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Abstract

The paper addresses the problem of “class-based” recogni-
tion and image-synthesis with varying illumination. The class-
based synthesis and recognition tasks are defined as follows:
given a single input image of an object, and a sample of im-
ages with varying illumination conditions of other objects of
the same general class, capture the equivalence relationship
(by generation of new images or by invariants) among all im-
ages of the object corresponding to new illumination condi-
tions.

The key result in our approach is based on a definition of
an illumination invariant signature image, we call the “quo-
tient” image, which enables an analytic generation of the im-
age space with varying illumination from a single input image
and a very small sample of other objects of the class — in our
experiments as few as two objects. In many cases the recog-
nition results outperform by far conventional methods and the
image-synthesis is of remarkable quality considering the size
of the database of example images and the mild pre-process
required for making the algorithm work.

1 Introduction
Consider the image space generated by applying a source of

variability, say changing illumination or changing viewing po-
sitions, on a 3D object or scene. Under certain circumstances
the images generated by varying the parameters of the source
can be represented as a function of a small sample images from
the image space. For example, the image space of a 3D Lam-
bertian surface is determined by a basis of three images, ig-
noring cast-shadows [10, 11, 6, 2, 8]. In this case, the low
dimensionality of the image space under lighting variations is
useful for synthesizing novel images given a small number of
model images.

Visual recognition and image synthesis are intimately re-
lated. Recognizing a familiar object from a single picture un-
der some source of variation requires a handle on how to cap-
ture the image space created by that source of variation. In
other words, the process of visual recognition entails an ability
to capture an equivalence class relationship that is either “gen-
erative”, i.e., create a new image from a number of example
images of an object, or “invariant”, i.e., create a “signature” of

the object that remains invariant under the source of variation
under consideration. For example, in a generative process a
set of basis images may form a compact representation of the
image space. A novel input image is then considered part of
the image space if it can be synthesized from the set of basis
images. In a process based on invariance, on the other hand,
the signature may be a “neutral” image, say the object under a
canonical lighting condition or viewing position. A novel im-
age is first transformed into its neutral form and then matched
against the data base of (neutral) images.

In this paper we focus on recognition and image synthesis
under lighting condition variability of aclassof objects, i.e.,
objects that belong to a general class, such as the class of faces.
In other words, for the synthesis task, given sample images of
members of a class of objects, and asingle image of a new
object of the class, we wish to synthesize new images of the
new object that simulate changing lighting conditions.

Our approach is based on a new result showing that the set
of all images generated by varying lighting conditions on a
collection of Lambertian objects all having the same shape but
differing in their surface texture (albedo) can be characterized
analytically using images of a prototype object and a (illumi-
nation invariant) “signature” image per object of the class. Our
method has two advantages. First and foremost, the method
works remarkably well on real images (of faces) using a very
small set of example objects — as few as two example objects
(see Fig. 2). The re-rendering results are in many cases indis-
tinguishable from the “real” thing and the recognition results
outperform by far conventional methods. Second, since our
approach is based on a simple and clean theoretical founda-
tion, the limitations and breaking points can be clearly distin-
guished thus further increasing this algorithm’s practical use.

1.1 Related work

The basic result about the low dimensionality of the im-
age space under varying lighting conditions was originally re-
ported in [10, 11] in the case of Lambertian objects. Appli-
cations and related systems were reported in [6, 2, 5]. Re-
rendering under more general assumptions, yet exploiting lin-
earity of light transport was reported in [8].

Work on “class-based” synthesis and recognition of images

1



(mostly with varying viewing positions) was reported in (par-
tial list) [3, 1, 4, 15, 14]. These methods adopt a “reconstruc-
tionist” approach in which a necessary condition for the pro-
cess of synthesis is that the original novel image be generated,
reconstructed, from the database of examples. For example,
the “linear class” of [16] works under the assumption that 3D
shapes of objects in a class are closed under linear combina-
tions (in 3D). Recently, [9] have proposed to carry an addi-
tive error term, the difference between the novel image and
the reconstructed image from the example database. During
the synthesis process, the error term is modified as well, thus
compensating for the difference between the image space that
can be generated from the database of examples and the de-
sired images. Their error term is somewhat analogous to our
signature image. However, instead of an error term, we look
for an illumination invariant term (signature image) that makes
for the difference (in a multiplicative sense) between the im-
age space spanned by a single prototype (or reference) object
and the novel image. The database of examples is used for re-
covering a number of parameters required for generating the
signature image.

