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The Capacity Region of the Fading Interference
Channel With a Relay in the Strong

Interference Regime
Ron Dabora, Member, IEEE

Abstract—The interference channel with a relay (ICR) is the
fundamental building block of cooperation in wireless networks
where there are multiple communicating pairs interfering with
each other. This paper considers ICRs in which the links are
subject to i.i.d. fading, and each node has channel state informa-
tion (CSI) only on its incoming links (receive CSI). Two channel
models are considered: phase fading and Rayleigh fading. Strong
interference conditions are derived for the case where the links
from the sources to the relay are good in the sense that the achiev-
able region for decoding both messages at the relay contains the
maximal achievable region at the destinations. This leads to the
characterization of the capacity region for such scenarios. This is
the first time the capacity region of the ICR is characterized for a
nondegraded, noncognitive scenario, with a causal relay when all
links are active.

Index Terms—Capacity, decode-and-forward, fading, interfer-
ence channels (ICs), network information theory, relaying.

I. INTRODUCTION

O NE of the main challenges in the design of wireless
networks is coping with interference. Node cooperation

is one of the key approaches to interference management in
future wireless networks. In order to successfully integrate
cooperation into the network design, it is essential to analyze
the basic “building block” of cooperation in wireless networks
which have interference. This building block is obtained by
combining two fundamental networks: the interference channel
(IC) [1] and the relay channel [2]. The combination of these
two networks is a five-node network which consists of two
communicating pairs and a relay node. The relay receives
a combination of the transmissions from both sources and
its signal is received at both destinations. Its role is to assist
communication of both pairs. This channel model, referred to
as the interference channel with a relay (ICR), was considered
in several works (see [3] and references therein).
Relaying in the presence of interference is fundamentally dif-

ferent from relaying in the classic three-node relay channel of
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[4, Sec. III-A]: in the classic relay channel, there is no inter-
ference since all received signals carry information only on the
desired message. In the ICR, when the relay forwards desired
information to its destination, it also increases the interference
at the second destination. Thus, when increasing the rate to one
destination, the relay may end up reducing the rate to the second
destination. On the other hand, in some situations, increasing the
interference is optimal as it facilitates interference cancellation
at the assisted receiver [5]. Therefore, in order to apply coopera-
tion in the presence of interference, it is necessary to understand
how interference and cooperation affect each other. As studying
the classic relay channel does not shed light on the interaction
between cooperation and interference, the need to understand
this interaction provides a strong motivation for studying the
ICR. Indeed, the ICR has attracted significant attention in the
last years, and inner bounds [3], [5], [6] as well as outer bounds
[7], [8] were derived for this scenario. Different variations such
as cognition at the sources and/or the relay, as well as relaying
over orthogonal links, have also been considered (see [3], [9]
and references therein).
In this paper, we study ICRs when the links are subject

to i.i.d. phase fading (PF-ICRs), as well as i.i.d. Rayleigh
fading (RF-ICRs). Phase fading models apply to high-speed
microwave communications over time-invariant channels
where the oscillators’ phase noise is a key impairment. Phase
fading is also the major impairment in communication systems
that employ orthogonal frequency division multiplexing [10],
as well as in some applications of naval communications.
Phase fading channel models also apply to systems which use
dithering to decorrelate signals [11]. Rayleigh fading models
are very common in wireless communications and apply to
mobile communications in the presence of multiple scatterers
without line-of-sight (e.g., dense urban environments) [12].
The key similarity between the two models is the uniformly
distributed phase of the fading coefficients. The two fading
models differ in the behavior of the fading magnitude, which
is fixed for phase fading but varies following the Rayleigh
distribution in Rayleigh fading.
The body of work on cooperative communications is vast

and we refer to [4] and [13] for a comprehensive reference
list. In particular, for cooperative multiuser scenarios, phase-
fading models were considered for multiple-access-relay chan-
nels (MARCs) [4], [14] as well as for relay channels [4], broad-
cast-relay channels (BRCs) [4], and ICs [15]. In [15], Rx and
Tx cooperation was considered for quasi-static phase fading ICs
with two clustered transmitters and two clustered receivers (i.e.,
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Fig. 1. ICR—a schematic layout. Additive noises are not depicted.

cooperation links are static), and full channel state information
(CSI) available at all nodes.
Rayleigh fading were considered for relay channels in [16],

[17] and [18]. Parallel relaying for MARCs and BRCs was con-
sidered in [19] for block fading channels in asymptotic regimes.
In [20], an achievable region was derived for the three-user mul-
tiple-access channel (MAC) with cooperating transmitters, with
CSI available at the transmitters (Tx-CSI) and at the receiver
(Rx-CSI), and in [21], power control for i.i.d. fading coopera-
tive MACs with Tx and Rx CSI was considered. In the context
of ICs, the ergodic capacity of ICs subject stationary, ergodic
(but not necessarily Gaussian) fading, assuming the transmit-
ters and receivers know the instantaneous channel gains of all
users, was obtained in [22].

