Plug-and-Play Electronic Capacitor for VRM Applications

Or Kirshenboim, Student Member, IEEE, Alon Cervera, Student Member, IEEE, Bar Halivni, Eli Abramov, Student Member, IEEE, and Mor Mordechai Peretz, Member, IEEE

The Center for Power Electronics and Mixed-Signal IC
Department of Electrical and Computer Engineering
Ben-Gurion University of the Negev
P.O. Box 653, Beer-Sheva, 8410501 Israel
orkir@post.bgu.ac.il cervera@bgu.ac.il barhalivni@gmail.com eliab@post.bgu.ac.il morp@ee.bgu.ac.il
http://www.ee.bgu.ac.il/~pemie

Abstract - This paper introduces a new plug-and-play transient suppression unit (TSU) to enhance the performance and reduce the overall volume of voltage regulator modules (VRMs). The TSU acts as an electronic capacitor that is realized by switched-capacitor technology, mimics an increased capacitance during load transients. The unit connects in parallel to any existing tightly-regulated power supply without affecting the performance, and does not require any changes or interference in the design of the VRM. The resultant dynamic performance for load transients is significantly improved while the steady-state precision of the original design is intact. Furthermore, the unit is fully independent and is connected at the load-side of the converter, and as a result does not affect the input filter. The operation of the electronic capacitor is verified on a 30W, 12V-to-5V commercial buck converter evaluation module, demonstrating a near-ideal transient recovery with reduced output voltage deviation and settling time.

I. INTRODUCTION

A target feature in present-day VRMs is the ability to maintain a well-regulated, virtually constant, output voltage under wide range of load changes while maximizing power density. A key consideration to achieve this goal is the size of the passive components that prohibits full integration of the solution. Many modern applications raise the switching frequency and employ multi-phase converters to enhance the transient response that allow integration of the inductor [1]-[3]. On the other hand, sizing of the output capacitor in VRM applications primarily depends on the load transient magnitude and rate, and therefore consumes a significant portion of the PCB area [4].

To minimize the effect of load transient, several approaches to enhance the control bandwidth that result in saturation of the duty ratio have been described. Methods such as current-programmed mode control and its derivatives [5]-[10], time-optimal and minimum-deviation control [11]-[18], have shown transient response with virtually the smallest possible voltage deviation, restricted only by the inductor current slew-rate. The main limitation of these methods is the weak regulation during unloading transient due to the high input-to-output conversion ratio.

State-of-the-art solutions that exceed the performance of the time-optimal control method, especially for unloading transients, propose several circuit extensions in order to increase the inductor current slew-rate, either by internal changes to the topology [4], [19], [20], addition of a fast auxiliary circuits in parallel to the main converter [21]-[25], or by connecting an auxiliary unit at the load side [26], [27]. These solutions often require specially-tailored controller (sometimes combined with a digital design) or multi-mode compensation schemes.

The additional layers of complexity are the prominent reason for the lack of absorbance, of such promising technology, in commercial VRM applications. As evident, the majority – if not all, VRM solutions rely on the well-established analog compensators to guarantee reliability, performance and above all reduced complexity and cost. It would be extremely advantageous, and potentially better absorbed by the industry, if the auxiliary transient suppression unit (TSU) could be integrated as an add-on unit to the VRM without the need to interfere, replace or modify the original design.

The objective of this paper is therefore to introduce a plug-and-play TSU for VRM applications that trades the output capacitance by a silicon-based solution without affecting the steady-state operation, the originally designed compensation network and the input filter. As detailed in Fig. 1, the TSU comprises a bi-directional current source that is realized by a gyrator resonant switched-capacitor converter (GRSCC) [28] that connects in parallel to the output capacitor, and a transient
response accelerator that connects in parallel to the output of the error-amplifier. Since the new Electronic Capacitor is active only during load transients, the steady-state precision is not jeopardized and the design procedure for the buck converter is intact. In addition, the GRSCC which implements the TSU does not require a magnetic element, making it ideal for integration, simple and cost-effective.

The rest of the paper is organized as follows: Section II describes the transient suppression concept and details the operation. Section III briefly reviews the operation of the GRSCC in the context of an electronic capacitor and provides a simulation case study. Experimental verification is presented in Section IV. Section V concludes the paper.

II. TRANSIENT SUPPRESSION CONCEPT

A key factor for assisting the recovery of the main converter from a load transient is the capability of the auxiliary circuit to rapidly sink or source the current mismatch between the new load current and the main inductor current. To analyze the required behavior and control mechanism of the auxiliary TSU, an idealized bi-directional current source that is connected to the output terminals of the buck converter can be assumed as depicted in Fig. 2.