2 Background and Definitions
We will restrict our consideration to objects with a Lam-

bertian reflectance function, i.e., the image can be described
by the product of the albedo (texture) and the cosine an-
gle between a point light source and the surface normal:
�(x; y)n(x; y)>s where0 � �(x; y) � 1 is the surface re-
flectance (grey-level) associated with pointx; y in the image,
n(x; y) is the surface normal direction associated with point
x; y in the image, ands is the (white) light source direction
(point light source) and whose magnitude is the light source
intensity.

The basic result we will use in this paper is that the image
space generated by varying the light source vectors lives in
a three-dimensional linear subspace [10, 11]. To see why this
is so consider three imagesI1; I2; I3 of the same object (�; n
are fixed) taken under linearly independent light source vec-
torss1; s2; s3, respectively. The linear combination

P
j �jIj

is an imageI = �n>s wheres =
P

j �jsj . Thus, ignoring
shadows, three images are sufficient for generating the image
space of the object. The basic principle can be extended to
deal with shadows, color images, non-white light sources, and
non-Lambertian surfaces [11, 8, 5], but will not be considered
here as our approach can be likewise extended. This principle
has been proven robust and successfully integrated in recogni-
tion schemes [11, 5, 2]. See Fig. 2 for an example of using this
principle for image synthesis.

We define next what is meant by a “class” of objects. In or-
der to get a precise definition with which we can base analytic
methods on we define what we call an “ideal” class as follows:

Definition 1 (Ideal Class of Objects) An ideal class is a col-
lection of 3D objects that have the same shape but differ in the
surface albedo function. The image space of such a class is
represented by:

�i(x; y)n(x; y)
T sj

where�i(x; y) is the albedo (surface texture) of objecti of
the class,n(x; y) is the surface normal (shape) of the object
(the same for all objects of the class), andsj is the point light
source direction, which can vary arbitrarily.

In practice, objects of a class do have shape variations, al-
though to some coarse level the shape is similar, otherwise we
would not refer to them as a “class”. The ideal class could be
satisfied if we perform pixel-wise dense correspondence be-
tween images (say frontal images) of the class. The dense cor-
respondence compensates for the shape variation and leaves
only the texture variation. For example, Poggio and colleagues
[14] have adopted such an approach in which the flow field and
the texture variation were estimated simultaneously during the
process of synthesizing novel views from a single image and
a (pixel-wise pre-aligned) data base. The question we will ad-
dress during the experimental section is what is the degree of
sensitivity of our approach to deviations from the ideal class
assumption. Results demonstrate that one can tolerate signif-
icant shape changes without noticeable degradation in perfor-
mance, or in other words, there is no need to establish any
dense alignment among the images beyond alignment of cen-
ter of mass and scale.

From now on when we refer to a class of objects we mean
an “ideal” class of objects as defined above. We will develop
our algorithms and correctness proofs under the ideal class as-
sumption. We define next the “recognition” and “synthesis”
(re-rendering) problems.

Definition 2 (Recognition Problem) GivenN � 3 images of
N objects under3 lighting conditions andM � N images of
other objects of the same class illuminated under some arbi-
trary light conditions (each), identify theM +N objects from
a single image illuminated by some novel lighting conditions.

Note that we require a small numberN of objects, 3 images
per object, in order to “bootstrap” the process. We will refer to
the3N images as the “bootstrap set”. The synthesis problem
is defined similarly,

Definition 3 (Synthesis (Re-rendering) Problem)Given
N � 3 images ofN objects of the same class, illuminated
under 3 distinct lighting conditions and a single image of
a novel object of the class illuminated by some arbitrary
lighting condition, synthesize new images of the object under
new lighting conditions.

