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Relaying in the Presence of Interference: Achievable
Rates, Interference Forwarding, and Outer Bounds

Ivana Marić, Member, IEEE, Ron Dabora, Member, IEEE, and Andrea J. Goldsmith, Fellow, IEEE

Abstract—The smallest network model that captures relaying in
the presence of multiple communicating pairs causing interference
to each other is the interference channel with a relay. In this paper,
an achievable rate region for the interference channel with a relay
is derived. Special cases of strong interference under which this
region is the capacity region are presented. The results obtained
demonstrate the benefits of interference forwarding at a relay. By
forwarding interfering messages, the relay can improve their
reception at unintended receivers and, thus, facilitate interference
cancellation. We show that intentionally forwarding interfering
messages can improve the achievable rates. The achievable rates
and interference forwarding gains are also illustrated by numer-
ical results in Gaussian channels. Finally, a sum-rate outer bound
to the capacity region of the Gaussian interference channel with
a relay is derived and compared with the achievable rate region.
The cut-set bound for this channel is also derived and shown to be
much looser than the new sum-rate outer bound.

Index Terms—Capacity, decode-and-forward, interference can-
cellation, interference channels, interference-forwarding, network
information theory, relaying.

I. INTRODUCTION

C OOPERATION via relays that forward information in
wireless networks improves the performance in terms of

rate, coverage, reliability, and energy efficiency. Cooperative
strategies for the single-relay channel have been developed in
[1]–[3], and further generalized to multi-relay channels (see, for
example, [4] and [5]). Relay channel models typically consider
a single communicating pair and, hence, do not capture coop-
eration for multiple source–destination pairs. And yet, wireless
applications typically involve simultaneous communications
from many sources to many destinations. Such scenarios bring
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Fig. 1. The interference channel with a relay.

in new elements not encountered in the classic relay channel:
1) the presence of interference caused by simultaneous trans-
missions from multiple sources; 2) the opportunity for joint
encoding of messages at a relay; 3) increased interference at
nodes caused by the relay forwarding desired information to
others. These elements impact the optimal relaying schemes.
The various aspects of relaying for multiple sources can be
captured by considering the smallest such network, which we
refer to as the interference channel with a relay (ICR) (see
Fig. 1). The ICR model contains elements of relay, interference,
broadcast and multiaccess channels (MACs), and thus, deter-
mining its capacity and associated encoding/decoding schemes
is extremely challenging.
In this paper, we first derive an achievable rate region for

the ICR. We then show that the obtained region is the capacity
region in special cases of strong interference in which the re-
ceivers can decode both messages. We also present strong in-
terference conditions for our encoding scheme. In the cooper-
ative strategies of decode-and-forward and compress-and-for-
ward [1], the relay forwards the desiredmessage to the intended
destination. In this study, we propose a new cooperative ap-
proach for relaying in the presence of multiple pairs. In this ap-
proach, the relay, in addition to forwarding desired messages,
intentionally forwards an interfering signal to a destination. The
motivation for this approach can be found by considering the
interference channel [6], [7]: in the presence of multiple trans-
mitters, decoding of an interfering message (or a part of it) im-
proves the rates [7]. In strong interference, this is the optimal
approach [8]. In cooperation, by intentionally forwarding inter-
fering messages, the relay can increase the interference already
present at the destinations, thus facilitating interference cancel-
lation. We refer to this scheme as interference forwarding. We
emphasize that interference forwarding is not a byproduct of
message forwarding (received at another destination), but an
objective in itself, intended to increase the achievable region
beyond what is achieved with other schemes. This is in con-
trast to the work presented in [9] and [10]. We demonstrate the
interference forwarding gains by considering special cases of
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the achievable rate region derived in this paper. We show that
forwarding messages can improve rates even when it does not
enhance their reception at a desired receiver, i.e., when they are
only creating interference.We present scenarios in which a relay
can help without forwarding any desired information. We also
present numerical results of our derived achievable rate regions
and outer bounds for Gaussian channels that illustrate the rate
gains that can be obtained from interference forwarding.
We then derive a sum-rate outer bound on the capacity region

