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Abstract. We present a novel framework for high-throughput cell lin-
eage analysis in time-lapse microscopy images. Our algorithm ties to-
gether two fundamental aspects of cell lineage construction, namely cell
segmentation and tracking, via a Bayesian inference of dynamic models.
The proposed contribution exploits the Kalman inference problem by
estimating the time-wise cell shape uncertainty in addition to cell tra-
jectory. These inferred cell properties are combined with the observed
image measurements within a fast marching (FM) algorithm, to achieve
posterior probabilities for cell segmentation and association. Highly ac-
curate results on two different cell-tracking datasets are presented.

1 Introduction

High-throughput live cell imaging is an excellent and versatile platform for quan-
titative analysis of biological processes, such as cell lineage reconstruction. How-
ever, lineage analysis poses a difficult problem, as it requires spatiotemporal trac-
ing of multiple cells in a dynamic environment. Since addressing this challenge
manually is not feasible for large data sets, numerous cell tracking algorithms
have been developed. Forming complete cell tracks based on frame-to-frame cell
association is commonly approached by finding correspondences between cell
features in consecutive frames. Typical cell properties used for this purpose are
cell pose, location and appearance e.g. center of mass (COM), intensity, and
shape. As a result, cell segmentation is therefore inevitable, and is thus typically
an integral part of the tracking process.

Cell association becomes complicated when the feature similarity of a cell and
its within-frame neighbors is comparable to the similarity of the same cell in
consecutive frames. When cells cannot be easily distinguished, a more elaborate
cell matching criterion is needed, for example, considering cell dynamics [21],
solving sub-optimal frame-to-frame assignment problems, via linear program-
ming optimization[8] or by using multiple hypothesis testing (MHT) [17] and its
relaxations [7]. In these cases, a two-step approach in which cell segmentation
and cell association are treated as independent processes is feasible, provided
that the segmentation problem is well-posed and addressed [10,11,12,16,20].
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Nevertheless, the accurate delineation of cell boundaries is often a challenging
task. A high degree of fidelity is required for cell segmentation, even in instances
where the cells are far apart and hence can be easily distinguished, especially in
cases where the extracted features (e.g. shape or intensity profile) are also the
intended subject of the biological experiment. Therefore, several recent methods
attempt to support segmentation through solving the cell association problem.
For example, the initial cell boundaries in the active contour (AC) framework
can be derived from the contours of the associated cells in the previous frame
[4]. An alternative AC strategy is to segment a series of time-lapse images as a
3D volume [13]. More recent methods successfully deal with complex data sets
using probabilistic frameworks. In the graphical model suggested by [19] cell
segments are merged by solving MHT subject to inter-frame and intra-frame
constraints. The Gaussian mixture model of [1] is based on the propagation of
cell centroids and their approximated Gaussian shape to the following frame in
order to combine super-voxels into complete cell regions.

In this paper, cell tracking and segmentation are jointly solved via two inter-
twined estimators, the Kalman filter and maximum a posteriori probability
(MAP). The key idea is a dynamic shape modeling (DSM) by extending the
commonly-used Kalman state vector to account for shape fluctuations. Shape
inference requires a probabilistic modeling of cell morphology, which is not math-
ematically trivial. We address this challenge by applying a sigmoid function to
the signed distance function (SDF) of the cell boundaries in which the slope of
the sigmoid models the shape uncertainty. Given the estimated cell poses, shape
models and velocity maps generated from the observed image measurements,
we calculate the posterior probabilities of the image pixels via a fast marching
(FM) algorithm. Partitioning the image into individual cells and background is
defined by the MAP estimates.

The proposed method is mathematically elegant and robust, with just a few
parameters to tune. The algorithm has numerous advantages: Estimating the cell
temporal dynamics facilitates accurate frame-to-frame association, particularly
in the presence of highly cluttered assays, rapid cell movements or sequences
with low frame rates. Therefore, unlike the active contour approach, the usabil-
ity of the segmentation priors is not limited by large displacements or crossing
cell tracks. Moreover, the motion estimation allows for lineage recovery in the
case of disappearing and reappearing cells, which would otherwise disrupt accu-
rate tracking. The DSM serves as a prior for the consecutive frame segmentation
without imposing any predetermined assumptions, in contrast to [1] which im-
plicitly assumes ellipsoidal structures. Furthermore, introducing the boundary
uncertainty estimate to the shape model makes our algorithm robust against
temporal, morphological fluctuations. Lastly, we note that mitotic events (i.e.,
cell division) significantly complicate cell tracking. We address this issue by initi-
ating tracks for the daughter cells, using the probabilistic framework to naturally
assign a mother cell to its children.

