{2}$.

20th Value iteration

Conjecture of the solution to Bellman equation

Bellman equation

Theorem 1. If there exists $(J(\beta), \rho)$ that satisfies

$$
J(\beta)=(T J)(\beta)-\rho,
$$

then ρ is the optimal average reward.

Verifying our conjecture

Construct value iteration function $J_{k}(\beta)$ as follows. Let $J_{0}(\beta)$ be the pointwise maximum among concave functions satisfying $J_{0}(\beta)=\tilde{J}(\beta)$ for $\beta \in\left[b_{1}, b_{4}\right]$

$$
J_{k+1}(\beta)=\left(T J_{k}\right)(\beta)-\tilde{\rho}
$$

- concave, continuous and symmetric
- fixed point: for $\beta \in\left[b_{1}, b_{4}\right], J_{k}(\beta)=\tilde{J}(\beta)$
- monotonically nonincreasing in k
- converges uniformly to $J^{*}(\beta)$

Since the sequence $J_{k+1}=T J_{k}-\tilde{\rho} \mathbf{1}$ converges uniformly and T is sup-norm continuous, $J^{*}=T J^{*}-\tilde{\rho} 1$.

A scheme that achieves capacity

Question

Number of sequences. To first order in the exponent, what is the number of binary sequences of length n with no two consecutive 1 's?

$$
00101010100101 \ldots
$$

A scheme that achieves capacity

Question

Number of sequences. To first order in the exponent, what is the number of binary sequences of length n with no two consecutive 1 's?

$$
00101010100101 \ldots
$$

Solution The number of sequences of length n with this property, is the $n^{t h}$ Fibonachi number, $f_{n} \doteq \phi^{n}$.

The scheme
Let us denote such a sequence by r^{n}. Map each message m to a sequence $\left[r^{n}(m)\right]$. encoder: $x_{t}=s_{t-1} \oplus r_{t}, t=1, \ldots, n$ and $x_{n+1}=s_{n}$. decoder: The decoder can decode this sequence error-free!

Conclusions

- The capacity of the trapdoor channel with feedback is

$$
C_{F B}=\log _{2} \phi
$$

where ϕ is the golden ratio.

Conclusions

- The capacity of the trapdoor channel with feedback is

$$
C_{F B}=\log _{2} \phi
$$

where ϕ is the golden ratio.

- There is a simple scheme that achieves the feedback capacity of the trapdoor channel.

Conclusions

- The capacity of the trapdoor channel with feedback is

$$
C_{F B}=\log _{2} \phi
$$

where ϕ is the golden ratio.

- There is a simple scheme that achieves the feedback capacity of the trapdoor channel.
- Closed form solution to an infinite horizon average-reward dynamic.

Conclusions

- The capacity of the trapdoor channel with feedback is

$$
C_{F B}=\log _{2} \phi
$$

where ϕ is the golden ratio.

- There is a simple scheme that achieves the feedback capacity of the trapdoor channel.
- Closed form solution to an infinite horizon average-reward dynamic.
Thank You!