of the Gaussian ICR. For the Gaussian interference channel,
Kramer introduced the idea of a genie that provides a receiver
with the minimum information necessary to decode both mes-
sages [11]. In particular, the receivers obtain a noisy sum of
the source signals. This approach led to a new, improved outer
bound for the interference channel. In this study, we apply this
idea to the ICR. We propose a genie that gives the receiver a
noisy observation of the source and the relay channel inputs.
Unlike the interference channel in which the channel inputs are
independent, in ICRs, the channel inputs at the relay and at each
encoder are dependent. In our approach, the maximum entropy
inequality will guarantee that the bound is maximized by jointly
Gaussian inputs. Our bound also applies to the cognitive ICR, in
which the relay knows a priori the messages sent by the sources.
For the cognitive ICR, two outer bounds were developed in [12].
We show that the new bound presented in this paper can be
tighter than existing cognitive ICR outer bounds. We also com-
pare the new outer bound to the cut-set bound and to our achiev-
able rate region.

A. Related Work

Inner bounds to the capacity of the ICR were first presented
in [9]. We introduced the idea of interference forwarding and
demonstrated its gains in [13], and subsequently in [14] and
[15]. In these works, we derived inner bounds on the perfor-
mance, and obtained capacity in the special case of strong in-
terference. We showed that in some communication scenarios,
there may be more benefit from increasing interference at the
assisted destination than in the classic approach of forwarding
desired information. The authors in [12], [16]–[19] considered
a similar channel model under the assumption that the relay is
cognitive, in the sense that it knows a priori the messages to be
sent by the two sources. Strong interference conditions for the
cognitive Gaussian case were presented in [16]. Inner and outer
bounds were also presented in [20]. The capacity region of the
fading ICR in the strong interference regime was determined
in [21]. ICRs with in-band and out-of-band signaling to/from
the relay were considered in [10]. A special case of the ICR
was considered in the context of cellular networks with relays in
[22]. The interference channel with a cognitive relay can also be
viewed as a broadcast channel with two cognitive encoders [23].
This view led to a new achievable rate region [23].We presented
a sum-rate upper bound for the ICR in [24]. The MIMO ICR
was considered in [25] and [26]. The results presented herein
differ from the related works as here we introduce the idea of
interference forwarding and demonstrate its benefits based on
our obtained inner and outer bounds. The achievable rates and
interference forwarding gains are also illustrated by numerical
results in Gaussian channels.

The remainder of this paper is organized as follows. We start
by introducing the channel model in Section II. The achievable
rate region and the capacity in strong interference are derived
in Section III. Benefits of interference forwarding are discussed
in Section IV. Numerical results in Gaussian channels are pre-
sented in Section V. A new sum-rate outer bound is presented in
Section VII, including numerical comparisons between the new
sum-rate outer bound, the cut-set bound, and an achievable rate
region. Section VIII concludes the paper. The proofs are given
in the appendix.

II. CHANNEL MODEL

The discrete ICR consists of three finite input alphabets
, three finite output alphabets , and a

probability distribution . Each encoder

, , wishes to send a message
to decoder (see Fig. 1). We assume that the relay is
full-duplex. The channel is memoryless and time invariant in
the sense that

(1)

We will also consider the Gaussian channel described by the
following input–output relationship:

(2)

where is a real number representing the channel gain from
node to node , , , and

denotes the normal distribution with zero mean and
variance .
An code for the ICR consists of two message

sets , , an encoding function at each transmitter,
, , encoding functions at the relay
, , and a decoding function at each re-

ceiver , . The average error probability of

the code is given by
The capacity region of the ICR is the closure of the set of rate
pairs for which the receivers can decode their mes-
sages with an arbitrarily small positive error probability.

III. ACHIEVABLE RATE REGION AND CAPACITY IN STRONG
INTERFERENCE

In this section, we present an achievable rate region for the
ICR and conditions under which this region is the capacity re-
gion.

Theorem 1: Let denote the rate region obtained by
taking all nonnegative rate pairs that satisfy

(3a)

(3b)

(3c)

(3d)

(3e)
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(3f)

(3g)

for some joint distribution that factors as

(4)

Then, the region is achievable for the ICR.
Proof: See Appendix A.

In order to simplify notation, the time-sharing variable is not
considered in the rest of this paper. A time-sharing variable can
be easily incorporated into the achievability results.

Remark 1: In the encoding strategy of Theorem 1, rate split-
ting is not used. Instead, each destination node jointly decodes
the messages as in the MAC [27]. Bounds (3a)–(3d)
are rate constraints for decoding at the two destination nodes.
Compared to the MAC rate constraints, the error in decoding
the unwanted message at each destination node is ignored here.
Consequently, there is one less rate constraint at each decoder,
when compared to the MAC rate bounds. Bounds (3e)–(3g) are
decoding constraints at the relay. Since the relay decodes both
messages, possible error events at the relay are the same as in
the MAC.