A. Main Contributions

We characterize the capacity region for fast-fading ICRs in
which all links are active (i.e., the channel output at each re-
ceiver is a combination of the transmissions from both sources
and from the relay, and the channel output at the relay is a
combination of the channel inputs from both sources), all trans-
missions share the same bandwidth, the nodes are full duplex,
the relay operation is strictly causal, all signal-to-noise ratios
(SNRs) are finite, and the channel is not degraded. Only receive
CSI is assumed. The capacity regions are characterized for sce-
narios in which relay reception is “good” in the sense that the
achievable region for decoding both messages at the relay con-
tains the maximal achievable region for decoding the messages
at the destinations. The analysis separately treats two interfer-
ence regimes: “very strong interference” (VSI) and “strong in-
terference” (SI). The results characterize the optimal transmis-
sion strategy for each channel configuration and identify the best
performance that can be obtained. Specifically,
1) We obtain the capacity regions of PF-ICRs and of
RF-ICRs, with Rx-CSI, under VSI. VSI was originally
considered for ICs by Carleial [23]. When VSI occurs
in ICs, each pair can communicate at a rate equal to its
point-to-point (PtP) interference-free capacity. However,
in the ICR, the situation is different as the maximal rate
for each pair in the absence of interference depends on
the relay, and in general, the relay may not be able to
simultaneously provide the maximal assistance to each
pair. We show how this is resolved in Section IV.

2) We obtain the capacity regions of PF-ICRs and of
RF-ICRs, with Rx-CSI, under SI. The concept of SI
was initially introduced for ICs in [24]. In interference

networks, SI occurs when decoding both messages at
each receiver does not constrain the rates of the desired
information. In the SI regime, the capacity region of the
IC is obtained as the capacity region of the corresponding
compound MAC. SI for ICRs was investigated only in the
cognitive setup [3], where the relay knows noncausally
the sources’ signals. In this study, we derive SI conditions
for ICRs with a causal relay. The derivation of the SI
conditions for PF-ICRs and RF-ICRs is focused on how to
handle the dual role of the relay signal: sending both infor-
mation and interference embedded in a single codeword.
This is considered in Section V.

Our results demonstrate that a single relay can be simulta-
neously optimal for several pairs. This implies that when in-
troducing relays into fading wireless networks (subject to the
assumptions detailed previously), a few relays can help several
pairs optimally, in the sense that each pair observes an interfer-
ence-free relay channel with a dedicated relay (in SI an addi-
tional sum-rate constraint exists). This supports incorporating
relays into wireless networks.
The rest of this paper is organized as follows: In Section II, the

model and notations are presented, and in Section III relevant
preliminary results are reviewed. In Section IV, the capacity
regions for VSI are derived for PF and for RF ICRs, and in
Section V the capacity regions under SI are derived for the two
fading models. Concluding remarks are provided in Section VI.

II. NOTATIONS AND MODEL

In the following, we denote random variables with upper case
letters, e.g., , , and their realizations with lower case letters,
, . A random variable (RV) takes values in the set of com-
plex numbers . We use to denote the probability density
function (p.d.f.) of a continuous RV on . For brevity, wemay
omit the subscript when it is the upper case version of the re-
alization letter . We denote vectors with boldface letters, e.g.,
, ; the th element of a vector is denoted with and we use
, where to denote the vector ;
is a short-form notation for , and . We use to

denote the mutual information between two random variables,
as defined in [25, Ch. 2]. We denote with the set of
jointly typical sequences with respect to as defined in
[25, Chs. 3, 8]. We use to denote a proper, circularly
symmetric, complex Normal distribution with mean and vari-
ance [26]. We use to denote that is statistically
independent of , is used to denote the set of real numbers,
and double-stroke letters are used to denote matrices, e.g., ,
with the exception that is used to denote stochastic ex-
pectation. Let denote the identity matrix. Finally,
denotes Hermitian conjugation, and means “ is a
RV distributed according to ”, and is the exponen-

tial integral: .
In fading ICRs, the received signals at time at , and

the relay are given by

(1a)

(1b)

(1c)
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, where , , and are i.i.d., circularly
symmetric, complex Normal RVs, . The channel input
signals are subject to per-symbol average power constraints:

, .
Next, we define the statistical model for each fading type:
• Phase Fading Channels: The channel coefficients are
given by , are nonnegative
constants representing the attenuation from node to node
and are uniformly distributed over , i.i.d.,

and independent of each other and of the additive noises
.

• Rayleigh Fading Channels: The channel coefficients are
given by , are nonnegative
constants representing the mean attenuation from node
to node , and are circularly symmetric, complex
Normal RVs, , i.i.d., and independent of
each other and of the additive noises .

In both models, the values of are fixed and known at all
users, therefore we can set . Note that the magni-
tude of the phase fading process is constant, , but
for Rayleigh fading the fading magnitude varies between dif-
ferent time instances.
In the following, it is assumed that each destination receiver

as well as the relay knows all instantaneous channel coefficients
from , and the relay to itself. This is referred to as
Rx-CSI. Note that each receiver does not have CSI on the links
arriving to the other receiver or to the relay, and that the relay
does not have CSI on the links arriving to the receivers. It is
assumed that the sources and the relay do not know the channel
coefficients on their outgoing links (no Tx-CSI). The impact of
the lackofTx-CSIwill behighlighted inSections III-Aand IV-A.
We represent theCSI at receiver with ,

, and at the relay with . We let
and be the corresponding domains

for the channel state vectors, and we define

and

.
Finally, we provide the definitions of the main terminology:

Definition 1: An code for the ICR consists of two

message sets , , two encoders at
the sources, , and two decoders at the destinations, :

, , . At the relay,
there is a causal encoder, ,

.
Observe that the relay operates in full duplex mode and the

relay encoding is strictly causal. Also observe that there are no
common messages to be decoded at both receivers. The sensi-
tivity of the results to these assumptions will be discussed in
Section V-A.

