Analysis and behavioural modelling of matching networks for resonant-operating capacitive wireless power transfer

Eli Abramov¹, Jose Marcos Alonso², Mor Mordechai Peretz¹

¹The Center for Power Electronics and Mixed-Signal IC, Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
²Electrical Engineering Department, University of Oviedo, Campus de Viesques, 33204, Gijón, Asturia, Oviedo, Spain

Abstract: This study introduces a two-port network-based behavioural modelling approach for resonant-operated capacitive wireless power transfer (WPT) systems. A simple, generic and unified modelling approach is developed to describe the behaviour of WPT systems, under changes of the source and load circuits, variations of the coupling interface and drifts of the components in the matching networks. The resultant model provides insights into the electrical cross-coupling relationships between input and output parameters of the capacitive power transfer systems, including the effect of distance and alignment of the coupling plates. Regardless of the circuit complexity, it is demonstrated that the model core can be reduced to a basic gyration representation with added coefficients when required, thus obtaining a compact, closed-form relationship between the input and output. To provide a simulation framework for capacitive medium variations, a simulation-compatible model of the capacitive coupling using a continuous-time variable capacitor has been constructed. The behavioural model and methodology have been validated through simulations and experiments. A 200 W experimental capacitive WPT prototype has been designed and examined for various air-gaps up to 100 mm at a resonant operation of 1.56 MHz. A very good agreement is obtained between the theoretical predictions, simulations, and experimental results.

1 Introduction

As the field of mobile technology advances and adds more innovative uses, applications such as portable electronics, virtual and augmented reality, smartphones, electric vehicles, biomedical systems etc. are being used for extended periods [1–12]. In present-day portable electronics, compact power sources and interfaces are essential to keep high-performance devices, constantly accessible. In many volume-sensitive mobile or portable applications, the use of bulk batteries becomes prohibitive due to size allocations and thermal management. Wireless power transfer (WPT) technology is a growing alternative for bulk batteries as a reliable source of energy [11–17].

Capacitive power transfer (CPT) has been investigated in recent years, as an alternative near-field power transfer method to well-known magnetic-field-based approaches [1, 4, 6]. One of the more attractive advantages of capacitive-based WPT is the avoidance of undesired Eddy currents and electromagnetic interference that come with magnetic-based WPT methods. In addition to efficiency improvements, CPT systems are potential with lower volume and construction complexity [18–23]. However, the power transfer capability and efficiency still depend on the distance and alignment between the transmitting and receiving sides, which is an inherent feature of near-field WPT systems [19, 23, 24]. Several explorations and remedies for an extended range power transfer are covered in the literature [25–29], for general and CPT. An important step in the development of both uniform and specific solutions for extended range WPT systems is a generalised description of the energy transfer mechanism. This requires a description of the transfer medium, circuit behaviour and their interaction. In particular, in case that active compensation is added, a description of the system's dynamic response is essential. On the topic of magnetic-field-based WPT, there can be found several models based on circuit and system analyses, however, a generic behavioural model and modelling methodology for CPT has not been addressed hitherto.

A simplified block diagram of a descriptive CPT system is shown in Fig. 1. In a similar way to magnetic field approaches, reactive networks on both primary and secondary sides are used for impedance matching between the source and load [26–30]. To achieve suitable degrees of freedom in terms of design, performance and overall input-output relationships in any WPT system, high-order matching networks are used [19, 28–31]. Analysis of such high-order networks can be quite complex and tedious. As a result, the complex interaction between the system parameters and characteristics may be overlooked. Several approaches have been employed to decipher the operation of high-order resonant structures such as analytical multivariable matrix manipulations, geometrical representations [32, 33], and averaging [33–35]. Circuit derivation of CPT based on superposition theorem [21, 36] provides clear closed-form expressions of the power delivery and other important relationships. However, since some approximations are involved, accurate overall description is not always obtained, in particular for the description of the dynamic characteristics. Numerical simulations are also a strong tool to evaluate and characterise different resonant circuits. This approach, however, loses generality and may be time consuming for cases that a time domain cycle-by-cycle simulation for high-frequency drive signals (several MHz) is carried out [37–42]. It would be extremely beneficial if a simple and unified generic averaging behavioural modelling methodology for capacitive-based WPT systems is utilised, which is the goal of this study. Furthermore, a practical approach for describing and evaluating the behaviour of CPT systems establishes the core fundamentals for overall closed-loop analysis and controller design for capacitive-based WPT.

The objective of this study is, therefore, to introduce a network-based approach to describe the behaviour of capacitive WPT systems that operate in resonant conditions, under variations of the source and load circuits, coupling interface and matching networks. The modelling methodology results in a compact, closed-form, model for CPT that provides an insight into the cross-coupling relationship between the input and output parameters and enables to account for changes in the distance and alignment of the coupling plates. It is a further objective of this study to present a simulation-compatible model of the capacitive coupling by a continuous-time variable capacitor representation. This provides a simulation platform to further analyse and examine wireless CPT.
A fundamental building block of various resonant conversion systems is a matching network. It typically comprises a second- or higher-order impedance that connects a sourcing circuit to a loading one. The use of these networks serves many design objectives such as reducing circulating energy in the converter [43], lower voltage and current stresses of the switches [44], assuring soft-switching over a wide range [28] etc. Particularly in WPT systems, matching networks provide additional degrees of freedom to interact between the primary and secondary circuits and compensate for resonant frequency, volt-ampere ratings, constant voltage/current output (load-independent operation), output power and system efficiency [23, 28–30]. In the following subsection, a brief review of the basic matching networks is carried out in the particular context of the capacitive wireless medium, which is then used to characterise the behaviour of a network as an energy transfer element.

