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Abstract. Fully-automated segmentation algorithms offer fast, objec-
tive, and reproducible results for large data collections. However these
techniques cannot handle tasks that require contextual knowledge not
readily available in the images alone. Thus, the expertise of an experi-
enced physician is necessary.

We present a generative approach to image segmentation, which sup-
ports an intuitive and convenient user interaction subject to the bottom-
up constraints introduced by the image intensities. The user “dialogue”
with the segmentation algorithm, via several mouse clicks in regions of
disagreement, is formulated as an additional, spatial term in a global
cost functional for 3D segmentation. The method is exemplified for the
segmentation of cerebral hemorrhages (CH) in human brain CT scans.

1 Introduction

Being fundamental to medical imaging analysis, image segmentation is actively
studied, and numerous approaches exist. Recent trends focus on fully automatic
segmentation frameworks, being much faster than manual annotation, less bi-
ased and repeatable. Usually, the required workload for processing and analyzing
large datasets is far behind the ability of a human rater. Moreover, the compu-
tational advancements of the machine in cases that require modality fusion or
3D visualization cannot be competed even by an expert. Nevertheless, as the
outcome of the image analysis process might have critical implications on the
patient recuperation prospects the expertise of a clinician must be considered.
Interactive segmentation (IS) approaches can be classified based on the form
and the type of input provided by the user as well as the underlying segmentation
framework, see [19] and references therein. The pioneering IS work, which led to
the development of the live wire technique or intelligent scissors, independently
suggested by [5,11] is based on the image edge map. The shortest paths between
the user’s mouse clicks, calculated by the Dijkstra algorithm form the contour of
the region of interest (ROI). Here, as well as in the united snakes [9], which relies
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on a classical active contour framework known as snakes [8], the user ’plants’
anchors or seed points along the desired boundary, providing guidance for the
segmentation.

Mouse scribbles seem to be the most common form of user interaction. The
marked regions provide information about the ROI and the background intensity
distributions. A well known IS approach is the GrabCut technique [17] which is
based on the graph-cut [1]. Representing the image pixels by nodes in a graph,
the graph-cut addresses a foreground-background image segmentation by solving
a min-cut, max-flow problem. The user’s annotated regions are assigned to either
the source or the sink of the graph. In a recent paper by [12] marked user regions,
via mouse scribbles were used for gathering spatially varying color statistics
for multi-label segmentation. Level-set based segmentation framework with Ul
which are designed for medical images were suggested in [6,7]. Other recent IS
techniques include [15,18,14,10].

We present a user interactive framework for the segmentation of volumetric
ROIs. We chose to use the level-set framework as it is parametrization-free, al-
lows automatic topological changes and enables a straightforward generalization
to high-dimension and multi-label segmentation. Segmentation is obtained by
solving a maximum a posteriori (MAP) problem. Using calculus of variation we
search for the optimum of a cost functional which is based on a generative prob-
abilistic model. The initial, fully automatic segmentation process is dominated
by the gray level distributions of the ROI and the background partitions. The
user input, which is provided by a few mouse clicks, adds spatial constraints
to the segmentation problem. These constraints are soft and express, what we
term here the user’s certainty disagreement map. The user’s disagreement map
is convolved with a Gaussian kernel which defines the local extent of the user
influence and controls the level of disagreement (or user’s confidence) . This con-
tribution allows to establish a user-machine dialogue. The user by no way edits
the segmentation. Instead, our model provides an elegant framework to refine
segmentation by resolving voxel annotation ambiguities, through “negotiation”.

The suggested method is exemplified on the segmentation of cerebral hem-
orrhages (CH) in human brain CT scans. CH volume estimates provided by the
segmentation are critical to the determination of the therapy procedure which
may involve surgery in addition to medicine intake. It is important to note that
CHs have well defined intensity range, expressed in Hounsfield units (CT num-
bers). Nevertheless, similar gray-level values as a result of calcification or proxim-
ity to the skull bone can fail a fully automatic segmentation process and requires
the insight of a physician. Our user-interactive segmentation tool was tested by
two clinical experts and compared with a commercial toolbox. The advantage
of the suggested method was obvious, considering both operating convenience
(user interaction) and accuracy (user satisfaction). Both initialization and the
first stage of the segmentation process were fully automatic. Usually, not more
than a single or a couple of user interaction steps were needed to complete the
segmentation. High Dice scores were obtained in a comparison with independent,
fully manual annotations.