The rest of the paper is organized as follows. In Section 2, we introduce our
novel approach which consists of four main components: (1) Extended state
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vector estimation via Kalman filter; (2) probabilistic DSM based on previous
frame segmentation and the estimated boundary uncertainty; (3) FM algorithm
for the calculation of the posterior probabilities; and (4) MAP estimation. Sec-
tion 3 presents highly accurate experimental results for two different datasets of
over 70 frames each, and we conclude and outline future directions in Section 4.

2 Methods

2.1 Problem Formulation

Let C =
{
C(1), ..., C(K)

}
denote K cells in a time lapse microscopy sequence,

containing T frames. Let It : Ω → R
+ be the t-th frame, in that sequence, where

Ω defines the 2D image domain of It, and t = 1, ..., T . We assume that each It is
a gray-level image of Kt cells which form a subset of C. Our objective is twofold
and consists of both cell segmentation and frame-to-frame cell association defined
as follows:
Segmentation: For every frame It, find a function ft : Ω → Lt, (where Lt is
a subset of Kt + 1 integers in [0, . . . ,K]) that assigns a label lt ∈ Lt to each
pixel x = [x, y] ∈ Ω. The function ft partitions the t-th frame into Kt + 1

regions, where each segment Γ
(k)
t = {x ∈ Ω|ft (x) = lt = k, } forms a connected

component of pixels, in frame It, that belongs to either a specific cell in C or to
the background, i.e. Γ (0)

t .
Association: For every frame It find an injective function ht : Lt−1 → Lt that
corresponds cell segments in frame t − 1 and frame t. As we will show in the
following, the segmentation and association steps are merged and Γ

(k)
t , k ≥ 1

defines the segmentation of cell C(k) in frame t.

2.2 Time Series Analysis

For every cell C(k) there exist a number of properties that describe its state
at a given time t. Let ξ

(k)
t denote the hidden state vector that holds the true,

unknown, state of the cell. In the following discussion the superscript (k) is
removed for clarity. In our case the state vector holds the following features:

ξt = [cxt , cyt , vxt , vyt , εt]
T =

[
cTt ,v

T
t , εt

]T
(1)

where ct = [cxt , cyt ]
T denote the COM of the cell at time t and vt = [vxt , vyt ]

T

denote the COM velocities. The variable εt is the shape uncertainty variable,
which will be explained in section 2.3. We assume that the state vector approxi-
mately follows a linear time step evolution as follows: ξt = Aξt−1 +wt−1, where
A ∈ R

5×5 is the state transition model, and wt ∈ R
5 is the process noise drawn

i.i.d from N (0,Qt). In our case: Ai,i = 1, i = 1 . . . 5; A1,3 = A2,4 = 1. Since
the true state is hidden, the observed state is ζt = ξt + rt, where rt ∈ R

5 is the
measurement noise drawn i.i.d from N (0,Rt). The process and measurement
noise covariance matrices Qt,Rt are assumed to be known.
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In order to predict the state of a cell at t we utilize the Kalman Filter [9].
The predicted (a priori) state vector estimation and error covariance matrix
at t given measurements up to time t − 1 are: ξ̂t|t−1 = Aξ̂t−1|t−1; Σt|t−1 =
AΣt−1|t−1A

T +QT
t

The a posteriori state estimate and error covariance matrix at time t given
measurements up to and including time t are: ξ̂t|t = ξ̂t|t−1 + Gt

(
ζt − ξ̂t|t−1

)
;

Σt|t = (I−GtB)Σt|t−1

where the Kalman Gain matrix is given as: Gt = Σt|t−1

(
Σt|t−1 +Rt

)−1.