2.1 Survey of selected matching networks configurations and their primary features

Fig. 2 shows several popular matching networks that are mostly used in capacitive WPT systems [18–23]. A well-known and simple option is depicted in Fig. 2a in which a series inductance connects to the coupling capacitance of the wireless medium and forms a resonator [18]. By this, operation in the vicinity of the resonant frequency results in efficient power transfer to the load. However, a significant drawback of this configuration is that any change either in the capacitive medium or the load parameters, even the slightest, results in different operating point and a significant deterioration of the system ability to transfer power. This is somewhat alleviated by the configuration in Fig. 2b, in which both the primary and secondary sides of the coupling element include series-parallel L-type resonators (also referred to as double-sided inductor–capacitor (LC)). Here, the operating frequency is near the matching network's resonance, and therefore the system is less sensitive to variations in the coupling capacitance (due to distance or misalignment variations). At the cost of slightly higher component count, the power transfer capabilities are higher than in a series compensation, but still depending on the coupling for efficiency and delivered power [21, 23].

The structure in Fig. 2c is a combination of the LC matching network with an additional series inductor on both sides of the system (double-sided inductor–capacitor–inductor (LCL)). By proper design of the inductors (L_P, L_P1, L_S, L_S1), this setup provides several degrees of freedom to adjust the power transfer of the system. However, as in the case of the LC matching network, the power transfer capabilities of the LCL structure is inversely proportional to the coupling capacitance [18, 20]. A more complex matching network is shown in Fig. 2d, which consists of a greater number of reactive elements in both primary and secondary (double-sided inductor–capacitor–inductor–capacitor (LCLC)). There, the coupling capacitance, in this case, does not directly influence the resonance of the matching networks. However, it still limits the amount of power transfer of the system, i.e. the maximum power that the system is able to transfer is proportional to the coupling capacitance [19].

2.2 Equivalent representations of matching networks

Matching L-type structures such as a series inductor combined with a parallel capacitor (series–parallel LC, Fig. 2b) and a parallel capacitor combined with a series inductor (parallel–series LC, Fig. 2b) can be described by a two-port network with gyrator characteristics [45]. A gyrator is a passive, lossless, linear two-port transformation network in which the input and output currents depend on the input and output voltages, respectively, with respect to its transconductance gain G. In circuit theory, gyrrators often used to reflect inductance using capacitance, impedance into admittance, and vice versa [46–49]. The input-output relationship of an ideal gyrator as a two-port network can be expressed as

\[
\begin{align*}
V_{1} & = \frac{1}{G} I_{2} \\
I_{1} & = \frac{1}{G} V_{2}
\end{align*}
\]
\[
\begin{bmatrix}
| I_p | \\
| I_s |
\end{bmatrix} =
\begin{bmatrix}
0 & -G \\
G & 0
\end{bmatrix}
\begin{bmatrix}
| V_p | \\
| V_s |
\end{bmatrix}
\]

(1)

In the context of the above discussion, voltage and current relationships of a series–parallel LC matching network (Fig. 3a) can be derived as follows:

\[
\begin{align*}
V_{P1} &= \frac{j\omega L_p I_P + V_P}{1 + \frac{j\omega C_P}{I_P}} \\
V_{P2} &= \frac{1}{j\omega C_P} (I_P - I_P) \\
\Rightarrow \quad V_{P1} &= \frac{(V_{P1} - V_{P2})}{j\omega L_p}, \\
I_P &= \frac{1}{j\omega C_P} (I_P - I_P).
\end{align*}
\]

(2)

Assuming operation at the resonant frequency, the currents \(I_{P1} \) and \(I_{P2} \) are given by

\[
\begin{align*}
I_{P1} &= -j\omega C_P (V_{P1} - V_{P2}); \\
I_{P2} &= j\omega C_P V_{P1}; \\
\text{where } \omega_0 &= \frac{1}{\sqrt{LC}}.
\end{align*}
\]

(3)

where \(\omega_0 \) is the resonant angular frequency.

Employing few configurational modifications to the L-type network of Fig. 3a, an equivalent representation can be obtained. As can be seen in Fig. 3b, by addition of a series resonator (whereas \(L_P = L_p \) and \(C_P = C_p \)) the network is transformed into a T-type one (\(L_P = L_p \)), with an output series capacitance \(C_p^* \).