Definition 2: The average probability of error of an

code is defined as

, and each source message is
selected independently and uniformly from its message set.

Definition 3: A rate pair is called achievable if for
any and there exists some blocklength ,
such that for every there exists an

code with .

Definition 4: The capacity region is the convex hull of all
achievable rate pairs.

III. PRELIMINARIES

A. Capacity of Phase Fading and of Rayleigh Fading Relay
Channels

The fading relay channel with source and destination
can be obtained from the ICR by taking only (1a) and (1c)

and setting . For the phase fading relay channel
the following capacity theorem was derived in [4]:

Proposition (See [4, Th. 6]): When in (1a)
and (1c), and the channel coefficients satisfy

the capacity of the phase fading relay channel with Rx-CSI is
given by

(2)

Capacity is achieved with , ,
, and DF at the relay.

Comment 1: The reason that independent Gaussian inputs
achieve capacity (when relay reception is good) follows from
a combination of four factors: 1) the fading coefficients are mu-
tually independent and have uniformly distributed phases inde-
pendent of their magnitudes, 2) the availability of Rx-CSI, 3)
the lack of Tx-CSI, and 4) the concavity of the log function. In
particular, we note that due to the lack of Tx-CSI, the compo-
nents of the received signal at the destination, ,

, are uncorrelated, irrespective of the joint distribu-
tion . Furthermore, subject to the four factors
mentioned previously, we obtain that each mutual information
expression in the cut-set bound [4, eq. (6)] is maximized by
a jointly complex Normal input distribution (see [4, Proposi-
tion 2]). The fact that the different components of the received
signal cannot be correlated implies that there is no point gener-
ating correlated channel inputs. Finally, as uncorrelated jointly
Gaussian RVs are mutually independent, this implies that inde-
pendent Gaussian channel inputs maximize all mutual informa-
tion expressions. A detailed argument can be found in the proof
of [4, Th. 8].
For Rayleigh fading relay channels, [4, Th. 8] leads to the

characterization of the maximal cut-set bound and the largest
DF achievable rate. From this characterization, the following
capacity theorem is obtained.

Proposition 1: Let . When the condition

(3)
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holds, the capacity of the Rayleigh fading relay channel is

(4)

and it is achieved with ,
, and DF at the relay.

Proof: The proof follows by applying [4, Th. 8] to the DF
achievable rate of [27, Th. 1] and to the cut-set bound [25, Th.
15.10.1]. To guarantee that DF achieves capacity we require
that subject to
the maximizing channel inputs. The condition (3) follows by
applying Jensen’s inequality [25, Th. 2.6.2] to the above in-
equality, similar to the proof of Corollary 1 (see Appendix B).

B. The Multiple-Access Relay Channel

The MARC consists of two sources, a single destination,
and a single relay [4, Sec. III-C]. The memoryless MARC is
defined by ,
where is the signal received at the destination, and
are the channel input and output at the relay, and and
are the channel inputs from the sources. The destination uses
its received signal vector to decode the messages from both
sources. The fading Gaussian MARC model is given by (1a)
and (1c).

C. Capacity Regions for Phase Fading and for Rayleigh
Fading MARCs

The phase fading MARC is defined by (1a) and (1c), with
, . The following capacity

region of the PF-MARC was characterized in [4, Th. 9]:

Theorem (See [4, Th. 9]): Consider the MARC with phase
fading characterized in (1a) and (1c). If the channel coefficients
and the source powers satisfy

(5a)

(5b)

(5c)

then the capacity region is characterized by all nonnegative rate
pairs s.t.

(6a)

(6b)

(6c)

and it is achieved using ,
and , mutually independent, and DF at the
relay.
Note that achievability of this region also follows from the

achievable region in Appendix A.

The Rayleigh fading MARC is defined by (1a) and (1c), with
, . Assuming Rx-CSI, the fol-

lowing achievable rate region is obtained:

Proposition 2: Consider the Rayleigh fading MARC. The
achievable rate region obtained by using ,

mutually independent, DF at the relay, and backward
decoding at the destination, is given by

(7a)

(7b)

(7c)

(8a)

(8b)

(8c)

Proof: Applying the derivation outlined in Appendix A to
the present model, we obtain that the rate constraints for de-
coding at the relay are given by (7), and the rate constraints for
decoding at the destination are given by (8).

Now, we can state the following corollary:

Corollary 1: Consider the Rayleigh fading MARC. If the
channel coefficients satisfy

(9a)

(9b)

(9c)

then the DF achievable region given in (8) is the
capacity region.

Proof: See Appendix B.

Comment 2: It is noted that condition (9c) holds also when
by applying L’Hopital’s rule [29, Th. 14.1.5].

