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Abstract

Object detection and segmentation can be facilitated by
the availability of a reference object. However, account-
ing for possible transformations between the different object
views, as part of the segmentation process, remains a chal-
lenge. Recent works address this problem by using com-
prehensive training data. Other approaches are applicable
only to limited object classes or can only accommodate sim-
ilarity transformations.

We suggest a novel variational approach to prior-based
segmentation, which accounts for planar projective trans-
formation, using a single reference object. The prior shape
is registered concurrently with the segmentation process,
without point correspondence. The algorithm detects the
object of interest and correctly extracts its boundaries. The
homography between the two object views is accurately re-
covered as well. Extending the Chan-Vese level set frame-
work, we propose a region-based segmentation functional
that includes explicit representation of the projective ho-
mography between the prior shape and the shape to seg-
ment. The formulation is derived from two-view geometry.
Segmentation of a variety of objects is demonstrated and the
recovered transformation is verified.

1. Introduction

The coupled tasks of segmentation and object detection
are essential for the extraction of semantic content from im-
ages. Prior knowledge on the shape of interest can signif-
icantly facilitate these processes, particularly when the ob-
ject boundaries are not well defined.

Variational methods solve segmentation problems by
means of energy minimization, integrating top-down and
bottom-up information, see [1] and references therein.
Specifically, the level-set framework [14] for curve evolu-
tion, has been successfully applied to extract complex ob-
ject boundaries allowing an automatic change in the topol-
ogy. Recent approaches incorporate a representation of a

reference shape within the energy functional. Thus, the re-
covered object boundary should resemble the expected con-
tour, in addition to being constrained by length, smoothness
and compatibility with the image features.

The main difficulties in the integration of shape informa-
tion into the segmentation process is the determination of a
suitable shape representation and the adjustment of similar-
ity measure between shape representations that can accom-
modate the possible group of transformations. The statisti-
cal approach [3, 4, 9, 11, 16, 18] addresses this challenge
by using a comprehensive training set to account for shape
deformations. It characterizes the probability distribution
of the shapes and then measures the similarity between the
evolving object boundary (or level-set function) and repre-
sentatives of the training data. The performance of these
methods depends on the size and coverage of the training
set. Several studies [5, 6, 16, 18] accommodate similar-
ity transformations, however, besides [15] that handles per-
spectivity, none of the existing methods explicitly accounts
for projective transformations between the prior shape and
the shape of interest.

We suggest a novel variational approach to prior-based
segmentation, that accounts for homographies, using a sin-
gle reference object. Segmentation process is carried out
concurrently with the registration of the prior shape to the
shape of interest. Neither point correspondence nor direct
methods [10] are used. The outcome of the algorithm in-
cludes the detection of the object of interest and a correct
extraction of its boundaries. The planar projective transfor-
mation between the two object views is accurately recov-
ered as well. This is accomplished by a novel extension
of the Chan-Vese [2] level-set framework. The proposed
region-based functional for segmentation includes an ex-
plicit expression of the projective homography between the
prior shape and the shape to segment, which is derived from
two-view geometry. It is supported by the introduction of
a shape-similarity measure that admits general transforma-
tions, beyond similarity, into the functional. Segmentation
of a variety of objects is demonstrated and the recovered
transformation is verified.



2. Level Set Framework

2.1. The Chan-Vese two-phase model

In the level-set formulation for curve evolution [14], a
segmenting boundary C in an image plane Ω ⊂ R

2, is the
zero level-set of a 3D function φ, C = {x ∈ Ω| φ(x) = 0}.
Chan and Vese [2], inspired by the segmentation model of
Mumford and Shah [13], suggested to segment an input im-
age f : Ω → R by minimizing an energy functional based
on a piecewise constant approximation of the image. They
used the Heaviside function of the evolving level-set func-
tion H(φ) as an indicator for object and background re-
gions in the image. Thus, they have turned the segmen-
tation framework to be a region-based, establishing a cost
functional with well defined integration limits:

ECV =

∫

Ω

[

(f − u+)2H(φ) + (f − u−)2 (1 −H(φ))