Following the observations and derivations made in the previous section, a capacitively-coupled power transfer system with double-series–parallel LC circuit at the primary and a parallel–series LC at the secondary is employed in a variety of medium power level CPT applications [20, 21]. The self-capacitances of the coupling plates [20, 21]. The system is driven by a full-bridge inverter on the primary side, and

\[
\begin{align*}
V_{P1} &= \frac{j\omega L_p I_P + V_P}{1 + \frac{j\omega C_P}{I_P}} \\
V_{P2} &= \frac{1}{j\omega C_P} (I_P - I_P) \\
\Rightarrow \quad V_{P1} &= \frac{(V_{P1} - V_{P2})}{j\omega L_p}, \\
I_P &= \frac{1}{j\omega C_P} (I_P - I_P).
\end{align*}
\]

(4)

and in a matrix representation, it can be written as

\[
\begin{bmatrix}
| I_p | \\
| I_s |
\end{bmatrix} =
\begin{bmatrix}
0 & \frac{j\omega C_P}{-G} \\
\frac{j\omega C_P}{G} & 0
\end{bmatrix}
\begin{bmatrix}
| V_p | \\
| V_s |
\end{bmatrix}
\]

(5)

where the transconductance gain is \(G = -j\omega_0 C_P \). It should be noted that assuming operation in resonance, the addition of the series branch is an effectively short circuit and does not change the behaviour of the circuit.

Following the above observations, the series output capacitance \(C_p^* \) can be reflected to an input parallel inductance \(L_p^* \), as shown in Fig. 3c. Finally, the original L-type network can be represented as a gyrator element (Fig. 3d) with parallel input inductance \(L_P \) (full mathematical derivations have been omitted here for clarity and are detailed in the Appendix).

In analogy to the above practice for the series–parallel LC matching network, the parallel–series LC structure in Fig. 4a can also be defined by a gyrator ratio. This is facilitated by the addition of a parallel resonator (whereas \(L_P^* = L_p \) and \(C_P^* = C_p \)) as shown in Fig. 4b. Similarly to the case of the series branch, the parallel resonator is an effectively open circuit when operating at resonance and does not change the original characteristics of the circuit. The L-network is transformed into a \(\pi \)-type one (\(C_S = L_S \) \(C_S^* \)) with parallel output inductor \(L_S^* \). The parallel–series LC structure can be described as a gyrator element with parallel output inductor \(L_S \) as shown in Fig. 4c.

A \(\pi \)-type network can also be constructed in LCL configuration as depicted in Fig. 5a. Under resonant conditions, the LCL \(\pi \)-type configuration can be directly represented as a pure gyrator (Fig. 5b). It should be emphasised that for the case of the LCL \(\pi \)-type matching network, the transconductance gain \(G \) is positive, as opposed to the analysis of the circuits in Figs. 3 and 4.

3 Case study: double-sided L-type capacitive WPT system

Following the observations and derivations made in the previous section, a capacitively-coupled power transfer system with double-sided L-type matching networks is analysed. The schematic diagram of the full system is shown in Fig. 6. This configuration has been selected for the case study demonstration since it can be employed in a variety of medium power level CPT applications [21, 23]. As can be seen in Fig. 6, the matching networks are a series–parallel LC circuit at the primary and a parallel–series LC at the secondary. The capacitive medium is modelled by a \(\pi \)-network, such that \(C_M = \) the equivalent mutual capacitance and \(C_{MI} \) and \(C_{M2} \) are the self-capacitances of the coupling plates [20, 21]. The system is driven by a full-bridge inverter on the primary side, and
the load is fed via a diode rectifier that is connected to the secondary's network. Due to the structural constraints of the coupling plates, as a general practice, it is assumed that the coupling capacitance C_M is significantly lower than the total parallel capacitance. Consequently, the driving frequency is near the matching networks' resonant frequency (i.e. $f_0 = \frac{1}{2\pi\sqrt{L_P C_P}} = \frac{1}{2\pi\sqrt{L_S C_S}}$). Since the high-Q operation is naturally facilitated because of the high output impedance of the primary's network, the currents, as well as voltages of the reactive elements, are virtually sinusoidal.

For the derivations of the model, the circuit of Fig. 6 is simplified by separating the parallel capacitances of the medium from the model self-capacitances, as shown in Fig. 7a. This forms a π-network constructed by the mutual capacitance C_M, which can be analysed similarly to the LCL π-matching network from Section 2. This enables to use a gyrator element to represent the coupling behaviour, as depicted in Fig. 7b. In the context of the overall system, Fig. 6 is simplified as delineated in Fig. 7c. Applying the network dualities that have been established earlier, the entire system is represented by three series gyrators, as shown in Fig. 7d, where $C_P^* = C_P + C_M$ and $C_S^* = C_S + C_M$; C_P, $C_S \gg C_M$. This is further reduced to a single gyrator, as illustrated in Fig. 7e, with a total transconductance gain that can be expressed as

$$G_{\text{total}} = \frac{j\omega C_P C_S}{C_M}.$$ \hspace{1cm} (6)

The simplified circuit of the double-sided L-type capacitive wireless power transfer system in Fig. 7e can be now analysed in as
a two-port network with gyrator characteristics, such that the current–voltage relationships are expressed as follows:

\[
I_p = \frac{V_p}{\omega_0 L_p} - \frac{j \alpha_0 C_p C_S}{C_M} V_S = -j \left(\frac{V_p}{\omega_0 L_p} + \frac{\alpha_0 C_p C_S}{C_M} V_S \right),
\]

\[
I_S = -\frac{V_S}{\omega_0 L_S} + \frac{j \alpha_0 C_p C_S}{C_M} V_P = \left(\frac{V_S}{\omega_0 L_S} + \frac{\alpha_0 C_p C_S}{C_M} V_P \right).
\]

(7)

From (7), the current–voltage relationships of the system are distinguished for different scenarios of (a) an asymmetrical WPT system with voltage ratings and matching networks components with different values; (b) a system with equal voltage ratings; and (c) a complete symmetrical WPT system.