To summarize up to this point, given the ideal class and the
synthesis/recognition problem definitions above, our goal is:
we wish to extend the linear subspace result of [11] that deals
with spanning the image space�n>s where onlys varies, to
the case where both� ands vary. We will do so by showing
that it is possible to map the image space of one object of the
class onto any other object, via the use of an illumination in-
variant signature image. The recovery of the signature image
requires a bootstrap set of example images, albeit a relatively
small one (as small as images generated from two objects in
our experiments).



3 The Quotient Image Method
Given two objectsa;b, we define the quotient imageQ by

the ratio of their albedo functions�a=�b. Clearly,Q is illu-
mination invariant. In the absence of any direct access to the
albedo functions, we show thatQ can nevertheless be recov-
ered, analytically, given a bootstrap set of images. OnceQ is
recovered, the entire image space (under varying lighting con-
ditions) of objecta can be generated byQ and three images of
objectb. The details are below.

We will start with the caseN = 1, i.e., there is a single
object (3 images) in the bootstrap set. Let the albedo function
of that objecta be denoted by�a, and let the three images be
denoted bya1; a2; a3, therefore,aj = �an

>sj , j = 1; 2; 3.
Let y be another object of the class with albedo�y and letys
be an image ofy illuminated by some lighting conditions,
i.e., ys = �yn

>s. We define below an illumination invariant
signature imageQy of y against the bootstrap set (in this case
againsta):

Definition 4 (Quotient Image) The quotient imageQy of ob-
jecty against objecta is defined by

Qy(u; v) =
�y(u; v)

�a(u; v)
;

whereu; v range over the image.

Thus, the imageQy depends only on the relative surface
texture information, and thus is independent of illumination.
The reason we represent the relative change between objects
by the ratio of surface albedos becomes clear from the propo-
sition below:

Proposition 1 Given three imagesa1; a2; a3 of objecta illu-
minated by any three linearly independent lighting conditions,
and an imageys of objecty illuminated by some light source
s, then there exists coefficientsx1; x2; x3 that satisfy,

ys = (
X

j

xjaj)
 Qy;

where
 denotes the Cartesian product (pixel by pixel multi-
plication). Moreover, the image space of objecty is spanned
by varying the coefficients.

Proof: Let xj be the coefficients that satisfys =
P

j xjsj .
The claimys = (

P
j
xjaj)
Qy follows by substitution. Since

s is arbitrary, the image space of objecty under changing il-
lumination conditions is generated by varying the coefficients
xj.

We see that onceQy is given, we can generateys (the novel
image) and all other images of the image space ofy. The key
is obtaining the quotient imageQy. Givenys, if somehow we
were also given the coefficientsxj that satisfys =

P
j
xjsj ,

thenQy readily follows:Qy = ys=(
P

j xjaj), thus the key is
to obtain the correct coefficientsxj. For that reason, and that
reason only, we need the bootstrap set— otherwise, a single
objecta would suffice (as we see above).

Let the bootstrap set of3N pictures be taken from three
fixed (linearly independent) light sourcess1; s2; s3 (the light

sources are not known). LetAi, i = 1; :::; N , be a matrix
whose columns are the three pictures of objectai with albedo
function�i. Thus,A1; :::; AN represent the bootstrap set of
N matrices, each is am � 3 matrix, wherem is the number
of pixels of the image (assuming that all images are of the
same size). Letys be an image of some novel objecty (not
part of the bootstrap set) illuminated by some light sources =P

j xjsj . We wish to recoverx = (x1; x2; x3) given theN
matricesA1; :::; AN and the vectorys.

We define thenormalized albedofunction� of the bootstrap
set as:

�(u; v) =
NX

i=1

�2i (u; v)

which is the sum of squares of the albedos of the bootstrap set.
In case where there exist coefficients�1; :::; �N such that

�(u; v)

�y(u; v)
= �1�1(u; v) + :::+ �N�N (u; v) (1)

where�y is the albedo of the novel objecty, we say that�y is
in therational spanof the bootstrap set of albedos. With these
definitions we show the major result of this paper: if the albedo
of the novel object is in the rational span of the bootstrap set,
we describe an energy functionf(x̂) whose global minimum
is atx, i.e.,x = argmin f(x̂).