2 Methods

2.1 Problem definition and formulation

Let I be a gray-level image defined on a 3D image domain (2. Our goal is to find
the ROI/background image partitions denoted by w and 2\ w, respectively. Let
S: 2 — {0,1} denote the unknown binary voxel annotation of I correspond-
ing to this partition. We assume that the observed image I is generated i.i.d.
by the respective segmentation S with probability p(I|S;1) where 9 are Gaus-
sian mixture model (GMM) parameters of image intensities. A fully automatic
segmentation can be stated as a MAP problem:

p(S|I;4p) o< p(I]S;9)p(S), (1)

where the prior p(S) is used for regularization as we shall see in the following. In-
corporating the user input, the proposed segmentation framework is carried out
in a step-by-stap manner, where at each step k the user provides a set of spatial
parameters through the interaction, after observing the previous segmentation
estimate, i.e. S¥~1. We denote this set by #* and assume that S* is generated
with probability p(S¥|S*~1;7*). Note, the similarity of this conditional proba-
bility to a first order Markov chain where n* can be considered as the transition
probability parameters. Given S*~1, the intensity distribution parameters of the
observed image, denoted by v and the user input, i.e. n¥, we can define the pos-
terior probability of S*, using the Bayes theorem and the chain rule, as follows:

p(S*IT, S* 1 ap,mF) o p(I1S%;4)p(SF|S*~ 1 n"). (2)

We will look for §% = argmaxgr p(S¥|I,5%~1;4,7*) by minimizing the following
cost functional:

& = —logp(I|S*; ) —log p(S*|S* i nk), (3)

using the proportion £ « —logp. In the following, an explicit formulation of
the image likelihood term p(I]S*;)) and the user input term p(S*¥|S*=1; ) will
be presented. We assume i.i.d. distribution of the image voxels. Therefore the
probability over the entire image domain will be presented by the product of
probabilities of each voxel. A continuous form of £, based on a level-set frame-
work will be introduced next, followed by a gradient descent optimization process
to estimate S*.

2.2 Image likelihood term

We use mixtures of Gaussians to model the intensity distribution within and out-
out
side the ROL. Let tbs, = {pi™, o™, wi™}N.1 and let thous = {pud®, o0%, we t }N"
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where N and N°% are the respectlve numbers of Gaussians and w; are the

weights. For each image voxel x with intensity I(x) we define
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The image likelihood cost, for a given ROI, could be defined as follows:
Ern =— Z log Pm(I(X)a djln) - Z log Pout(I(X)’ 'wout)

xEwk x€2\wk
= - Z [Sk(x) log PW(I(X)a 'djzn) + (1 - Sk(x)) 1Og Pout(I(X)a 'd}out] (4)
xEN

Note, that both the ROI (or equivalently, the segmentation S*) and the inten-
sity parameters 1) are unknown, and are therefore estimated via an alternating
minimization scheme which will be detailed in the following.

2.3 User input term

Using mouse clicks, the user indicates disagreement with the current segmenta-
tion. The collection of user clicks at a time step k can be considered as a forest

of impulse responses U* = Z%; §(x% ) defined on the 3D image domain, where
xF = (ak yk zE) are the coordinates of a marked voxel and M is the number
of clicks at time step k. Let &*~! be the ROI estimate at step k — 1. We then
define p(S*¥~1(x)) = p(x € @*~1). To the first approximation, the transition

probability, given the user input takes the following form:

p(SF1) i UF=0
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or, alternatively,
p(S¥1SM 1 UF) = p(shH D (L = p(sh )Y (6)