For an asymmetrical system, i.e. \(V_p \neq V_S \), \(L_p \neq L_S \) and \(C_p \neq C_S \), the absolute values of current–voltage relationships can be expressed in a matrix representation as follows:

\[
\begin{bmatrix}
I_p \\
I_S
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{\omega_0 L_p} \quad -\frac{j \alpha_0 C_p C_S}{C_M} \\
\frac{1}{\omega_0 L_S} + \frac{j \alpha_0 C_p C_S}{C_M}
\end{bmatrix}
\begin{bmatrix}
V_p \\
V_S
\end{bmatrix},
\]

(8)

it should be noted that although the passive matching components are different, the resonant frequency is identical for both the primary and secondary sides.

Next, in the case that some symmetry in the form of \(V_p = V_S \) is incorporated, however, still with different values for the matching components, then the relationship simplifies to

\[
\begin{bmatrix}
I_p \\
I_S
\end{bmatrix} =
\begin{bmatrix}
0 \\
1 \left(\frac{1}{\omega_0 L_p} + \frac{\alpha_0 C_p C_S}{C_M} \right)
\end{bmatrix}
\begin{bmatrix}
V_p \\
V_S
\end{bmatrix},
\]

(9)

Finally, in the particular case of a full symmetrical system, i.e. \(V_p = V_S \), \(L_p = L_S = L \) and \(C_p = C_S = C \); the relationship renders down to a pure gyrator which can be expressed as

\[
\begin{bmatrix}
I_p \\
I_S
\end{bmatrix} =
\begin{bmatrix}
0 \\
\frac{1}{\omega_0 L} + \frac{\alpha_0 C}{C_M}
\end{bmatrix}
\begin{bmatrix}
V_p \\
V_S
\end{bmatrix},
\]

(10)

In the typical application of this system, the operating frequency is in the MHz range, the network parallel capacitance values are in the range of hundreds of pF, inductances are tens to hundreds \(\mu \)H, and the mutual coupling capacitance, \(C_M \), is in the order of a few pF. As a result, the transfer relationship of the system can be simplified to generic expressions as follows:

\[
I_p = \frac{\alpha_0 C_p C_S}{C_M} V_S; \quad \frac{\alpha_0 C_p C_S}{C_M} \gg \frac{1}{\omega_0 L_p}, \quad \frac{\alpha_0 C_p C_S}{C_M} \gg \frac{1}{\omega_0 L_S}.
\]

\[
I_S = \frac{\alpha_0 C_p C_S}{C_M} V_P; \quad G = G_{total} = \frac{\alpha_0 C_p C_S}{C_M}.
\]

(11)

which is in excellent agreement with [21, 23]. The implication of this analysis is that the double-sided L-type capacitive WPT system can be modelled as a voltage-dependent current source, \(I_{out} \), which represents the rectified current of \(I_S \) as illustrated in Fig. 8.

Employing the fundamental harmonic approximation [50, 51], the peak values of the currents in (11) can be found with the aid of the transconductance gain, input and output voltages as

\[
I_{out} = \frac{4 \alpha_0 C_p C_S}{\pi} V_{out}; \quad I_{in} = \frac{4 \alpha_0 C_p C_S}{\pi} V_{in},
\]

(12)

and therefore the average value of the output current \(I_{out,AVG} \) is

\[
I_{out,AVG} = \frac{8 \alpha_0 C_p C_S}{\pi} V_{in}.
\]

(13)

It should be noted that not all CPT systems can be simplified into a voltage-dependent current source. However, the presented network-based modelling approach significantly simplifies the input–output relationships of any L-type based capacitive WPT system by using the gyrator characteristics.

To verify and show a proof-of-concept of the behavioural model, a cycle-by-cycle simulation test-bench for the analysed CPT system has been constructed in PSIM (PowerSim, Inc.). The input voltage is 70 V and the medium mutual capacitance \(C_M = 6 \) pF, at resonant frequency \(f_0 = 1.55 \) MHz for a load resistance \(R_{load} = 15 \) \(\Omega \) and output capacitor \(C_{load} = 200 \mu F \). The first set of simulations has been carried out for symmetrical matching parameters: \(L_p = L_S = 67 \mu H, \quad C_p^* \approx C_p = C_S^* \approx C_S = 156 \) pF. The simulation results of the currents and voltages of the primary and secondary sides are shown in Figs. 9a and b, respectively, whereas the dashed lines show the behavioural model predictions. The obtained peak values of the currents are in good agreement with the theoretical predictions in (12), which further imply that the average output current, \(I_{out,AVG} \), as expected from (13).