Theorem 1 The energy function

f(x̂) =
1

2

NX

i=1

j Aix̂� �iys j
2 (2)

has a (global) minimum̂x = x, if the albedo�y of objecty
is rationally spanned by the bootstrap set, i.e., if there exist
�1; :::; �N that satisfy eqn. 1.

The proof can be found in [12]. Findingminf(x̂) is a sim-
ple technicality (a linear least-squares problem):

Theorem 2 The global minimaxo of the energy functionf(x̂)
is:

xo =
NX

i=1

�ivi

where

vi = (
NX

r=1

A>r Ar)
�1A>i ys

and the coefficients�i are determined up to a uniform scale
as the solution of the symmetric homogeneous linear system of
equations:

�iy
>

s ys � (
NX

r=1

�rvr)
>A>i ys = 0 (3)

for i = 1; :::; N:



The proof can be easily derived and is shown in [12]. When
N = 1, the minimum off(x̂) coincides withx iff the albedo of
the novel object is equal (up to scale) to the albedo of bootstrap
object. The more objects in the bootstrap set the more freedom
we have in representing novel objects. In practice, the albedo
functions live in a relatively low dimensional subspace ofm,
therefore a relatively small sizeN << m is required, and that
is tested empirically in Section 4.

Once the coefficientsx = (x1; x2; x3) have been recov-
ered, the quotient imageQy can be defined against the average
object: LetA be am� 3 matrix defined by the average of the
bootstrap set,

A =
1

N

NX

i=1

Ai;

and then the quotient imageQy is defined by:

Qy =
ys
Ax

:

To summarize, we describe below the algorithm for synthe-
sizing the image space of a novel objecty, given the bootstrap
set and a single imageys of y.

1. We are givenN matrices,A1; :::; AN, where each matrix
contains three images (as its columns). This is the boot-
strap set. We are also given a novel imageys (represented
as a vector of sizem, wherem is the number of pixels in
the image). For good results, make sure that the objects
in the images are roughly aligned (position of center of
mass and geometric scale).

2. ComputeN vectors (of size 3) using the equation:

vi = (
NX

r=1

A>r Ar)
�1A>i ys;

wherei = 1; :::; N .

3. Solve the homogeneous system of linear equations in
�1; :::; �N described in (3). Scale the solution such thatP

i �i = N .

4. Computex =
P

i
�ivi.

5. Compute the quotient imageQy = ys=Ax, whereA is
the average ofA1; :::; AN. Replace divisions by zero by
small numbers.

6. The image space created by the novel object, under vary-
ing illumination, is spanned by the product of imagesQy

andAz for all choices ofz.

Finally, it is worthwhile noting that it is possible to syn-
thesize color images using a black-and-white bootstrap set by
converting the RGB channels of the novel color image into
HSV representation. The V channel is the input to the algo-
rithm above and is used to synthesize V’. The corresponding
new color image is represented by the original H,S channels
and the new V’.

4 Experiments
We have conducted a wide range of experimentation on the

algorithm presented above. We will show here two experi-
ments, the rest can be found in [12]. We first used a high
quality database prepared by Thomas Vetter and his associates
[14, 15]. We have chosen a bootstrap collection of 10 objects
shown in Fig. 1. The images of the bootstrap set and the novel
images to be tested are “roughly” aligned, which means that
the center of mass was aligned and scale was corrected (man-
ually).

In Fig 2 we demonstrate the results of image synthesis from
a single input image and the bootstrap set. Note the quality and
the comparison between results of bootstrap sizeN = 10 and
N = 2 (there are differences but relatively small).

So far we have experimented with objects and their images
from the same database of 200 objects. Even though the input
image is of an object outside the bootstrap set, there is still an
advantage by having all the images taken with the same cam-
era, same conditions and same quality level. Our next exper-
iments were designed to test the algorithm on source images
taken from sporadic sources, such as from magazines or from
the Web. The bootstrap set in all experiments is the one dis-
played in Fig. 1.