A. Principle of Operation

The description is aided by Fig. 3 which shows the waveforms for consecutive loading and unloading transients with a magnitude of ΔIout and the flowchart of Fig. 4. Transient operation is initiated upon its detection by the upper or lower comparators (with reference voltage assignment of Vref,H and Vref,L, respectively), indicating a charge mismatch in the output capacitor. Upon detection of a transient, two actions are simultaneously performed. The duty ratio is saturated to either maximum or minimum, depending on the transient type, and the current source is enabled and sinks or sources with a constant magnitude of Imax (the converter’s nominal current).

Since Iaux is higher than the current mismatch between Iback and Iload, the output voltage returns to the steady-state value. This is detected by an additional comparator with voltage reference set to Vref,M. At this point, the auxiliary current source is halted while the duty ratio continues to be saturated. In case that a current mismatch still exists, the output voltage moves away from the steady-state value, crossing the comparator threshold again, re-triggering the auxiliary circuit. This procedure continues until the steady-state comparator (with threshold Vref,M) is triggered twice (or triggered and remains in the new state), which indicates that charge balance is achieved, i.e. Iback = Iload; Vout = Vref,M, and the duty ratio saturation is discontinued.

Fig. 1. Electronic capacitor circuit connected to a buck converter controlled by an analog controller.

Fig. 2. Simplified circuit with the auxiliary circuit modelled as a controlled current source, demonstrating the current relationships towards the load.

Fig. 3. Typical waveforms of loading and unloading transients with the electronic capacitor.
B. Transient Response Accelerator

To successfully recover from a load transient, both the output voltage and the inductor current must move to the new steady-state operating point. This typical feature presents a challenge for so-called perfect transient response where virtually zero output voltage deviation is evident. In this study, since the auxiliary TSU acts as an infinite capacitor and is connected in-situ to a tightly-compensated voltage regulator, the error signal at the error amplifier (E/A) terminals is zero. As a result, the inductor current would not ramp up or down to the new steady-state point as depicted in Fig. 5.

To overcome this challenge, a third port of the electronic capacitor with a response accelerator unit is added as shown in Fig. 1. It consists of two complementary transistors, for pull-up and pull-down, and connects to the output of the analog controller’s E/A (This port is readily available in most external-compensation designs). By activating the pull-up and pull-down transistors during load transients, the desired duty ratio saturation is obtained. Since zero error signal is maintained at the E/A terminals during this operation, the E/A can be momentarily bypassed by the transient response accelerator and then restored without any concerns for integrator windup or compensation reset [29]. It should be further noted that this approach does not interfere with the compensation loop and avoids the need to redesign the network - an advantage over many dual-mode applications.

C. Comparators Thresholds Settings

As described earlier, the thresholds values dictate the worst-case voltage deviation that is allowed. Since the operation of the electronic capacitor is enabled during transient events, it is necessary to set the thresholds so that the steady-state voltage ripple avoids false transient triggering. As extra measure to avoid false detection is to assure large margins between the thresholds to accommodate the voltage ripple that is caused by current sinking or sourcing of the auxiliary circuit. The larger value of the two is caused by the latter since the current source is designed to sink or source the nominal current.

The largest voltage swing by auxiliary current source occurs when the current mismatch is small ($i_{\text{back}} \approx i_{\text{load}}$), that is:

$$V_{\text{refH}} - V_{\text{ref,L}} \geq Q_{g}/C_{\text{out}} = 8V_{\text{out}}C_{g}/C_{\text{out}},$$ \hspace{1cm} (1)

where Q_{g} is the charge delivered from the auxiliary circuit during a single discharge cycle, C_{g} is the GRSCC resonant tank capacitor and $V_{\text{ref,M}}$ is the steady-state value:

$$V_{\text{ref,M}} = \frac{V_{\text{ref,H}} + V_{\text{ref,L}}}{2}. \hspace{1cm} (2)$$

The implementation of the detection circuit can be realized as shown in Fig. 6. It comprises two voltage divider ladders, one for the reference voltage setting and the other for the output voltage measurement. Using this configuration, the reference voltages can be designed by:

$$V_{\text{refH}} = \frac{R_2 + 2R_3}{R_1 + R_2 + 2R_3}V_{\text{out}},$$

$$V_{\text{refM}} = \frac{R_2}{R_1 + R_2 + 2R_3}V_{\text{out}},$$

$$V_{\text{ref,L}} = \frac{R_2}{R_1 + R_2 + 2R_3}V_{\text{out}}. \hspace{1cm} (3)$$