Note that when (9) holds, reliable decoding of the messages at
their destinations implies reliable decoding of both messages at
the relay.
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IV. THE VERY STRONG INTERFERENCE REGIME

In this section, capacity regions for fading ICRs for the VSI
regime are characterized, first for phase fading and then for
Rayleigh fading.

A. VSI for Ergodic Phase Fading and Ergodic Rayleigh
Fading ICRs

Define to be the set of channel coefficients
that satisfy

(10a)

(10b)

(10c)

We now state the following capacity theorem for PF-ICRs in
VSI (recall )

Theorem 1: Consider the ICR (1) with all links subject to
i.i.d. phase fading. Let the sources and the relay be subject to
per-symbol power constraints

(11)

and the channel coefficients satisfy .
If the channel coefficients satisfy also

(12a)

(12b)

then the capacity region with Rx-CSI is characterized by all non-
negative rate pairs s.t.

(13a)

(13b)

and it is achieved by circularly symmetric, complex Normal in-
puts, , , all mutually independent,
and DF at the relay.

Proof: See Appendix C.

Comment 3: When then the
maximal achievable rate region at the destinations is a subset
of the achievable region for decoding both messages at the
relay. Therefore, decoding at the relay does not constrain the
rates, and DF is optimal. When , we

say that relay reception is good. Conditions (12) are the VSI
conditions.
For Rayleigh fading ICRs, define to be the set of channel

coefficients that satisfy

(14a)

(14b)

(14c)

We now have the following characterization of VSI and the as-
sociated capacity region.

Theorem 2: Consider the ICR (1) with all links subject
to i.i.d. Rayleigh fading. Let the channel coefficients satisfy

. If the channel coefficients satisfy
also

(15a)

(15b)

then the capacity region is given by all nonnegative rate pairs
s.t.

(16a)

(16b)

and it is achieved by circularly symmetric, complex Normal in-
puts, , , ,
all mutually independent, and DF at the relay.

Proof: See Appendix D.

B. Discussion

• Note that without Tx-CSI, it is not possible to achieve
nonzero correlation between the components of the re-
ceived signal generated by the transmissions from ,

, and the relay. Therefore, the outer bound is maxi-
mized by uncorrelated jointly complex Normal channel in-
puts, and we conclude that the optimal channel inputs are
mutually independent complex Normal RVs.With Tx-CSI,
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the transmitters and the relay have access to common in-
formation through which correlation between the channel
inputs can be achieved.

• By comparison of the VSI conditions for phase fading and
for Rayleigh fading, we see that the VSI regime for phase
fading (12) is larger than for Rayleigh fading (15). This can
be attributed to the amplitude fluctuations in the Rayleigh
model due to which larger channel coefficients are required
to guarantee reliable decoding, and also to the application
of Jensen’s inequality which is used for simplifying the
expressions for Rayleigh fading.

• We note that although there is a single relay, under VSI
the ICR behaves like two parallel relay channels, with the
same relay optimally assisting each Tx-Rx pair.

• When the relay is off ( ), the VSI conditions (12)
specialize to , , which are the VSI
conditions for the time-invariant Gaussian IC obtained by
Carleial [23]. Note that although the models are different
(in [23] the channel is constant), the rate expressions are
similar, thus the identical conditions.

• The optimal relaying scheme in this case is based on
“signal forwarding” [5] rather than “interference for-
warding.” Namely, we do not take advantage of the fact
that the relay signal also carries interference. This is
because the interference is strong enough to allow each
receiver to decode its interfering message based only on
the cross-link component of its received signal (i.e., the
signal received from the unintended transmitter). There-
fore, there is no benefit in letting the relay increase the
interference. Then, the assistance of the relay is through
increasing the rate of the desired information at each
receiver.

V. THE STRONG INTERFERENCE REGIME

A. Strong Interference for Ergodic Phase Fading ICRs

Let be the set of channel coefficients
that satisfy

(17a)

(17b)

(17c)

. Let
and let be a short-form notation to denote that
and satisfy .
Then, we have the following capacity region:

Theorem 3: Consider the ICR (1) with i.i.d. phase fading
whose channel coefficients satisfy . If the channel
coefficients satisfy also

(18a)

(18b)

then the capacity region is characterized by all nonnegative rate
pairs s.t.

(19a)

(19b)

(19c)

(19d)

This region is achieved by circularly symmetric, complex
Normal inputs, , ,

, all mutually independent, and DF at
the relay.

Proof: See Appendix E.

Consider the two MARCs derived from the ICR: the first
MARC has as its destination and is given by (1a) and (1c).
We refer to it as . The secondMARC has as its des-
tination and is given by (1b) and (1c). We refer to it as .
We now make several comments:

Comment 4: Note that the condition is a com-
bination of the MARC conditions (5) applied to and to

. Note also that there is no contradiction between the
requirement and conditions (18): making ,
, , and large enough it is possible to find sets of coef-

ficients that also satisfy (18).

Comment 5: Similarly to Section IV, , ,
implies that if a rate pair is achievable at destination , it is
also achievable at the relay. The difference between (17c) and
(10c) follows as in the VSI regime, each destination decodes
its desired message after eliminating the interference, while in
the SI regime, joint decoding of the message and interference is
applied.