Remark 2: Special cases of Theorem 1 were obtained in [13,
Theorem 2] and [14, Theorem 1].

Consider next the conditions

(5)

(6)

that hold for every distribution (4).
Under conditions (5) and (6), we have the following outer

bound to the capacity of the ICR.

Theorem 2: Under conditions (5) and (6), the union of the set
of rates that satisfy

(7a)

(7b)

(7c)

(7d)

(7e)

(7f)

(7g)

for any distribution that factors as (4), is an outer bound to the
capacity region of the ICR.

Proof: See Appendix B.

We observe that the gap between the achievable rate region
(3a)–(3g) and the outer bound (7a)–(7g) is only due to decoding
constraints at the relay.

Remark 3: Conditions (5) and (6) can be viewed as the strong
interference conditions in the sense that under these conditions,
the received interfering signals are strong so that the receivers
can decode both messages without rate penalty.

Remark 4: If the relay is not present, the ICR reduces to
the interference channel. To see what happens in that case, we
can assume that the relay channel input is a constant which
is known to the receivers. Decoding requirements at the relay
(3e)–(3g) are not needed. Conditions (5) and (6) reduce to the
strong interference conditions for the IC [8]

(8)

(9)

for any , and the region
(3a)–(3d) reduces to the IC capacity region in strong interfer-
ence [8].
In the following, we use Theorems 1 and 2 to prove two ca-

pacity results. We first determine the capacity in strong inter-
ference for the interference channel with a cognitive relay. In
this case, the relay a priori knows source messages ,
and hence, the relay function is given by .
This is the only difference from the channel model defined in
Section II. Then, no block Markov encoding is needed in the
encoding scheme, and therefore, the decoding constraints at the
relay (3e)–(3g) can be omitted from the achievable region of
Theorem 1, and we can also set and . Rate
constraints (3a)–(3g) now become

(10a)

(10b)

(10c)

(10d)

for a joint distribution

(11)

Furthermore, the proof approach in Theorem 2 for bounds
(7a)–(7d) still applies, thereby proving the converse. We hence
proved the following lemma.

Lemma 1: Under conditions (5) and (6), the convex hull of
the rates (10a)–(10d), evaluated for the joint distribution (11), is
the capacity region of the interference channel with a cognitive
relay.

We next consider the following degradedness condition:

(12)

i.e., the Markov chain holds.
Condition (12) is a generalization of the physical degrad-

edness condition in the single-relay channel [1]. In fact, for
, (12) implies

i.e., the Markov chain holds.
Focusing on the case in which the relay can observe only one

source signal, i.e.

(13)

we have the following capacity result.
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Fig. 2. ICR scenario in which the relay cannot receive signal from .

Theorem 3: Under conditions (5) and (6) and conditions (12)
and (13), the rates of Theorem 1 are the capacity region of the
ICR.

Proof: When (13) holds, we can choose ,
in Theorem 1. The proof follows immediately by

evaluating the inner bound of Theorem 1 and the outer bound
of Theorem 2 under conditions (12) and (13), and observing
that they coincide.

IV. GAINS FROM INTERFERENCE FORWARDING

A. Comparison With Rate Splitting

To demonstrate the benefits of interference forwarding, we
next focus on a special case of the ICR model. In particular, we
show that there are scenarios in which the relay can improve the
rate to a user without forwarding desired information. To show
that, we consider a scenario in which the relay cannot observe
. Consequently, the relay cannot forward information about
. We also assume that receiver 2 cannot receive from the

relay. Consequently, the relay cannot assist in sending , and
the relay can, thus, only increase the interference at receiver 1.
In particular, the following is assumed:
: Condition (13) holds, i.e., the relay observation is in-
dependent of channel input , given and . Hence,
we have a Markov chain . In the
Gaussian channel, this condition corresponds to .
This situation can happen, for example, when there is heavy
shadowing between source 1 and the relay in a wireless
channel (see Fig. 2).
: is independent of the relay channel input , given

:

(14)

Note that, due to condition (13), the relay can forward only in-
formation desired at . Hence, from the perspective of ,
the relay is only performing interference forwarding. We now
show how such relaying can help the – pair.
We assume that, when the relay does not help, the strong inter-

ference condition [8] given by (9) is not satisfied at . Hence,
receiver 1 cannot decode without decreasing the maximum
achievable rate . Receiver 2 is subject to strong interference,

i.e., (8) holds. When an IC is not in strong interference, the
highest known achievable rates are obtained by rate splitting
[28]. To evaluate gains due to the relay, we compare the rates of
Theorem 1 with the rates obtained via rate splitting. Because re-
ceiver 2 is in strong interference, no rate splitting is performed
at encoder 1. The rate region can be obtained from [28] and [29]
and is stated in the following lemma.