2.3 Dynamic Shape Model

The estimated segmentation of a cell C(k) in frame t, i.e. Γ̂ (k)
t|t−1 is obtained by a

translation of the cell segmentation in frame t− 1 :

Γ̂
(k)
t|t−1 =

{
x|

(
x− v̂

(k)
t|t−1

)
∈ Γ

(k)
t−1

}
, where, v̂

(k)
t|t−1 · 1, is the estimated cell

displacement. The respective signed distance function (SDF) φ̂
(k)
t|t−1 : Ω → R is

constructed as follows:

φ̂
(k)
t|t−1 (x) =

⎧
⎨

⎩

min
x′∈∂Γ̂

(k)

t|t−1

dE (x,x′) x ∈ Γ̂
(k)
t|t−1

−min
x′∈∂Γ̂

(k)

t|t−1

dE (x,x′) x /∈ Γ̂
(k)
t|t−1

(2)

where dE (·, ·) denotes the Euclidian distance and ∂Γ̂t|t−1 denotes the estimated
segmentation boundary. In the spirit of [18,15], we define the probability that a
pixel x belongs to the domain of cell k by a logistic regression function (LRF):

Φ̂
(k)
t|t−1 (x) = P

(
x ∈ Γ

(k)
t

)
�

⎛

⎝1 + exp

⎧
⎨

⎩
−
φ̂
(k)
t|t−1 (x)

ε̂
(k)
t|t−1

⎫
⎬

⎭

⎞

⎠

−1

(3)

where, ε̂(k)t|t−1 is the estimation of ε(k)t � dH

(
∂Γ

(k)
t−1, ∂Γ

(k)
t

)
·
√
3π
2 which denotes

the calculated1 boundary uncertainty. The LRF slope is determined by ε
(k)
t .

We set ε
(k)
t such that the standard deviation of the probability density function

(PDF) corresponding to P
(
x ∈ Γ

(k)
t

)
is equal to the Hausdorff distance between

the aligned cell boundaries i.e. dH

(
∂Γ

(k)
t−1, ∂Γ

(k)
t

)
. Note, that large temporal

fluctuations in a cell boundary, increase dH , which in turn smooth the LRF slope
and increase the shape uncertainty. Eq.3 defines our dynamic shape model.

2.4 MAP Segmentation and Association

We now present the flow of the proposed segmentation algorithm given the state
vector estimation ξ̂t|t−1 and cell segmentation of the previous frame. Fig.1 illus-
trates the main concepts to be discussed. Consider the image It with c

(k)
t marked

1 Derived from an analytic expression. See appendix A.1.



222 A. Arbelle et al.

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Segmentation flow of a specific cell. (a) Original image. The estimated COM
of the specific cell k is marked by red cross. (b) Intensity probability of the foreground
PFG. (c) DSM (Spatial probability). (d) Traversability image g (∇xIt) . (e) Speed image
Ŝ

(k)
t|t−1, the product of (b-d). (f) FM distance. (g) DSM posterior P

(k)
t (h) Labeled

segmentation.

by a red cross, shown in Fig.1.a. We model the PDFs of the foreground and back-
ground intensities, fFG (·) and fBG (·) respectively by a mixture of Gaussians.
The intensity based probability of being a cell or background (Fig.1.b) is defined
as follows:

P
(BG)
t (x) =

αfBG (It (x))

αfBG (It (x)) + (1− α) fFG (It (x))
; P

(FG)
t (x) = 1− P

(BG)
t (x)

(4)
where 0 < α < 1 is a predetermined weight (we set α = 0.5).
For each cell segment, in frame t, we construct a DSM, Φ̂(k)

t|t−1, as explained in
section 2.3 (Fig.1.c). We use the FM algorithm [6] to find the shortest path from
each pixel x to the estimated COM of a cell k s.t. a speed image Ŝ

(k)
t|t−1 : Ω →

[0, 1] (Fig.1.e). The FM distance, dFM

(
x, ĉ

(k)
t|t−1|Ŝ

(k)
t|t−1

)
, is the minimal geodesic

distance from x to ĉ
(k)
t|t−1 (Fig.1.f). In other words, the value of Ŝ(k)

t|t−1(x) is the

speed of a pixel x along the shortest path to ĉ
(k)
t|t−1. For each pixel x in frame

t we define its speed Ŝ
(k)
t|t−1(x) as the product of three terms: 1. The intensity

based probability of belonging to the foreground (Eq.4). 2. The spatial prior of
being part of a specific cell i.e. the DSM (Eq.3). 3. The “traversability” (Fig.1.d)
which is inverse proportional to the image edges in frame It and defined by

g (∇xIt) =
(
1 + |∇xIt|

‖∇xIt‖2

)−2

:

Ŝ
(k)
t|t−1 = P

(FG)
t · Φ̂(k)

t|t−1 · g (∇xIt) (5)

The absolute value of the spatial gradient, i.e. |∇xIt|, can be interpreted as
“speed bumps” which make the “FM journey” more difficult across edges.
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The posterior probability that x belongs to Ck is inverse proportional2 to the
difference between its geodesic and Euclidean distances to ĉ

(k)
t|t−1 (Fig.