Comment 6: When the relay is off , conditions (18)
reduce to , , which are the standard SI condi-
tions for Gaussian time-invariant ICs [24] with real
constants. This follows as although the models are different, the
rate expressions are similar.

Comment 7: When the relay- link is off ( ), the SI
condition for (18b) becomes . Thus, the
interference has to be stronger than the augmented direct path

with coefficient . This path, in turn, can
be viewed as if the relay is helping only (best case for ).
On the other hand, if the link relay- is off ( ), then
the strong interference condition for becomes
. This is the worst case situation for decoding at ,1

because instead of helping, the relay increases the noise at .
In this case, the interference link has to be strong enough such
that the SNR for decoding at will be higher than the
SNR for decoding at (which equals ), overcoming
the increase in noise power at caused by the relay.

1Recall that we are dealing with a relay whose objective is to help, not with
a jammer whose aim is to disturb communications.
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When both relay-destination links are active, the SI condi-
tion for has two components: one component is the aug-

mented direct path with coefficient .
The second component is the increased noise at , whose
variance is . SI is then characterized by the product
of these two components, which represents the amplification of
the increased noise at by the augmented channel coeffi-
cient. Equivalently, we can write the SI condition at as

Observe that the left-hand side is the SNR for decoding the in-
terference at and the right-hand size is the best SNR for
decoding the desired message at . This is an extension of
the original normalization argument used in [24].

Comment 8: In [3, Th. 1], SI was characterized for
the “signal-cognitive” time-invariant ICR. The SI con-
dition provided in [3] for, e.g., , requires

. This means that the interference
has to overcome the augmented direct path with

coefficient , further augmented by the compo-

nent in the relay signal received at , . Note that
all relay power goes into the effective channel coefficient, and
no power from the relay is combined into the noise, contrary
to our case. Also note that the relay and the source combine
coherently, which is also in contrast to the present case. This is
because when the relay is causal, the worst-case interference
from the relay manifests itself as an increased noise power
(assuming independent codebooks), while when the relay
noncausal (i.e., cognitive), the interference it creates plays
the same role as the interference the source creates (in the
sense that the relay signal consists of two additive components

. Then, coherently combines with
the signal transmitted by , ). This highlights the
difference between cognitive and causal relaying in the context
of SI.

Comment 9: Comparing VSI with SI, we see that in VSI,
is included in the effective noise variance when decoding the
interference at , while in SI, the SNR for decoding the
interference from at is lower bounded by ,
which mean that is not part to the effective noise variance
[cf., (12b) and (18b)]. This is the benefit of jointly decoding
the interference and the desired message. Symmetric conclusion
holds for decoding at . Indeed, we see that the SI conditions
are satisfied with smaller cross-links coefficients than the VSI
conditions. Note that in SI, the relay signal is treated as noise
when decoding the interference; therefore, the relaying scheme
used is classified as “signal forwarding” and not “interference
forwarding,” similarly to the situation in VSI.

Comment 10: Note that the results of this study will hold
also if some of the scenario assumptions were different. For
example, using a long-term power constraint will not affect the
results at all, while having a common message for each source
would not change the type of argument but will change the VSI
and SI conditions and the corresponding rate constraints. Also,

if the relay would be capable of instantaneous relaying then the
VSI or SI conditions and the rate constraints would not change
as we know that in these regimes DF achieves capacity. Note
also that the lack of Tx-CSI would not allow correlation between
the components of the received signal even with instantaneous
relaying. Instantaneous relaying may lead to different results if
the channel is not in the SI regime so DF is no longer optimal.

B. Strong Interference for Ergodic Rayleigh Fading ICRs

We next consider SI for Rayleigh fading ICRs. Let be the
set of all vectors that satisfy (9). Similarly, let be the set
of all vectors that satisfy

(20a)

(20b)

(20c)

Finally, let be a short-form notation for denoting
that and satisfy

. We then have the following capacity region:

Theorem 4: Consider the ICR (1) with i.i.d. Rayleigh fading
whose channel coefficients satisfy . If the channel
coefficients satisfy also

(21a)

(21b)

then the capacity region is characterized by all nonnegative rate
pairs s.t.

(22a)

(22b)

(22c)

(22d)
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This region is achieved by circularly symmetric, complex
Normal inputs, , ,

, all mutually independent, and DF at
the relay.

Proof: See Appendix F.

Comment 11: It is easy to see that the VSI conditions (15)
are stricter than the SI conditions (21). For example, comparing
(VSI for )

and (SI for )

we have

thus VSI guarantees SI.