The second set of simulations has been carried out for asymmetrical matching parameters: \(L_p = 67 \mu H, \quad C_p^* \approx C_p = 156 \) pF for the primary side, and \(L_S = 90 \mu H, \quad C_S^* \approx C_S = 116 \) pF for the secondary side. Fig. 10 depicts simulation waveforms of the currents and voltages of the primary and secondary. As can be seen, the obtained results match the model predictions. It can also be noticed that the resulting output current is lower than that in the symmetrical case shown in Fig. 9. This is due to the lower transconductance gain in the case with a lower value of \(C_S \).

Finally, the calculated results for the average output current of an asymmetrical case are plotted against the results obtained from the simulation. These are depicted in Fig. 11, where Fig. 11a shows the current as a function of the input voltage and Fig. 11b shows the current as a function of the coupling capacitance. A very good agreement is obtained throughout these simulations. As can be seen in Fig. 11b, as predicted by the model in (12), the output current is
inversely proportional to the mutual coupling capacitance C_M.
Therefore, the output power will follow a similar trend.

4 Simulation-compatible capacitive medium modelling

The coupling capacitance of the medium depends on various factors such as conductors, dielectric material, alignment and distance between the coupling plates. Evaluation of a WPT system in a simulation environment for these variables over time or frequency is a major challenge since a continuous variable capacitance is required. To-date, this element is generally absent from the common simulation software packages. Methods to obtain the medium characteristics either involve rigorous and tedious experiments and/or finite element analysis [24]. However, even in cases in which these characteristics are obtained, the analysis of their interaction with the electrical circuit is still required. To this end, a continuous-time model for variable capacitors, which can be extended to a variable-capacitance network model, has been developed and implemented in the PSIM platform.

In this study, the methodology to model continuous-time variable inductance as described previously in [44, 52] has been employed and adapted to describe variable capacitance. As illustrated in Fig. 12, the model comprises two dependent voltage and current sources, which emulate a non-linear transformer, and a capacitor with a reference capacitance. The characteristics of the non-linear transformer are defined by the following relationships:

\[
\begin{align*}
V_2 &= K_{\text{cap}} V_1, \\
I_2 &= I_1,
\end{align*}
\]

(14)

where K_{cap} is the transformer's scale factor between the primary and secondary, and C_{ref} is the constant reference capacitance. From (14), the capacitive impedance reflected to the primary side, Z_{C2}, with respect to the capacitive impedance at the secondary, Z_{C1}, is

\[
\begin{align*}
Z_{C2} &= Z_{C1} V_{in}^2, \\
I_{out,AVG} &= \frac{V_{in}}{Z_{C2}}.
\end{align*}
\]
\[
\begin{align*}
Z_C &= \frac{1}{j\omega C_C} = \frac{V_1}{I_1} = \frac{V_2}{I_2} = \frac{1}{K_{C_{cap}}}Z_C^{ref} \Rightarrow Z_C &= \frac{1}{K_{C_{cap}}}Z_C^{ref}.
\end{align*}
\]
and therefore, the capacitor value reflected to the primary side is obtained as
\[
C = K_{C_{cap}}C_{C_{ref}}.
\]
For the sake of simplicity, \(C_{C_{ref}}\) has been set to 1 F. In this case, the effective capacitance that is reflected across the capacitor terminals equals the scale factor \(K_{C_{cap}}\). To evaluate a WPT system for continuous operation, \(K_{C_{cap}}\) can be made dependent on system parameters such as changes in distance and/or coupling capacitance, matching network variations and mistuned resonant frequency. Thus, a voltage-dependent variable capacitor is emulated between nodes \(C^+\) and \(C^-\), as shown in Fig. 12.

Now, having a continuous-time behavioural model of a variable capacitor, the variable capacitive medium \(\pi\)-model of Fig. 13 \(a\) can be created by means of three voltage-dependent voltage sources as illustrated in Fig. 13b, where the reference capacitances are not depicted for clarity.

In order to evaluate the performance of a double-sided L-type system for continuous medium (distance) variations, based on the above-presented modelling technique, a simulation test-bench with variable capacitors has been constructed as shown in Fig. 14. There, for convenience, the capacitive medium is illustrated by variable capacitor symbols. Simulations have been carried out under nominal operating conditions and matching networks that are identical to those of the asymmetrical case study in Section 3, whereas the initial coupling capacitance is 3.5 pF. Fig. 15a shows the result of the average value of \(I_{out}\) for a 1.5 pF variation of the mutual capacitance, such that the final coupling capacitance is \(C_M = 5\) pF. The solid red line shows the simulation result, whereas the dashed blue markers show the behavioural model outcome. It can be observed that the results of the cycle-by-cycle simulation and behavioural model are in very good agreement. It can be further noticed that when \(C_M\) increases, the output current decreases as expected from the theoretical analysis. Fig. 15b shows the output current for a medium step-down variation of 1.5 pF, such that the final coupling capacitance is \(C_M = 2\) pF. The output current settles on \(\sim 5\) A for both the model and cycle-by-cycle simulation, which suits well the theoretical predictions as shown in detail in Fig. 11b. It should be noted that since the resonant tank is operated at a significantly higher frequency than the output filter time constant \((R_{load}^{-1} + C_{load}^{-1})\), it is assumed instantaneous from a dynamic perspective (detailed dynamic analysis is beyond the scope of this study and will be detailed in upcoming subsequent publications).