Lemma 2: Subject to assumptions and , any rate pair
that satisfies

(15a)

(15b)

(15c)

(15d)

(15e)

for some joint probability distribution that factors as
is achievable.

Proof: The encoding and decoding procedures are the
same as those used in [29, Lemma 3], with the modifications
we now describe. First, note that the message is encoded
using a single codebook, generated according to , and
the message undergoes rate splitting and is encoded using
a superposition codebook, generated according to .
Next, note that since the relay does not help, then it sends
a predefined sequence, , generated i.i.d. This sequence is
known a priori at the receivers. Due to and the underlying
distribution chain, we have that

Therefore, in the decoding rule at , there is no need to in-
clude in the joint-typicality tests, which are based on the re-
ceived signal . The rate constraints due to decoding at
are, thus, given by (53)–(57) in [29, Lemma 3], such that the
indices 1 and 2 swapped, and additionally we set
and . Decoding at , therefore, leads to four con-
straints.When decoding at , we use the fact that is known
by combining it with the received signal: let .
Then, the rate constraints for decoding at are obtained from
(53)–(57) in [29, Lemma 3] by replacing with , and set-
ting and . Then, note that due to the in-
dependence of and , the chain rule for mutual
information can be used to simplify the constraints such that
is moved to the conditioning of all mutual information expres-
sions. Also note that as there is no private rate from , then
we set and in the equations of [29, Lemma 3].
This implies that the constraint [29, eq. (54)] can be omitted, as
it accounts for decoding error of only the interference at .
We, therefore, obtain three rate constraints due to decoding at

.
Finally, the rate constraints of (15) are obtained by applying

Fourier–Motzkin elimination to the seven constraints for de-
coding at and at , obtained as described above.
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We denote by the convex hull of rates that satisfy
(15a)–(15e). Consider the following two conditions satisfied
for all :

(16)

(17)

We have the following proposition.

Proposition 1: For the considered ICR with (13) and (14),
and under conditions (16) and (17), we have

Proof: See Appendix C.

Proposition 1 shows that relaying only an interfering message
to an unintended receiver can improve the rate region obtained
without relaying, and hence demonstrates rate gains from inter-
ference forwarding only.

Remark 5: Condition (16) implies strong link relay-receiver
1; (17) implies strong link transmitter 2-relay.

Remark 6: Proposition 1 generalizes to the case when condi-
tion (14) is not satisfied. The proof follows the same steps.

B. Strong Interference

We next show how the presence of the relay can change the
interference conditions in opposite ways, namely, adding a relay
to an IC can switch an IC that is in strong interference to be
outside the strong interference regime, or can switch an IC that
is not in strong interference to be inside the strong interference
regime. These effects have to be taken into account when adding
a relay into a network.
To see that, we compare the strong interference conditions

with and without the relay at receiver 1.
• To observe that the strong interference conditions at
receiver 1 can change in the presence of the relay, we
compare (6) and (9) under . Specifically,
suppose that (9) is satisfied, i.e.,

for all . Therefore,
without a relay, receiver 1 observes strong interference.
Now, assume that

(18)

holds for all input distributions such that
. We observe that (18) in conjunction with

the chain rule for mutual information implies that
, i.e., in the ICR,

the strong interference condition (6) is not satisfied, and
thus, cannot decode without reducing . Hence,
the relay “pushes” out of strong interference. We
observe from (18) that this happens when
is large enough so that (18) is satisfied, implying that the
link from the relay to is strong. This allows the relay
to increase the rate and prevents from decoding

without constraining .