VI. CONCLUSION

In this paper, we characterized capacity regions for fading
ICRs for different interference regimes. The results were de-
rived for phase fading and for Rayleigh fading channels, under
the assumption that each node has CSI only on its incoming
links (receive CSI). We first characterized the VSI regime and
found the corresponding capacity regions and then character-
ized the SI regime and obtained the corresponding capacity re-
gions as well. The importance of the results lies in the fact that
this is the first time the capacity region is characterized for a co-
operative scenario in which a causal relay simultaneously assists
two separate communicating pairs, when all links are active and
the SNRs are finite. Thus, the results indicate how should the
relay optimally operate when there are two communicating pairs
that interfere with each other, in the regime in which the relay
is able to decode the sources messages without constraining
the rates to the destinations. These results have direct implica-
tions to practical communication scenarios in two aspects: the
results show, for the first time, that it is possible to optimally
assist several communicating pairs with a single relay, which
is an encouraging result for using relays in wireless networks
where there is interference. The results also indicate that inde-
pendent codebooks are optimal; thus, adding relays does not re-
quires changes in the transmitters. Additionally, our SI and VSI
conditions can characterize geographical regions in which DF
relaying is optimal. Naturally, implementing relaying in wire-
less networks which suffer from interference requires consider-

ably more work; in particular, all interference regimes have to
be studied as well as the time-invariant case.

APPENDIX A
ACHIEVABLE RATE REGION FOR FADING MARCS

In this appendix, an achievable rate region for fading
MARCs, based on decode-and-forward at the relay, is pre-
sented. This region follows from [4] and [14] with slight
modifications (as the backward decoding rule used does not
work with independent codebooks).
Fix input distributions , , , and

blocklength , and consider the following coding scheme:
A) Codebooks Construction:

a) For each , , select a codeword
with p.d.f. .

b) For each select a code-
word with p.d.f.

. This codebook contains
codewords and is used by the relay.

As in [4, Appendix A], a block of messages is trans-
mitted using channel symbols.

B) Decoding at the Relay at Block : The relay uses its
knowledge of , , and to de-
code by looking for a unique pair

such that

Due to Rx-CSI, the achievable rate region for decoding both
messages at the relay is given by [25], [28, Ch. 15.3]

(A1a)

(A1b)

(A1c)

C) Decoding at the Destination: The destination performs
backward decoding ([4, Appendix A] with a slight modifica-
tion). Assume that and were correctly decoded.
Define the events

The destination decodes by choosing a unique
message pair such that

(A2)

holds. It is noted that as the codebooks are generated indepen-
dently, then .
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The probability of error can be analyzed using standard joint-
typicality arguments as in [4] and [14]. The analysis results in
the following achievable rate constraints:

(A3a)

(A3b)

(A3c)

We conclude that all rate pairs satisfying (A1) and
(A3) for some are
achievable.

APPENDIX B
PROOF OF COROLLARY 1

The capacity region of the Rayleigh fading MARC can be
outer bounded using the cut-set theorem [25, Th. 15.10.1],
which gives the following three constraints:

(B1a)

(B1b)

(B1c)

for the maximizing distribution . From [4, Th. 8],
it follows that all mutual information expressions in (B1) are
simultaneously maximized by mutually independent Gaussian
inputs.
Since the first expressions in each of the minimums in (B1)

satisfy

then, if , it follows that
is the capacity region. Therefore, all that is needed in order to
complete the proof is to find conditions on the channel coeffi-
cients that guarantee that .
Let R.H.S. denote “right-hand side.” Requiring that R.H.S

(7a) R.H.S. (8a) and that R.H.S. (7b) R.H.S. (8b), and ap-
plying Jensen’s inequality leads to (9a) and (9b). We demon-
strate the argument by showing that (9c) guarantees R.H.S. (7c)
R.H.S. (8c). Comparing (8c) and (7c), we seek to guarantee

Applying Jensen’s inequality [25, Th. 2.6.2], it follows that this
is satisfied if

where follows as all variables are independent.
Let denote that is an exponentially dis-

tributed RV with parameter . Note that if and
, then, . Next, we consider the sum

of two exponential RVs: let , and
consider . From the standard formula for the p.d.f.
of the sum of two independent RVs [30, eq. (6–39)] we obtain

Since , , independent of each other, set-
ting , we obtain

(B2)

This gives (9c).2

APPENDIX C
PROOF OF THEOREM 1

We begin the proof with the outer bound and then find a
matching inner bound. In Appendixes C-1–C-4, we assume only
that the fading coefficients have uniformly distributed phases,
independent of their magnitudes. In Appendix C-5, the results
are specialized to phase fading.

A) Outer Bound: Using only the individual rate constraints
of the cut-set bound [25, Th. 15.10.1], we obtain the following
outer bound:

(C1a)

(C1b)

2In case , , , and

. This

can be obtained by writing and evaluating (B2) noting that
.
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B) Maximizing the Outer Bound: Consider maximizing
the mutual information expressions in (C1). Due to the uniform
distribution and the independence, both across time and across
links, of the phases of the fading processes, as well as the inde-
pendence of the phase and magnitude of the fading coefficients,
it follows from [4, Th. 8] that independent Gaussian inputs with
maximum possible powers simultaneously maximize all mutual
information expressions in (C1).

C) Inner Bound:
1) Codebooks Construction, Encoding and Relay De-

coding: Fix , , mutually indepen-
dent, and blocklength . Codebooks construction, encoding at
the sources and at the relay and decoding at the relay is done as
in Appendixes A-1 and A-2. Decoding at the relay leads to rate
constraints (A1). Recall that this construction uses i.i.d. and
mutually independent codebooks.