+ ν|∇H(φ)|] dx, (1)

where ν is a real and positive weight parameter. The scalars
u+ and u− denote the average gray level values of the input
image in the regions indicated by φ ≥ 0 and by φ < 0 re-
spectively. They are alternately updated with the evolution
of the level-set function φ and take the form:

u+ =

∫

f(x)H(φ)dx
∫

H(φ)dx
u− =

∫

f(x) (1 −H(φ)) dx
∫

(1 −H(φ))dx
(2)

The gradient descent equation for the evolution of φ is
derived using the Euler-Lagrange equations for the func-
tional (1):

∂φ

∂t
= δ(φ)

[

ν div
(

∇φ

|∇φ|

)

− (f − u+)2 + (f − u−)2
]

.

(3)
Practically, a smooth approximation of the Heaviside func-
tion Hε, rather than a step function, is used [2]:

Hε(φ) =
1

2
(1 +

2

π
arctan(

φ

ε
)) (4)

δε(φ) =
dHε(φ)

dφ
=

1

π

ε

ε2 + φ2
. (5)

2.2. Prior shape model

The energy functional (1) can be extended by adding a
prior shape term, e.g. [5, 15]:

E(φ, u+, u−) = ECV (φ, u+, u−) + µEshape(φ) µ ≥ 0.
(6)

One of the contributions of this work is the similarity mea-
sure between the prior and the evolving shape. The shape-
term incorporated in the energy functional measures the

non-overlapping areas between the prior shape and the zero
level-set of φ. Let φ̃ : R

2 → {0, 1} be a labeling function
of the shape in the prior image. Note that Hε(φ̃) → φ̃ as
ε→ 0. Thus, the shape term takes the form:

Eshape(φ) =

∫

Ω

(

Hε(φ(x)) −Hε(φ̃(x))
)2

dx (7)

Note, that we do not force the evolving level-set function φ
to resemble φ̃. Instead, we demand similarity of the regions
within the respective contours. Since φ is not constrained to
a distance function, the proposed similarity measure can ac-
commodate planar projective transformations between the
prior contour C̃ and the evolving segmenting contour C.
The following evolution equation is obtained by minimiz-
ing (7) with respect to φ:

−
δEshape

δφ
=
∂φ

∂t
= δε(φ)

(

Hε(φ) −Hε(φ̃)
)

(8)

Hence, at each time step, φwill be changed in regions where
there are inconsistencies between the object-background ar-
eas indicated by Hε(φ) and Hε(φ̃). The spatial evolution in
φ is controlled by ε, according to (4) and (5).

The shape-term (7) is adequate when the prior and seg-
mented shapes are aligned. Otherwise, the representation of
the prior shape-term should incorporate the projective trans-
formation, as is detailed in section 4. However, a few geo-
metric concepts should be reviewed first.

3. Projectivity

3.1. Planar projective homography

To draw the geometric relation between two correspond-
ing shape contours, we review the concept of planar projec-
tive homography. The identification of geometric projectiv-
ity with algebraic homography is supported by the theorems
of Desargues [17]. Planar projective homography (projec-
tivity) is a mapping H : P

2 → P
2 such that the points pi

are collinear if and only if H(pi) are collinear (projectivity
preserves lines) [8, 17].

The relation between corresponding views of points on
a world plane Π in a 3D space, as is illustrated in Fig. 1,
can be modeled by a planar homography induced by the
plane. An explicit expression for the induced homorgraphy
can be derived as follows. Consider two views p and p′

of a world point P ∈ Π, in two camera frames f and f ′

respectively. We will denote their corresponding homoge-
neous coordinates by x, x

′ and X. Let M = K[ I | 0 ]
and M ′ = K ′[ R | t ] be the first and the second camera
projection matrices (respectively), where R and t are the
relative rotation and translation between the cameras and
K and K ′ are the respective internal calibration matrices.
Thus, x = K[ I | 0 ]X and x

′ = K ′[ R | t ]X.



Figure 1. The homography induced by a
plane. The ray that intersects the first image
plane at a point p meets the world plane Π at
a point P . The point P is projected to a point
p′ in the second image plane. The mapping
from p to p′ is the homography, denoted by H,
induced by the plane Π. Illustrated after [8].
In this research, the corresponding points p
and p′ are on corresponding planar contours.