![Flowchart of the electronic capacitor circuit operation algorithm.](image)

![Inductor current response with and without the response accelerator.](image)
III. AUXILIARY CURRENT SOURCE REALIZATION

A. Gyrator Resonant Switched Capacitor Converter

An auxiliary current source can be realized by either linear-mode regulators [24], switched-inductor converters [22], [25], [26] or by switched-capacitor converters [27]. The latter is adopted in this study in the form of the GRSCC [28] which has been found the most suitable for the application. It does not require a magnetic element, can be operated at high frequencies with soft-switching and maintains high efficiency over a wide and continuous step-up/down conversion ratio. Furthermore, it has a bi-directional current sourcing behavior and is able to react immediately to create current step response with bandwidth of up to half its maximal switching frequency [30].

A voltage doubling variation of the GRSCC has been implemented in this study and is shown as the auxiliary circuit in the electronic capacitor of Fig. 1. It is structured relying on a classical voltage multiplying resonant switched capacitor converter topology, shifting the GRSCC optimal efficiency point from V_{out} to $V_{\text{aux}} = 2V_{\text{out}}$. The main reason for the selection of this topology is to increase the power density of the auxiliary storage capacitor C_{aux} by increasing its rated voltage, but without adding voltage stress to the transistors. Another advantage of the doubling realization is that the desired current, i.e. I_{aux}, can be obtained by a higher characteristic impedance of the resonant network. This implies that higher target efficiency of the GRSCC can be obtained for a given loop resistance.

The GRSCC is resonant in nature and can be completely halted at zero-current after each cycle, as can be observed in Fig. 7. As a result, the nominal current can be resumed within one cycle. In the context of this study, this zero-order current-stepping capability enables the GRSCC to be used as the auxiliary current source unit. Moreover, there is no limitation to scalability as the resonant tank values can be determined for any desired V_{out} and operating frequency. The bridge configuration also guarantees that the maximum stress on any given switch will be around V_{out}, which translates into small area requirements of the power transistors.

B. Simulation Case Study

A simulation of the GRSCC as an auxiliary current source assisting a buck converter to handle a loading transient is depicted in Fig. 8. The buck is a 12V to 5V converter, controlled by an analog controller with a type III compensation network as depicted in Fig. 9. The thresholds of the electronic capacitor’s comparators are set to be ±50mV off the output voltage steady-state value and the GRSCC is designed to source a current of 5A to the output terminals of the buck converter.
A loading transient from 0A to 3.5A causes the output voltage to drop and cross \(V_{\text{out}} \), triggering \(\text{cmp} \) and a loading transient is detected by the electronic capacitor. The transient response accelerator is activated, the duty ratio is saturated to the maximal value, and the GRSCC sources 5A. Since \(i_{\text{aux}} + i_{\text{buck}} > i_{\text{load}} \), the output voltage rises and crosses \(V_{\text{out}} \), halting the GRSCC current sourcing. At this point, the load current is still higher than the inductor current and the output voltage drops again, crossing \(V_{\text{out}} \) once more, re-triggering the GRSCC. After the output voltage has risen and when it crossed \(V_{\text{out}} \), for the second time, the GRSCC operation is halted again, the inductor current is higher than the load current and charge balance is achieved. At this point, the end of transient is detected, the transient response accelerator is deactivated and steady-state operation is resumed without any need for compensator reset or update.

IV. EXPERIMENTAL VERIFICATION

In order to validate the operation of the electronic capacitor concept and to demonstrate the plug-and-play feature of the solution, an off-shelf evaluation module (EVM) of a 30W 12-to-5V analog-controlled synchronous buck converter from Texas Instruments (TPS40055) was selected to serve as the already compensated (type III scheme) and optimized voltage regulator. The electronic capacitor module developed in this study was connected as an add-on circuit to the EVM reference design, as described in Fig. 1. The auxiliary circuit was realized by a GRSCC with sinking and sourcing current capability of 6A, as described in Section III. The transient suppression unit’s state-machine is implemented on an Altera Cyclone IV FPGA [31]. Table I lists the components values and parameters of the experimental prototype and the comparator’s threshold voltages setting. The load step signal is also generated by the FPGA, independently, without synchronization to the controller.

![Fig. 10](image)

Fig. 10. Experimental results of a 6A loading transient response: (a) without the assistance of the electronic capacitor, (b) with the assistance of the electronic capacitor. Inductor Current (top – green) 5A/div, output voltage (middle - blue) 100mV/div, time scale 50μs/div, CH1 - load step signal.