2) Decoding at the Destinations: Decoding at each desti-
nation is done in the following sequence:
i) Decoding the interference while treating the desired
signal and the relay signal as noise (PtP rule [25, Th.
9.1.1]). This results in constraints on and .

ii) Decoding the desired information with the help of the
relay, while using the knowledge of the interfering mes-
sage. This results in additional constraints on and .

iii) Obtaining the conditions on the channel coefficients such
that the interference is strong enough to allow this two-
step decoding to be carried out without constraining the
rate of the desired information.
Decoding the Interference: First note that decoding

at and at , prior to decoding the desired mes-
sage at each destination receiver, can be done by treating the
desired signal and the relay signal as noise. As ,

, and are mutually independent
and the corresponding vectors are i.i.d., it is concluded that

is an i.i.d. vector, independent of the other
components vectors in , namely, and

. This leads to the rate bound

(C2a)

at . Similarly, is an i.i.d. vector, indepen-
dent of the other component vectors in , leading to the con-
straint

(C2b)

at . The constraints (C2) guarantee reliable decoding of the
interference.

Decoding the Desired Information: Having decoded the
interference, each destination performs backward decoding as
described in Appendix A-3. Assuming the interference was de-
coded successfully, knows and knows . Con-
sider decoding at : decides on if it is the
unique message in for which

holds.
From standard joint-typicality arguments it follows that

can reliably decode as long as

(C3a)

Using parallel arguments it can be shown that can reliably
decode as long as

(C3b)

Obtaining the VSI Conditions: Comparing (C2) and (C3),
we obtain that decoding the interference first does not constrain
the rate of the desired information as long as

(C4a)

(C4b)

Then, the rate constraints on are given by (C3).
D) Finding Conditions Under Which the Inner and Outer

Bounds Coincide: Comparing (A1), (C3), and (C1), we con-
clude that if

(C5a)

(C5b)

(C5c)

hold together with (C4) for ,
, and , mutually independent,

then (C3) and (C1) are equal and the relay channel capacity is
achieved for both users simultaneously, using DF at the relay.
Thus, (C3) characterize the capacity region of the fast fading
ICR with fading coefficients having uniformly distributed
phases, under VSI.

E) Evaluating the Expressions for Phase Fading: The
derivation so far assumed only that each fading coefficient
is an i.i.d. process, independent across links, and its phase
is uniformly distributed over and independent of its
magnitude. We now evaluate the resulting expressions, (C3),
(C4), and (C5), for the phase fading case:
a) The rate constraints (C3) evaluate to

(C6a)

(C6b)

which are the capacities of the two relay channels
–Relay– and –Relay– , given in (13).

b) The VSI conditions (C4) evaluate to

which give conditions (12). Note that for phase fading,
the vectors and are
complex Normal, i.i.d. vectors, independent of the other
vectors.

c) Conditions (C5) imply that the decoding region for the
destinations is contained in the decoding region at the
relay, and therefore, the optimality of the DF scheme fol-
lows. It is easy to see that (C5) evaluate under phase
fading to (10).
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APPENDIX D
PROOF OF THEOREM 2

Steps A–E in the proof of Theorem 1 in Appendix C apply
also to the RF-ICR. All is left is to evaluate the mutual informa-
tion expressions in (C3)–(C5) for the Rayleigh fading model.
Using Gaussian inputs, we get from (C3) the rate bounds

(D1a)

(D1b)

which are (16). Next, we evaluate condition (C4a). Note that
for inputs generated according to independent, circularly sym-
metric, complex Normal RVs, the channel – is not
Gaussian. Writing explicitly we obtain:

Condition (C4a) can now be written as

Using Jensen’s inequality [25, Th. 2.6.2], and repeating steps as
in the proof of Corollary 1 in Appendix B, we conclude that this
is satisfied if (15a) holds. Using a parallel argument, condition
(C4b) is satisfied if (15b) holds.
Finally, we need to evaluate (C5). For Gaussian inputs, (C5)

can be written as

(D2a)

(D2b)

(D2c)

Repeating the same steps as in the proof of Corollary 1, (D2)
can be shown to be satisfied when (14) holds.

APPENDIX E
PROOF OF THEOREM 3

A) Achievability Proof: Let denote the coding
scheme (codebooks, encoders, and decoders) that achieves the
rate pair at , , and let
denote the DF scheme described in Appendix A, with mutu-
ally independent channel inputs , ,
and rates . Let denote that capacity region of

, . From [4, Th. 9] it follows that if
, the capacity region is achieved with

, . It is only left to verify that when
then the coding strategy of Appendix A achieves any

rate pair that belongs to the capacity region of either
MARCs. This is shown next.
To show this, recall that as the coding scheme

that achieves the capacity region of either MARCs follows
from [4, Th. 9]. This scheme uses the DF coding strategy

of Appendix A. For each rate pair
in the capacity region, this scheme uses at each source ,

, a codebook whose cardinality is with code-
words generated i.i.d. according to (the same
distributions are used for both MARCs), and at the relay it uses
a codebook whose cardinality is with codewords
generated i.i.d. according to . Hence, for all rate
pairs the same relay codebook
construction and scheme are used in both MARCs: at block
time the relay transmits and decodes

. This implies that when , then

(E1)

Next, note that when , the achievable rate pairs
in are characterized by the rate constraints of
[4, Th. 9] applied to each MARC:

(E2a)

(E2b)

(E2c)

(E2d)

(E2e)

(E2f)

Note that when (18) hold, the R.H.S. of (E2d) R.H.S. (E2a);
hence, (E2d) can be dropped. Similarly, (E2b) can be dropped
and we obtain that the region in (19) is achievable.