Let n be the unit normal vector to the plane Π, and let
d > 0 denote the distance of Π from the optical center of
the first camera. The linear transformation from x to x

′ can
be expressed as

x
′ = K ′

(

R+
1

d
tn

T

)

K−1
x = Hx . (9)

Assuming calibrated cameras, we set K = K ′ = I . Thus,
the planar homography matrix takes the form [7, 8, 12]:

H = R+
1

d
tn

T . (10)

The matrix H is determined by the translation and rotation
between the two cameras {R, t}, and by the structure pa-
rameters {n, d} of the world plane Π. Note that only the
ratio t/d can be recovered from H. We now show how
the structure of the homography can be used to recover the
relation between the camera frames and thus between the
respective shape contours.

3.2. Implicit recovery of the homography

A nonsingular homography between two planes π,π′ is
determined (up to a scale factor) by four pairs of corre-
sponding points x ∈ π, x

′ ∈ π′ with no collinear triplet
of points in either plane. Consider the homography matrix

H =





h11 h12 h13

h21 h22 h23

h31 h32 h33



 ∈ R
3×3 (11)

and let x = (x, y, 1) and x
′ = (x′, y′, 1) be the homoge-

neous representations of the points x ∈ π, x′ ∈ π′ such that
x
′ = Hx. The eight unknowns of H (the ratios of its nine

entries) can be recovered by solving at least four pairs of
equations of the form:

x′ =
h11x+ h12y + h13

h31x+ h32y + h33

, y′ =
h21x+ h22y + h23

h31x+ h32y + h33

(12)
Classic approaches recover H by solving an over-
determined set of equations as in (12). The rela tive position
of the image planes (R, t), and the world plane orientation
and pose (n, d) are recovered, by decomposition methods
from the known homography matrix (see [7, 8, 12] and ref-
erences therein).

Our novel approach calculates the homography directly
in its explicit representation (10). No point correspondence
is needed. Instead, we use the calculus of variations to re-
cover the relative motion between the two camera frames,
given two corresponding views of the shape of interest.
Practically, since the recovery of the homography is done
simultaneously with the process of object detection and seg-
mentation, only the reference view is known in advance.
The shape to segment is extracted by the segmentation pro-
cess concurrently with the registration of the prior to it.

3.3. Explicit recovery of the homography

We now use the explicit formulation of the homogra-
phy (10) to reformulate equation (12). We denote by γ, β
and α the Euler rotation angles around the Z,Y and X axes
respectively, in this order of rotation. They determine the
relative orientation between the first and the second camera
coordinate systems. The rotation matrix R ∈ R

3×3 operat-
ing on a vector (x, y, z)T takes the form:

R =





cβcγ cβsγ −sβ

sαsβcγ − cαsγ sαsβsγ + cαcγ sαcβ
cαsβcγ + sαsγ cαsβsγ − sαsγ cαcβ



 (13)

where sα is sin(α) and cα is cos(α). The relative po-
sition between the two camera frames is determined by
t = (tx, ty, tz). Consider first the special case in which the
world plane and the first image plane coincide, and d is set
to 1. In this case, the normal to the world plane n is (0, 0, 1).
Substituting d and n in (10), we obtain the entries of the
homography matrix H: h13 = R13 + tx, h23 = R23 + ty ,
h33 = R33 + tz and hij = Rij otherwise.

Generally, the world plane is not perpendicular to the
optical axis of the first camera: n 6= (0, 0, 1). As before, we



represent n using the coordinate system of the first camera.
The unit vector n is obtained by rotating the vector (0, 0, 1)
by an angle ξ around the y-axis, then by an angle ψ around
the x-axis. Hence, n = (− sin ξ, sinψ cos ξ, cosψ cos ξ).
Substituting R, t and n in (10), we obtain the components
of the homography matrix H:

h11 = cosβ cos γ − tx

d
sin ξ

h12 = cosβ sin γ + tx

d
sinψ cos ξ

h13 = − sinβ + tx

d
cosψ cos ξ

h21 = sinα sinβ cos γ − cosα sin γ −
ty

d
sin ξ

h22 = sinα sinβ sin γ + cosα cos γ +
ty

d
sinψ cos ξ

h23 = sinα cosβ +
ty

d
cosψ cos ξ

h31 = cosα sinβ cos γ + sinα sin γ − tz

d
sin ξ

h32 = cosα sinβ sin γ − sinα sin γ + tz

d
sinψ cos ξ

h33 = cosα cosβ + tz

d
cosψ cos ξ

(14)
Hereafter, ξ and ψ are referred to as structure parameters.