TABLE I – EXPERIMENTAL PROTOTYPE VALUES

<table>
<thead>
<tr>
<th>Component</th>
<th>Value / Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck converter – Evaluation module</td>
<td>TI - TPS40055</td>
</tr>
<tr>
<td>Input voltage (V_{\text{in}})</td>
<td>12 V</td>
</tr>
<tr>
<td>Output voltage (V_{\text{out}})</td>
<td>5 V</td>
</tr>
<tr>
<td>Switching frequency (f_s)</td>
<td>300 kHz</td>
</tr>
<tr>
<td>Output capacitor (C_{\text{out}})</td>
<td>330 μF</td>
</tr>
<tr>
<td>Inductor (L)</td>
<td>22 μH</td>
</tr>
<tr>
<td>MOSFETs</td>
<td>Si4946BEY, 41 mΩ</td>
</tr>
<tr>
<td>Comparator upper threshold (V_{\text{cmp}})</td>
<td>2.515 V</td>
</tr>
<tr>
<td>Comparator middle threshold (V_{\text{cmp}})</td>
<td>2.499 V</td>
</tr>
<tr>
<td>Comparator lower threshold (V_{\text{cmp}})</td>
<td>2.487 V</td>
</tr>
<tr>
<td>GRSCC switching frequency. (f_s)</td>
<td>1.66 MHz</td>
</tr>
<tr>
<td>GRSCC resonant tank capacitor (C_f)</td>
<td>200 nF</td>
</tr>
<tr>
<td>GRSCC resonant tank inductor (L_f)</td>
<td>20 nH (stray inductance)</td>
</tr>
<tr>
<td>Auxiliary capacitor (C_{\text{aux}})</td>
<td>20 μF</td>
</tr>
</tbody>
</table>

It should be further emphasized that voltage regulator has been assigned as prescribed by the reference design, including the exact bill of materials. The three ports of the electronic capacitor were connected to the output voltage terminal (VOUT), the output of the analog controller’s E/A (COMP) and to GND.

A loading transient of 6A, depicted in Fig. 10, is generated in order to compare the buck converter’s response without (see Fig. 10(a)) and with (see Fig. 10(b)) the assistance of the electronic capacitor. As can be observed, without the electronic capacitor the output voltage undershoot is 500mV and the response with the assistance of the electronic capacitor exhibits an output voltage undershoot of 25mV. Fig. 11 presents a 6A unloading transient response for the same cases. The output voltage overshoot without the electronic capacitor is now 240mV (see Fig. 11(a)), whereas the output voltage overshoot with the electronic capacitor sums to be 30mV (see Fig. 11(b)). To get a full view of the system performance and automated TSU operation, a consecutive 6A loading-unloading transient response was measured with and without the electronic capacitor, as depicted in Fig. 12. Using the electronic capacitor,
the total transient time is only limited by the slew-rate of the inductor current, which are 80 μs for loading and 30 μs for unloading, whereas for the system without the electronic capacitor the total transient times are 500 μs and 275 μs, respectively.

Fig. 13 zooms in to the electronic capacitor operation which is based on the reference voltages V_{refH} and V_{refM} for an unloading event. As can be observed, the electronic capacitor maintains the output voltage between the two thresholds, sinks current when the output voltage crosses V_{refH} and halts the operation when the output voltage reaches V_{refM}. This leads to the conclusion that the output voltage deviation for a system with the electronic capacitor is now determined by the comparator’s thresholds, and that minimizing the difference between these thresholds is a function of: (1), the steady-state voltage ripple and the noise in the system. As a result, the output capacitance can be significantly reduced and sized to the steady-state specifications of the output voltage ripple, as opposed to sizing by the requirements of load transients.

V. CONCLUSION

A plug-and-play electronic capacitor for improved loading and unloading transient response of voltage regulator modules has been presented. The improvement has been achieved by the addition of a load-side transient suppression unit, implemented by a recently presented GRSCC topology. The electronic capacitor circuit has three ports and can be connected as an add-on unit to any closed-loop power supply with external compensation network, or access to the PWM generator. The output capacitance can be significantly reduced at the cost of
small additional semiconductors and few capacitors, with no ferromagnetic elements, and therefore has the potential to be space conserving and cost-effective when integrated on-chip.

The experimental results demonstrated the performance and benefits of the new transient suppression approach for both loading and unloading transients when applied on an off-shelf commercial buck converter specified by its reference design. Using the electronic capacitor, the output voltage deviation is reduced by up to 20 times compared to the original design along with settling time that is up to 9 times shorter, providing a strong evidence for a significant volume reduction capability.

ACKNOWLEDGEMENTS

This research is supported by Vishay Ltd., Siliconix division.

REFERENCES