In practice, we smooth the binary user input by a convolution with a ,Gaussian
kernel: n* £ U* x G,v. The transition probability can now be rephrased as
follows: X .

p(S*ISE k) = (ST (1 = p(s )" (7)
Note, that the voxels background/foreground assignments are not altered due
to the user input. Instead, the assignment probability of a voxel at x is flipped
with probability n*(x), where n* represents the user’s confidence or certainty
disagreement map at step k. The extent of the user’s influence, i.e. c* can be
either determined by the user or set to a default value. To avoid cases in which
a user click within the ROI affects the background or vice versa we define ROI-
background user maps as follows: 75 = S*~1p¥ and ¥, = (1 — S¥~1)n*. We
now define a user interaction energy term as a sum of two components referring
to the user’s clicks within the ROI and outside it:

Eur=— Y 108, p(S* (%), mf(x) = Y 10gPpour (S (%), mbu (%)) (8)

xcwk x€N\wk
==Y [S*(x)10g pin (S (x),nf,) + (1 = S*(x)) 1og pour (¥ (x); nb0)] »
xes?

where, log pin (S5, 1) £ log p(S*|S*~1;nf,), and log pout (S* =1, nk,,) £ log p(S*[S*~1ink,,),
are defined by Eq. (7).



3 Level-set framework for interactive segmentation

3.1 Probabilistic view

We use a level-set framework to formulate the Ul-segmentation problem [13]. Let
#* define a level-set function, such that dw* = {x|¢*(x) = 0} denotes the esti-
mated ROI boundaries in I at step k, and let wy denote the corresponding ROI
domain. As in [2], the binary segmentation S* can be represented by applying
the Heaviside function to ¢*, i.e. H(¢"*). Adopting the probabilistic approach
in [16], we use the logistic regression sigmoid, which can be used as a regularized
form of the Heaviside function, to represent the soft segmentation p(S*):

1 k 1

where € can be use to determine the fuzziness of the estimated ROI bound-
aries [16]. As is [16], we now define the level-set function ¢*, as follows:

N pxewt) p(x € W)
@"(x) = € logit(p) = € IOgl—p(XEw’“) =€ Ing(XE.Q\wk)'

(10)
It can be shown by substitution of Eq. (10) into Eq. (9) that H,(¢*) is equivalent
to p(x € wk). This relation is fundamental in the proposed probabilistic level-set
framework. It is important to note that ¢* is generated in an iterative manner,
using a gradient descent framework. However, & is not an iteration index (which
will be denoted by 7) but the final form of a level-set function after a first step
of a fully automatic segmentation followed by k — 1 steps of user interaction.
Usually the number of steps is not higher than two or three. We next, use the
equivalence between p(S*) and H.(¢*), and the continuous forms of equations
above to resolve the segmentation problem via a level-set based gradient descent
optimization.

3.2 Cost functional

The proposed cost functional for a level-set based segmentation includes an image
likelihood term, &;y,, a regularization term, Egpa, and a user interaction term
SU[ :

g(¢k|1’ ¢k_1a % Wk) = 8IL(¢k|I7w) + 5U1(¢k|¢)k_1777k) + SREG(¢k)' (11)

Adopting a continuous formulation and a soft definition of the ROI, the sum
over the image voxels, i.e. > € 2 is replaced with an integration: [ o dx, and
the binary segmentation S¥(x) is replaced by the probability that a voxel x
belongs to the ROI: p(S*(x)) or, using the level-set formulation, by H,(¢"(x)).



The explicit form of the energy functional in Eq. (11) is as follows:

5(¢'“)=/QWU1 [He(¢" (%)) log pin(nf,) + He(—¢*(x)) log pout (nf,e)]  (12)

+ Wi [He(¢k(x)) log pin (15 %in) + He(_¢k(x)) log pout (I; ¢out)]
+ Wiren|VH (6" (x))|dx.
(13)

The last term in Eq. (12), i.e. |[VH.(¢*(x))], is known, in the level-set literature
as the smoothness or regularization term [2]. The relation to — log p(S*) where
p(S*) is the prior in Eq. (1) is shown in [16]. The weights Wy, Wi, WrenN,
are positive scalars that balance the contribution of each term. In the first, fully
automatic segmentation phase Wy is set to zero. Similarly, Wy gy can be set
to a lower value (or zero) in the presence of user interaction.