4. The cost functional

4.1. Representation of the prior shape

The shape-term in the energy functional (6) is now ex-
tended to account for projective transformations. The evo-
lution of the level-set function, given the prior contour and
an estimate of the transformation parameters, is considered
in this section. Consider a prior image f : Ω → R

+ with
labeled object and background regions Ω+ and Ω− respec-
tively. The prior shape is represented by a function φ̃ ∈ R

3 :

φ̃(x, y) =

{

1 f(x, y) ∈ Ω+

0 f(x, y) ∈ Ω−

(15)

Let Tp : (φ̃(x, y), x, y) → (φ̃′(x′, y′), x′, y′) be a transfor-
mation of a point (x, y) and its φ̃ value to a (projectively)
equivalent point (x′, y′), with φ̃′(x′, y′) = φ̃(x, y). Expres-
sions for x′ and y′ are obtained by substituting the explicit
entries of the homography matrix (14) in (12). For example,
when ξ = ψ = 0 and d = 1, the expressions are:

x′=
cβcγx+cβsγy−sβ +tx

(cαsβcγ +sαsγ)x+(cαsβsγ−sαcγ) y+cαcβ+tz
(16)

y′=
(sαsβcγ−cαsγ)x+(sαsβsγ +cαcγ) y+sαcβ +ty
(cαsβcγ +sαsγ)x+(cαsβsγ−sαcγ) y+cαcβ +tz

(17)
The evolution of the level-set function φ is determined by an
energy shape term that measures the dissimilarity between
its zero level-set and the zero level-set of the projectively
transformed φ̃. Formally,

E(φ) =

∫

Ω

(f − u+)2Hε(φ)+(f − u−)2 (1 −Hε(φ))

+ ν|∇Hε(φ)|+µ
[

Hε(φ)−Hε(Tp(φ̃))
]2

dx (18)

and the gradient descent equation for the evaluation of φ is

∂φ

∂t
= δε(φ)

[

(f − u−)2−(f − u+)2+νdiv
(

∇φε

|∇φε|

)

+ µ
(

Hε(φ)−Hε(Tp(φ̃)
)]

. (19)

4.2. Recovery of the transformation

In order to solve (19), one has to evaluate φ simultane-
ously with the recovery of the transformation Tp of the prior
level-set function φ̃. The transformation parameters (α, β,
γ, tx/d, ty/d, tz/d, ψ and ξ) are evaluated via the gra-
dient equations obtained by minimizing the energy func-
tional (18) with respect to each of them. The general gradi-
ent descent equation for each of the transformation param-
eters (denoted here by η) is of the form:

∂η

∂t
=2µ

∫

Ω

δ(Tp(φ̃))
(

Hε(φ) −Hε(Tp(φ̃))
) ∂Tp(φ̃)

∂η
dx

(20)
where,

∂Tp(φ̃)

∂η
=

∂Tp(φ̃)

∂x

(

∂x

∂x′
∂x′

∂η
+
∂x

∂y′
∂y′

∂η

)

+
∂Tp(φ̃)

∂y

(

∂y

∂x′
∂x′

∂η
+
∂y

∂y′
∂y′

∂η

)

(21)

The values of ∂Tp(φ̃)/∂x and ∂Tp(φ̃)/∂y are derived nu-
merically using the finite difference method. The expres-
sions for ∂x′/∂η and ∂y′/∂η for each of the transforma-
tion parameters η are evaluated by differentiating the ex-
plicit expressions for x′ and y′ (generated by substituting
equations (14) in (12))with respect to η. We use the im-
plicit function theorem to derive the equations for ∂x/∂x′,
∂x/∂y′, ∂y/∂x′, ∂y/∂y′.