This is exemplified in Fig. 15 where it can be observed that the system response to step variation of \(C_M\) can be well approximated to the output filter time constant.

5 General model validation

To further validate and examine the behavioural modelling approach, an experimental double-sided \(L\)-type capacitive WPT prototype with four copper plates that form the capacitive coupling has been constructed as shown in Fig. 16. The coupling plates have been designed symmetrically, such that each plate is \(25 \times 25\) cm. Thus, the matching networks have also been designed to be symmetrical, with \(L_P = L_S \approx 67\) \(\mu\)H and \(C_P = C_S = 165\) pF. The gate drive signals of the full-bridge inverter were generated with a Cyclone IV field programmable gate array [53] at an operating frequency slightly above the resonance \(f_0 \approx 1.558\) MHz guaranteeing soft-switching operation. The full-bridge inverter has been implemented with GaN modules operable at several MHz [54]. To reduce the limitations due to magnetic and skin-effect losses in the MHz range [55, 56], the matching inductors \(L_P\) and \(L_S\) have been constructed with an AWG 48 litz wire wrapped on an air-core. It should be noted that the actual litz wire resistance at the operation frequency of MHz range may be different than the manufacturer specified resistance, typically at 100 kHz. High-voltage multilayer surface mount device ceramic capacitors have been used in parallel to form the desired matching capacitors \(C_P\) and \(C_S\).
The obtained peak value (3.4 A) and the resulting average value of sinusoidal current, capacitance, parasitics, the experimental measurements tightly follow the perfectly tuned to the resonant frequency due to small system input voltage gaps (Fig. 17).

Step-up of 1.5 pF, 2.2 A) at the secondary are similar to the simulation results (Fig. 18) showing experimental waveforms of the system for the input voltage $V_{in} = 70$ V and a load resistance $R_{Load} = 15$ Ω, whereas the distance between the plates is 50 mm resulting in coupling capacitance $C_M \approx 6$ pF. Fig. 18a shows the primary sinusoidal current I_p, it can be noticed that the current is slightly lagging the primary voltage V_P validating soft-switching operation. The sinusoidal current at the secondary I_s is shown in Fig. 18b. The obtained peak value (3.4 A) and the resulting average value (~2.2 A) at the secondary are similar to the simulation results shown in Fig. 9b with a small error of 4%. It should be noted that although the matching network at the secondary side is not perfectly tuned to the resonant frequency due to small system parasitics, the experimental measurements tightly follow the behavioural model predictions. The overall operating conditions and parameters of the experimental prototype are summarised in Table 1.

To further verify the strength of the behavioural model, the average output current has been measured for various input voltages, for a constant C_M of 6 pF; the results are summarised in Fig. 19. The experimental measurements tightly follow the results obtained by the simulations as well as the model predictions. It can be noticed that the output current (as well as the output power) increases with the input voltage, as predicted from the gyrator current–voltage relationships obtained in Section 3. Fig. 20 depicts the output current comparison between an experimental, simulated and behavioural model for various air-gaps between 25 and 100 mm, which corresponds to a mutual capacitance range of ~3–10 pF, thus demonstrating variations in distance and/or displacement (while $V_{in} = 70$ V). This way, the inversely proportional behaviour between the capacitive coupling and the output current is well validated by the experimental measurements. It can be noticed that for relatively small C_M the measured current is lower than predicted, the discrepancy can be explained by the fact that beyond a certain distance the system go from near-field to far-field operation, and it behaves as an antenna rather than a coupling system. This implies that some assumptions that have been made for the behavioural model analysis are not satisfied.

6 Conclusion

A generic two-port network-based modelling approach for resonant capacitive WPT systems has been presented. Based on the modelling approach, the behaviour of a resonant-operating CPT system (or in the vicinity of resonant operation) can be analysed and described for different system variations such as capacitive coupling interface, resonant frequency and matching network components. The modelling method provides an insight into the effects of the parameters on the system behaviour, the cross-coupling relationships between transmitter and receiver sides, and source features based on the operation mode and settings. The simplicity and generality of the gyrator model as an energy transfer element offers an efficient closed-form alternative to complex analytical approaches or tedious numerical simulations. The presented behavioural model establishes the foundations for overall closed-loop analysis and controller design for capacitive WPT systems. This study also introduced a simulation-compatible variable capacitor model that is applicable for continuous-time analysis of WPT systems. This provides a simulation framework to account for variations of the capacitive medium such as coupling coefficient, dielectric material, alignment and distance between the coupling plates.

This study also introduced a simulation-compatible variable capacitor model that is applicable for continuous-time analysis of WPT systems. This provides a simulation framework to account for capacitive medium variations such as the coupling coefficient, dielectric material, alignment and distance between the coupling plates.

The behavioural model and methodology have been validated through simulation and experiments. To this end, an experimental CPT prototype operating in the MHz range has been constructed.
The prototype has been evaluated for various air-gaps up to 100 mm and 200 W output power delivery. The experimental case-study confirmed the theoretical predictions of the model with an excellent agreement between the analytical derivations, simulations, and experimental results.