Fig. 3 shows novel (color) images of celebrity people (from
magazines) and the result of the synthesis procedure. These
images are clearly outside the circle of images of the original
database of Vetter, for example the images are not cropped for
hair adjustment and the facial details are markedly different
from those in the bootstrap set.

5 Recognition
The Q-images are illumination invariant signatures of the

objects in the class. We can therefore make use of the invari-
ance property for purposes of recognition. Vetter’s data base
contains 200 faces eachunder 9 lighting conditions, making
a total of 1800 images. We used a bootstrap set of 20 ob-
jects (60 images) and created the Q-images of all the 200 ob-
jects — these 200 images serve as the database, we refer to
as Q-database, for purposes of recognition. Given any of the
1800 source images, its Q-image is created from the bootstrap
set and matched (by correlation) against the Q-database while
searching for the best match.

We made two tests (summarized in Fig. 4). In the first test
the Q-database was generated from images under the same il-
lumination (we have 9 images per object in Vetter’s database).
The results of recognition was compared to correlation where
the database for correlation where those images used for cre-
ating the Q-database. The match against the Q-database was
error free (0%). The match against the original images, instead
of the Q-images, had 142 mismatches (7:8%). In the second
test the images used for creating the Q-database were drawn
randomly from the set of 9 images (per object). The match
against the Q-database produced only 6 mismatches (0:33%),
whereas the match against the original images produced 565
mismatches (31:39%). The sharp increase in the rate of mis-
matches for the regular correlation approach is due to the dom-
inance of illumination effects on the overall brightness distri-



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 1. The bootstrap set of 10 objects from Vetter’s database of 200 objects.
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Figure 2. Image synthesis examples. (a) Original images under 3 distinct lighting conditions and the synthesized images (b) using linear
combinations of those 3 images. The synthesized images using the original single image (c) and aN = 10 bootstrap set are shown in (d).
Finally, (e) is anN = 2 bootstrap set for generating the synthesized images (f) from the single original image (c).

�D� �E� �F� �G� �H �

� I� �J �K� � L� � M�

Figure 3. Color examples. Original images (a),(f) and the bootstrap set of Fig. 1 are from completely different sources. The re-rendered
images are in (c)–(e) and (h)–(j), respectively.



��

��

���

���

���

���

���

���

VDPH
LOO�

YDU\LQJ
LOO

4�PHWKRG

&RUUHODWLRQ

��

��

��

��

��

��

��

��

VDPH�LOO� YDU\LQJ
LOO

4�PHWKRG

3&$����HY

3&$����HY

�D� �E�

Figure 4. Recognition results on Vetter’s database of1800
face images. We compare the Q-image method with correla-
tion and Eigenfaces. See text for details.

bution of the image.
We also made a comparison against the “eigenfaces” ap-

proach [13, 7] which involves representing the database by its
Principle Components (PCA). In the first test, the PCA was
applied to the bootstrap set (60 images) and 180 additional
images, one per object. In the first test the additional images
were all under the same illumination, and in the second test
they were drawn randomly from the set of 9 images per ob-
ject. The recognition performance depends on the number of
principle components. With 30 principle components (out of
240) the first test had 25 mismatches(1:4%), and the second
test 120 mismatches(6:6%). The performance peaks around
50 principle components in which case the first test was error
free (like in the Q-image method), and the second test had 18
mismatches(1%).

To summarize, in all recognition tests, except one test of
equal performance with PCA, the Q-image outperforms and in
some cases in a significant manner, conventional class-based
approaches.

6 Summary
We have presented a class-based synthesis and recognition

method. The key element of our approach was to show that un-
der fairly general circumstances it is possible to extract from
a small set of example images an illumination invariant “sig-
nature” image per novel object of the class from a single in-
put image alone. We have proven our results (under the ”toy”
world of ideal class assumption) and demonstrated the appli-
cability of our algorithm on the class of real pictures of human
faces. In other words, we have shown that in practice a re-
markably small number of sample images of human frontal
faces (in some of our experiments images of two objects were
sufficient for making a database) can generate photo-realistic
re-rendering of new objects from single images.
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