We look for the segmentation ¢* that optimizes the energy functional Eq. (12)

k
via a gradient descent process: (b’jJrAT = ¢k + AT%%, where, ¢F is the level-set
k
estimate at iteration 7 in step k. The gradient descent step aa% is derived from

the first variation of the functional above and determines the evolution of the
segmentation:

o k
= 86" (Wor [log pnly) — 108 pou )] (14)
+ WIL [log Din (Ia wzn) - lOg Pout (Iv qpout)]
+ WreN le(Ld)k)}
[Vgk|”

where, div is the divergence operator and 6 (¢*) is the derivative of H.(¢*) with
respect to ¢F : 5. (¢) = dl{iﬁ(;¢) = %Esech2(2%). The scalar maps pi, (1%,), Pout (1%,1)
are updated once after each segmentation step, if a user input is provided. The
GMM of the image intensities ¥;, and 1,,; are re-estimated in correspondence
to ¢¥, which determines the ROI boundaries, using expectation maximization
(EM) [3]. Therefore, pin(I;%in), Pout (I3 out) are calculated at every iteration,
based on the updated intensity distribution parameters.

4 Experimental Results

We exemplify our method on cerebral hemorrhages (CH) segmentation of brain
CT scans. Segmentation is necessary for an accurate estimate the hemorrhage
volume for further medical treatment. Scans where acquired with Philips Bril-
liance CT 64 system without radiocontrast agents injection. The data resolution
is 512 x 512 x [90 — 100] with voxel size of 0.48mm x 0.48mm X 3mm, with
1.5 [mm)] overlap in the axial direction. We tested 15 cases of CH seizures. Qual-
itative results of some of the cases are shown in Fig. 1. Quantitative results,



which were obtained with respect to manual annotation of clinical experts are
shown in Table 1. This includes the Dice scores [4], sensitivity, specificity, accu-
racy of the segmentation results obtained by the proposed method. The reader is
encouraged to view our demo, located at http://youtu.be/aRn7TulrWLY which
demonstrates the Ul segmentation using the GUI.

Table 1. Dice, Sensitivity, Specificity and Accuracy. Averages of 15 different slices from
different patients.

l Phase vs Score ‘ Dice ‘ Sensitivity ‘ Specificity ‘ Accuracy

Automatic 0.874 £+ 0.034/0.864 £ 0.073| 0.99 £ 0.0019 |0.996 £ 0.0033
With user interaction|0.905 & 0.027| 0.87 &= 0.063 {0.999 &£ 0.0003|0.997 + 0.0022

5 Conclusions

Image segmentation in necessary for measuring ROI features, such as pose, size,
location, texture, etc., which may be critical for diagnosis, treatment planning
and image guided therapy. User interaction is therefore essential for resolving
classification ambiguities and errors due to imaging artifacts, poor contrast and
noise. We proposed a novel probabilistic model for a semi-automatic segmen-
tation in which the user interacts with the segmentation algorithm providing
spatial information. Accurate segmentation results, with a minimal user input
are obtained for the segmentation of CH in brain CT images. According to radiol-
ogists evaluation, our method provides an intuitive interface and a more accurate
segmentation results, when compared to another, commercially distributed, tool-
box. Moreover, the overall number of interaction steps needed was not higher
than two. As no prior information is assumed and the image intensity distribu-
tion is learned throughout the segmentation, the proposed method can be used
for a wider range of segmentation applications and imaging modalities such as
MRI or ultrasound. A toolbox with a user friendly GUI was developed as a part
of this research project and is demonstrated in http://youtu.be/aRn7TulrWLY.
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Fig. 1. Segmentations of the CH of different patients. Fully automatic segmentation
in blue; Final segmentation with user-interaction in green. User clicks are in red (false
positive) and yellow (false negative).