4.3. Algorithm

We summarize the proposed algorithm assuming the fol-
lowing setup. The input is two images f and f ′ of the
same object, taken with the same camera, but under differ-
ent viewing conditions. Contour points of the object to seg-
ment should be approximately co-planar. The segmentation
of the reference object in f is known and used to construct
the prior shape representation φ̃ as in (15)

1. Choose an initial level-set function φ. Its zero level-set
should form an initial contour within the image.

2. Set initial values (e.g. zero) for the transformation pa-
rameters α, β, γ, tx, ty , tz , ξ and ψ. Set d = 1.

3. Compute the average gray levels of the estimated ob-
ject and background pixels, u+ and u−, using (2).



4. Transform the prior shape representation φ̃, by ap-
plying a coordinate transformation (substituting (14)
in (12) ) with the currently estimated parameters.

5. Update φ using the gradient descent equation (19).

6. Update the transformation parameters α, β, γ, tx, ty
and tz , ψ and ξ using the derivatives of (18) with re-
spect to each, according to (20).

7. Repeat steps 3-6 until convergence.

5. Experimental Results

To demonstrate our algorithm, we present segmentation
results on various images. Relative transformation param-
eters between the known shape and the shape to segment
have been evaluated and verified. In all experiments we set:
dt = 0.1, ε = 1, µ = 1.5 and d = 1. The contributions
of the first three terms in the gradient descent equation of
φ (19) are normalized to [−1, 1], thus ν is set to 1.

Consider the synthetic reference image in Fig. 2a, that
contains several components of different sizes and gray lev-
els. The prior shape has been obtained by thresholding. The
image to segment is shown in Fig. 2b. The initial segment-
ing contour is drawn on the image. Note, that this image
is a noisy1, transformed and corrupted version of the im-
age in Fig. 2a. Successful segmentation result is shown in
Fig. 2c (red contour). The recovered transformation param-
eters are validated by comparison to the actual transforma-
tion parameters in Table 1. The unregistered prior contour
is drawn on the image to segment in Fig. 2d, to demon-
strate the misalignment between the two images, Fig. 2a-b.
Fig. 2e shows segmentation without a prior shape.

We next consider two views, Fig. 3a-b, of a real object,
a toy elephant. The initial segmenting contour is drawn on
the image to segment in Fig. 3a. The prior shape has been
constructed from the reference image, Fig. 3b. The desired
segmentation result is shown (in red) in Fig. 3c. The contour
precisely tracks the elephant profile, recovering the missing
part of its trunk. The segmenting contour in Fig. 3c is the
zero level-set of the final level-set function (φ) shown in
Fig. 3d. Fig. 3e demonstrates the significant transforma-
tion between the two elephant views. It shows the prior
contour of the reference object drawn on the image to seg-
ment. Since the ground truth is unavailable, we compared
the homography matrix generated from the recovered trans-
formation parameters, with that obtained with point corre-
spondence method, using 13 pairs of corresponding points
on the object contour, that were manually selected (Table 2).
Visual verification can be seen in Fig. 3f in which the pro-
jectively transformed prior shape is shown with the final
segmenting contour (same as in Fig. 3c).

1Zero-mean Gaussian noise with STD=0.14

In the next example, Fig. 4a, the bottom-right part of the
bottle opener assimilates the background. Nevertheless, the
opener is extracted precisely, as shown in Fig. 4c, using the
prior shape generated from the reference image shown in
Fig. 4b. In Fig. 4d, we visually verify the recovered trans-
formation by showing the projectively transformed prior
shape with the final segmenting contour. Fig. 4e demon-
strates the fairly significant projective transformation be-
tween the image to segment and the prior contour shape
(red). When no prior is used, as seen in Fig. 4f, the seg-
menting contour traces (undesirably) the gradients within
the object.

Finally, Fig. 5a-b are two views of Europe from a
satellite, at night and day time respectively. The images
were adapted from NASA public domain: earthobserva-
tory.nasa.gov. Successful segmentation is demonstrated in
Fig. 5c. The coast line of the continent and the islands
nearby are precisely extracted, despite the neither constant
nor smooth object gray levels. Note the significant trans-
formation, Fig. 5e, between the prior and the image to seg-
ment. The accuracy of the recovered transformation is vi-
sually verified in Fig. 5d. Segmentation when no prior is
used2, is shown for comparison in Fig. 5f. The dark areas
of the eastern Adriatic shore and Scandinavia are not well
segmented.