B) Converse Proof: We now characterize SI for PF-ICRs
with . Fix a blocklength and let be an
achievable rate pair. When SI occurs, decoding at and

at can be done without constraining the rates and
.
Note that by definition of SI, we have that if

then and .
This implies . Combining with
(E1) it follows that when SI occurs and , then

. From the achievability proof
of Appendix E-A, it follows that capacity of both MARCs is
simultaneously achieved by complex Normal codebooks, DF
mapping at the relay, and backward decoding at the destination.
Thus, we restrict the attention from now on to mutually inde-
pendent Gaussian codebooks.

Let , and let be an
achievable rate pair. Consider decoding at : receiver

decodes its information from

Define as , where the
relay signal is dedicated to assist in decoding from ,
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. Clearly, the maximum possible rate for de-
coding at is upper bounded by the rate at which
can be decoded from the enhanced signal . Recalling that

, this rate is given by the capacity of the phase fading
relay channel, see eq. (2), and thus

Next, we turn the attention to . Here we carry out two
steps:

Step 1: Since is achievable, can decode its mes-
sage . can, therefore, create the signal

Clearly, if can decode from it can decode
from .

Step 2: Note that , , and , are realiza-
tions of i.i.d. zero mean, complex Normal vectors. This follows
as and , are i.i.d zero-mean, circu-
larly symmetric, complex Normal RVs, hence their amplitudes
and phases are mutually independent and the phases are uni-
formly distributed on [30, Ch. 6–3]. Denote this uni-
form distribution with . Next we recall that for

then . Hence, multiplying
the channel inputs by the phase fading channel coefficients does
not change the distribution of the phases of the channel inputs,
and therefore the elements of the product remain zero-mean,
complex Normal. In particular, .
Clearly, using a joint typicality decoder that treats the

relay signal as an additive i.i.d. complex Normal
noise, can be reliably decoded from as long as

. If this rate

bound is greater than , then reliable decoding of at
guarantees decoding of at with a small probability of
error. This leads to the requirement ,
which results in (18b). Using a parallel argument, the SI condi-
tions for decoding at is shown to be (18a).

APPENDIX F
PROOF OF THEOREM 4

A) Achievability Proof: Similarly to Appendix E-A, we
obtain from Corollary 1 that when ,

, where

(F1a)

(F1b)

(F1c)

(F1d)

is the capacity region of the Rayleigh fading MARC with
destination , where , . Each of these

regions is obtained with the same coding strategy
described in Appendix A. In particular, the channel inputs

, , are mutually independent. In
Appendix F-B1, we show that due to (21), (F1c) (with ),
and (F1b) (with ) can be dropped, thus we obtain (22).

B) Converse Proof: Suppose that is an achiev-
able rate pair. Repeating the argument in Appendix E-B,
we conclude that as , then

. Similarly to Appendix E-B, as
decodes from it can clearly decode from the

signal , where is a relay
signal dedicated to assist in decoding from . This follows
since the interference from is eliminated. Recalling that

, the maximum rate for decoding at is the
capacity of the Rayleigh fading relay channel given in (4), and
thus

(F2)

Next, we turn the attention to . As is achievable,
can reliably decode , thus it can construct the signal as
in Appendix E-B. Recall that , , and are realizations of
independent vectors. Therefore, can treat the relay signal
as independent noise and proceed to decode . The total
noise signal is then . Then, using joint-typ-
icality decoding can reliably decode from as long
as .
From the independence of , , and and the fact
that their mean is zero, it follows that the variance of

is .
Clearly, the additive noise is not Gaussian; however,
as given a fixed noise variance, additive Gaussian noise
minimizes the achievable rate over all additive noises, sub-
ject to average power constraint at the source [31]; then

, and hence it
is possible to guarantee successful decoding of at by
further restricting :

(F3)

Finally, it is required to verify that when reliable decoding of
at is possible, then so is reliable decoding of at
. This is verified if the bound on in (F3) is greater than

the bound on in (F2), i.e.,

(F4)

Repeating steps similar to those in Appendix B, it is possible to
show that (F4) is satisfied if

resulting in (21b). Condition (21a) is obtained by applying sim-
ilar arguments to decoding at .
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1) Eliminating Redundant Constraints: Finally, we note
that conditions (21) imply that constraints (F1c) (with
and (F1b) (with ) are redundant and can be dropped. To
see this for (F1c) (with ) recall that (21b) guarantees (F4).
Note that if

(F5)

(F1c) (with ), and (21b) are satisfied, then (F1c) (with
) is satisfied as well. It remains to show (F5) is always

true. Since the arguments in the expectations are positive and the
logarithm function is monotone increasing, (F5) can be shown
by comparing the random expressions directly

which always holds. Thus, the capacity region for SI is charac-
terized by the four constraints in (22).
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