7 Acknowledgment

This research was supported by the Pazi Foundation.

8 References

Fig. 18 Experimental waveforms with operating conditions: \(V_{in} = 70 \text{ V}, R_{Load} = 15 \Omega \), coupling capacitance \(C_M \approx 6 \text{ pF} \)

(a) Primary side \(V_P = 40 \text{ V/div}, I_P = 2 \text{ A/div} \), (b) Secondary side \(V_S = 20 \text{ V/div}, I_S = 3 \text{ A/div} \), time scale 200 ns/div

Fig. 19 Average output current, \(I_{out, AVG} \) curve as a function of the input voltage \(V_{in} \), for 50 mm air-gap

Table 1 Experimental prototype values and parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/type</th>
</tr>
</thead>
<tbody>
<tr>
<td>input voltage (V_{in})</td>
<td>70 V</td>
</tr>
<tr>
<td>output current (I_{out, AVG})</td>
<td>up to 4 A</td>
</tr>
<tr>
<td>load resistance (R_{Load})</td>
<td>15 \Omega</td>
</tr>
<tr>
<td>coupling plates</td>
<td>25 \times 25 cm</td>
</tr>
<tr>
<td>coupling capacitance (C_M) /air-gaps</td>
<td>3–10 pF/25–100 mm</td>
</tr>
<tr>
<td>full-bridge transistors</td>
<td>LMG5200, 80 V, dual</td>
</tr>
<tr>
<td>rectifier diodes</td>
<td>5 A/200 V, VSSC520S-M3</td>
</tr>
<tr>
<td>inductors (L_P) and (L_S)</td>
<td>~67 \mu H</td>
</tr>
<tr>
<td>capacitors (C_P) and (C_S)</td>
<td>156 pF, AVX MLLC 5 kV</td>
</tr>
<tr>
<td>output capacitor (C_{Load})</td>
<td>200 \mu F, EEV-FK2A101M</td>
</tr>
<tr>
<td>resonant frequency (f_0)</td>
<td>~1.558 MHz</td>
</tr>
</tbody>
</table>

Fig. 20 Average output current, \(I_{out, AVG} \) curve as a function of the mutual coupling capacitance \(C_M \) /air-gaps, for \(V_{in} = 70 \text{ V} \)

IET Power Electron.
© The Institution of Engineering and Technology 2019
This appendix details the analytical derivations and observations required in Section 2.2, to extract the input–output characteristics of the matching networks that have been surveyed earlier. This provides a network perspective to the interaction between the source and load sides.

The relationship of the voltage and current of a series–parallel LC matching structure (Fig. 3a) can be expressed as

\[V_{P_1} = j\omega L P_{I_1} + V_{P_2}, \]
\[V_{P_2} = \frac{1}{j\omega C} (I_{P_2} - I_{P_1}) \]
\[I_{P_1} = \frac{V_{P_1} - V_{P_2}}{j\omega L} \]
\[I_{P_2} = j \omega L P_{I_2} + \frac{1}{j\omega C} (I_{P_1} - I_{P_2}) \]

Assuming that the switching frequency equals the resonant frequency, the currents \(I_{P_1} \) and \(I_{P_2} \) are given by

\[I_{P_1} = -\frac{1}{j\omega C} (V_{P_1} - V_{P_2}); \]
\[I_{P_2} = -\frac{1}{\omega L} (V_{P_1} V_{P_2}); \]

where \(\omega_0 \) is the resonant angular frequency.

By modifying the L-type network in Fig. 3a with an additional series resonator, a T-type network (\(L_r - C_r - L_p \)) is obtained as shown in Fig. 3b. At the resonant frequency, this modification is effectively a short circuit, and the resulting T-type network has the characteristics of a gyrator as follows:

\[V_{P_1} = j\omega L P_{I_1} + \frac{1}{j\omega C} (I_{P_1} - I_{P_2}) = \frac{1}{j\omega L} P_{I_2}; \]
\[V_{P_2} = -j \omega L P_{I_2} + \frac{1}{j\omega C} (I_{P_1} - I_{P_2}) = \frac{1}{\omega L} (V_{P_1} V_{P_2}); \]
it should be noted that without losing generality, (19) can be expressed in a matrix representation as

\[
\begin{bmatrix}
I_{p1} \\
I_{p2}
\end{bmatrix} = \begin{bmatrix}
0 & j\omega C_p \\
-j\omega C_p & 0
\end{bmatrix} \begin{bmatrix}
V_{p1} \\
V_{p2}
\end{bmatrix}.
\] (20)

The current \(I_{p2}\) can also be expressed as

\[
I_{p2} = j\omega C_p(V_{p2} - V_{p1}).
\] (21)