P
(k)
t (x) ∝

(
dFM

(
x, ĉ

(k)
t|t−1|Ŝ

(k)
t|t−1,

)
− dE

(
x, ĉ

(k)
t|t−1

)
+ 1

)−1

(6)

The final segmentation is given as the MAP of (6)(Fig.1.h):

Γ
(k)
t =

{
x| argmaxk′∈Lt P

(k′)
t (x) = k

}
. In fact, we see that cell association is

inherent to the defined segmentation problem, since each cell is segmented using
its estimated properties from the previous frame. The detection of new cells is
explained in appendix A.3.

MCF-10A H1299

t=73 t=75 t=78 t=5 t=6 t=11

Fig. 2. Top row: A full-frame temporal sequence. Bottom row: Enlargement of inset
shown in the top row. Note that mitosis of cells 10 and 24.

3 Experimental Results

We examined two different sequences: (1) MCF-10A cells, expressing RFP- Gem-
inin and NLS- mCerulean, rate: 3fph, 142 frames. (2) H1299 cells, expressing
eYFP-DDX5 in the background of an mCherry tagged nuclear protein, rate:
3fph, 72 frames [3]. The input to the algorithm is a manual segmentation of the
first two frames of each sequence. We tested our method based on manual annota-
tion generated by an expert. We then compared precision, recall and F-measure
scores to those obtained by the maximum correlation thresholding segmenta-
tion [14] and linear-assignment problem tracking [7] method as implemented in
CellProfiler [2] which is a publicly-available, state of the art, cell analysis tool.

Figure 2 present two sets of sampled frames from the examined data sets. The
cell numbers along with the segmentation boundaries are marked. We use purple
and red for new and existing tracks, respectively. The upper rows show the full
frames, the marked rectangle is magnified in the lower rows. The detected cell
trajectories of both data sets can be visualized in Fig.1 in the supplementary
material. We note that the noisy linear motion of the cells supports the use of

2 P
(k)
t (x) is normalized such that

∑
k′ P

(k′)
t (x) = 1. See appendix A.2.
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Table 1. Segmentation and Tracking Results.C.P. is CellProfiler [2] Prc. is Precision,
Rcl. is Recall, F is F-measure. Further details can be found in the supp. material.

Data Method Segmentation Full Tracks Divisions
Prc. Rcl. F Success Rate Prc. Rcl. F

H1299 Ours 0.98 0.89 0.93 0.95 0.84 0.89 0.86
C.P 0.93 0.81 0.87 0.86 0.84 0.94 0.88

MCF-10A Ours 1 0.94 0.97 0.99 0.96 0.98 0.97
C.P 0.98 0.82 0.89 0.94 0.86 0.94 0.90

the Kalman filter. We urge the reader to refer to our live cell segmentation and
tracking videos at http://youtu.be/ORx82dCKWlA and in the supplementary
material. We quantitatively evaluate our segmentation and mitosis detection as
described in [19]. The tracking success was calculated as percentage of full, error-
less tracks which were manually counted by an expert. An error was defined as
early termination of a track, a split or a merge of tracks. See Table 1 for results.

4 Summary and Conclusions

We address cell segmentation and tracking by jointly solving MAP and Kalman
filtering estimation problems. A key contribution is a DSM which accommodates
versatile cell shapes with varying levels of uncertainty. The DSM is inferred via
time-series analysis and is exploited as a shape prior in the segmentation process.
The proposed model can handle long sequences in an elegant and robust manner,
requiring minimal input. While the daughters of divided cells are accurately
detected, mitotic events are not yet labeled as such. Future work will aim to
complete the missing link for cell lineage reconstruction in the spirit of [5] .
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