6. Summary

This paper presents a novel variational approach for ob-
ject segmentation in the presence of noise, specular reflec-
tions and occlusions, given a reference image from a differ-
ent view. Segmentation process is carried out concurrently
with a registration of the prior instance of the object to the
image to segment. The outcome of the algorithm includes
the detection of the object of interest and a correct extrac-
tion of its boundaries. The planar projective transforma-
tion between the two object views is accurately recovered
as well. The successful segmentation results and the reli-
able estimation of the transformation parameters, suggest
this method as a promising tool for a wide range of appli-
cations. These include perspective-invariant search in im-
age databases, registration and structure recovery in stereo
imaging, and object tracking in video sequences.
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(a) (b) (c) (d) (e)

Figure 2. (a) Reference image: the object is composed of several components in different sizes and
gray levels. Prior shape was obtained by thresholding. (b) Noisy, transformed and corrupted version
of the image in (a). The initial contour (red) is drawn on the image. (c) Correct segmentation. The
final contour (red) is drawn on the corrupted, transformed and noisy image. (d) The unregistered
prior shape contour (red) drawn on the input image. This demonstrates the misalignment between
the reference (prior) image and the image to segment. (e) Segmentation result (red) when no prior
shape is used.

(a) (b) (c)

(d) (e) (f)

Figure 3. (a) Input image (a toy elephant).The initial contour (red) used for the segmentation process
is drawn on the image. (b) Reference (prior) image. (c) Successful segmentation: the final contour
(red) on the projectively transformed elephant. (d) Final step of the evolving level-set function φ for
a correct segmentation. (e) The final contour as in (c), drawn on the projectively transformed prior
shape according to the recovered homography. This shows the compatibility between the calculated
and actual transformation parameters. (f) The unregistered prior shape contour (red) drawn on the
input image. This demonstrates the misalignment between the reference (prior) image and the image
to segment.



(a) (b) (c)

(d) (e) (f)

Figure 4. (a) Input image (bottle opener). The initial contour (red) used for the segmentation process
is drawn on the image. (b) Reference (prior) image. (c) Successful segmentation: the final contour
(red) on the projectively transformed opener. The segmentation accurately completes the missing
contour part despite the specular reflection. (d) The final contour as in (c), drawn on the projectively
transformed prior shape according to the recovered homography. This shows the compatibility
between the calculated and actual transformation parameters. (e) The unregistered prior shape
contour (red) drawn on the input image. (f) Segmentation result without a prior.

(a) (b) (c)

(d) (e) (f)

Figure 5. (a) Input image: Europe at night from a satellite. The initial contour (red) is drawn on
the image. (b) Prior image. Fig.a-b were adapted from earthobservatory.nasa.gov. (c) Successful
segmentation: the final contour (red) accurately traces the coast lines, despite the shaded parts of
the continent. (d) Verification of the estimated transformation parameters: The final contour as in (c),
drawn on the projectively transformed prior shape according to the recovered homography. (e) The
unregistered prior shape contour (red) drawn on the input image. (f) Segmentation result without a
prior. The dark areas of the eastern Adriatic shore and Scandinavia are not well segmented.



Transformation parameters α β γ tx ty tz ψ ξ
Proposed algorithm 0.0690 0.0750 7.40 -10 9.6 -0.1 0.0860 0.140

Ground truth 0.0750 0.0750 7.50 -10 10 -0.1 0.0750 0.150

Table 1. Comparison of the recovered and true transformation parameters, for the example in Fig. 2.

Homography matrix entries h11 h12 h13 h21 h22 h23 h31 h32

Proposed algorithm 0.92 0.27 2.8 -0.30 0.70 33.35 -0.0003 0.0018
Point correspondence 0.91 0.28 3.2 -0.31 0.71 34.05 -0.0003 0.0019

Table 2. Comparison of the homography matrix entries obtained using the proposed algorithm and
via manually selected corresponding point pairs, for the example shown in Fig. 3.
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