Rearranging (20) and (21), and after some manipulations, the voltage \(V_{p2}\) can be written as

\[
V_{p2} = V_{p1} - V_{p2}.
\] (22)

substituting (22) into (20) results in the same value of the current \(I_{p1}\) as given in (18). This implies that the initial current–voltage relationships of the series–parallel LC matching network are preserved through a gyrator or two-port network representation. From the gyrator characteristics and under the constraint of operating at the resonant frequency, Fig. 3b can be further modified by reflecting the capacitor \(C_p\) to the first port as an inductor \(L_p\) as depicted in Fig. 3c. The original current–voltage relationships shown in (18) can be obtained by applying Kirchhoff's voltage and current laws. This yields

\[
\begin{align*}
V_{p2} &= -j\omega L_p I_{p2} + \frac{1}{j\omega C_p}(I_{p1} - I_{p2}) \Rightarrow I_{p1} = j\omega C_p V_{p2}, \\
V_{p1} &= -j\omega L_p I_{p1} + \frac{1}{j\omega C_p}(I_{p1} - I_{p2}) \Rightarrow I_{p1} = -j\omega C_p V_{p1}, \quad (23) \\
I_{p1} &= \frac{V_{p1}}{j\omega L_p} + I_{p1} = -j\omega C_p(V_{p1} - V_{p2}).
\end{align*}
\]

Then, the series–parallel LC matching circuit in Fig. 3a can be simplified and represented equivalently with a two-port network by a gyrator element, whereas the transconductance gain is \(G = -j\omega C_p\), as shown in Fig. 3d.

In a similar manner to the series–parallel LC matching network, the voltage and current relationships of a parallel–series LC matching structure (Fig. 4a) are derived as

\[
\begin{align*}
V_{S1} &= (I_{S1} - I_{S2}) \\
V_{S2} &= V_{S1} - j\omega L_d I_{S1}
\end{align*} \Rightarrow \begin{align*}
I_{S1} &= \frac{(V_{S1} - V_{S2})}{j\omega L_s}, \\
V_{S1} &= \frac{(I_{S1} - I_{S2})}{j\omega C_S} - j\omega L_d I_{S1}.
\end{align*} \] (24)

and when operating at the resonant frequency, the currents \(I_{S1}\) and \(I_{S2}\) are expressed as

\[
\begin{align*}
I_{S1} &= j\omega C_S V_{S1}; \\
I_{S2} &= -j\omega C_S(V_{S1} - V_{S2}); \quad \omega L_d = \frac{1}{\omega C_S}.
\end{align*} \] (25)

The L-type network in Fig. 4a can be modified by adding a parallel resonator, whereas \(L_S = L_S\) and \(C_S = C_S\) (Fig. 4b). Similarly to the case of the series branch, the parallel resonator is effectively an open circuit when operating at resonance and does not change the original characteristics of the circuit in Fig. 4a. By applying Kirchhoff's current law on the obtained \(\pi\)-type network \((C_S - L_S - C_S)\), a two-port network with gyrator characteristics is obtained as follows:

\[
\begin{align*}
I_{S1} &= j\omega C_S V_{S1} + \frac{(V_{S1} - V_{S2})}{j\omega L_S} = j\omega C_S V_{S1}, \\
I_{S2} &= -j\omega C_S V_{S1} + \frac{(V_{S1} - V_{S2})}{j\omega L_S} = -j\omega C_S V_{S1}.
\end{align*} \] (26)

or in a matrix representation

\[
\begin{bmatrix}
I_{S1} \\
I_{S2}
\end{bmatrix} = \begin{bmatrix}
0 & j\omega C_S \\
-j\omega C_S & 0
\end{bmatrix} \begin{bmatrix}
V_{S1} \\
V_{S2}
\end{bmatrix}.
\] (27)

The current \(I_{S2}\) can be obtained with the aid of \(I_{S2}\) from (26) as follows:

\[
I_{S2} = I_{S1} - \frac{V_{S2}}{j\omega L_s} = -j\omega C_S V_{S1} + j\omega C_S V_{S1} = -j\omega C_S(V_{S1} - V_{S2}).
\] (28)

From (26) and (28) it can be observed that the original current–voltage relationships of the parallel–series LC matching network are preserved while using a gyrator element. The latter implies that the circuit in Fig. 4a can be simply transformed to the circuit in Fig. 4c.

The LCL \(\pi\)-type network shown in Fig. 5a can also be analysed and represented by a two-port model. In resonant operation, the input and output currents can be obtained similarly to the analysis of the capacitor–inductor–capacitor (CLC) \(\pi\)-type network as given in (26), which can be expressed as follows:

\[
\begin{align*}
I_{S1} &= V_{S1} + (V_{S1} - V_{S2})\frac{j\omega C_S}{j\omega L_S} = \frac{j\omega C_S V_{S1}}{\omega G}, \\
I_{S2} &= \frac{V_{S2}}{j\omega L_s} + (V_{S1} - V_{S2})\frac{j\omega C_S}{j\omega L_S} = \frac{j\omega C_S V_{S1}}{\omega G},
\end{align*} \] (29)

and in a matrix representation describing Fig. 5b as

\[
\begin{bmatrix}
I_{S1} \\
I_{S2}
\end{bmatrix} = \begin{bmatrix}
0 & -j\omega C_S \\
-j\omega C_S & 0
\end{bmatrix} \begin{bmatrix}
V_{S1} \\
V_{S2}
\end{bmatrix}.
\] (30)