• The opposite can also happen: Assume that (9) does not
hold, namely without a relay receiver 1 does not observe
strong interference. Now, we add a relay and assume that

(19)

holds for all input distributions such that
. Observe that (6) holds, i.e., in the ICR,

receiver 1 observes strong interference. Therefore,
moves into strong interference due to interference for-
warding, and decoding does not constrain . From
(19), we observe that this happens when is
large, i.e., the link from the relay to is strong. This al-
lows the relay to forward enough interference information
to receiver 1 so that the receiver can decode it.

For the Gaussian channel (2), condition (18) evaluates to

(20)

Evaluating (20) with Gaussian inputs yields

(21)

where and are respective correlation coefficients be-
tween and . The condition (21) has to hold
for any value of correlation coefficients and .

V. INTERFERENCE FORWARDING IN GAUSSIAN CHANNELS

We next illustrate gains from interference forwarding in
Gaussian channels. In particular, we evaluate the region
(3a)–(3g) for Gaussian inputs chosen as

(22)

Thus, the encoders 1 and 2 split their power between sending a
new message (respectively with and ) and cooperating
with the relay in sending the message from the previous block.
The power at the relay is split between forwarding messages

from the previous block as

(23)

where . Parameter determines how the relay
splits its power for forwarding . A higher results in
more power dedicated for forwarding .
The region (3a)–(3g) evaluates to
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Fig. 3. Rate region of the Gaussian channel without the relay (dashed line) and
with the relay (solid line) for .

(24)

where .
To demonstrate that there are scenarios in which a relay can

help by forwarding only undesired message information, we
first evaluate rate region (24) under assumption (13), i.e.,
. Then, the signal sent by the relay simultaneously enhances
signal reception at receiver 2 and increases interference at re-
ceiver 1.
The region (24) is shown by the solid line in Figs. 3 and 4

for two different sets of channel gains. Also shown are rates for
the interference channel without the relay, by the dashed line.
Without the relay, the strong interference conditions [8] hold,
and hence, the latter region is the IC capacity region. With the
help of the relay, increases. From the plots, we can also
observe the mechanism in which interference forwarding helps
transmission. The relay (via solely interference forwarding)
helps receiver 1 to achieve a single-user rate, for
a larger range of values of than with no relay. In effect, the
relay increases the “strong interference” regime for receiver 1.
To emphasize gains from interference forwarding, Fig. 4 shows
rates (dot-dashed) for when interference forwarding is
not possible. The relay only sends undesired message informa-
tion to receiver 2.
In the previous scenario, the relay could only observe one

message and hence only forward interference to receiver 1. We
are further interested in investigating whether the relay—being
able to forward both the desired message and the interfering
message to a destination—should ever allocate power to for-
ward interference. For that reason, we assume and

, so that in this case, the relay can decode both the de-
sired and the interfering message, but can forward them only to
receiver 1 and cannot help receiver 2. We next show that for-
warding can still be beneficial for decoder 1. Therefore,

Fig. 4. Rate region of the Gaussian channel without the relay (dashed line) and
with the relay (solid line) for . The dot-dashed region shows the rates
for , i.e., when the relay does not perform interference forwarding. The
difference between two regionswith the relay illustrates the gains of interference
forwarding.

Fig. 5. Rate regions of a Gaussian ICR channel with and without interference
forwarding are shown with respective solid and dot-dashed lines. The difference
between the two regions illustrates the gains of interference forwarding. The
dotted region shows the rates achievable when decoder 1 treats interference as
noise. In this example, .

it is not always optimal for the relay to use all power to for-
ward the desired message to the destination; the relay should
allocate some portion of its power for sending the interference.
We consider strong interference at destination 2, i.e., we as-
sume . The rate region is shown in Figs. 5 and 6 for

. Both solid and dot-dashed lines show re-
gion (24), but the dot-dashed lines show the case when the relay
only forwards message (i.e., ).
Since the encoders do not perform rate splitting, the receivers

cannot partially decode unwanted messages. Thus, another de-
coding option is for decoders to treat the signal carrying the un-
wanted message as noise. Since we consider the case of strong
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Fig. 6. Rate regions of a Gaussian ICR channel with and without interference
forwarding shown with respective solid and dot-dashed lines. The difference
between the two regions illustrates the gains of interference forwarding. The
dotted region shows the rates achievable when decoder 1 treats interference as
noise. In this example, .

interference at decoder 2, i.e., , this approach would
result in a lower rate . Therefore, we compare rates (24) to
the case when only decoder 1 treats the signal received from en-
coder 2 as noise. In this case, the relay forwards only the desired
message (i.e., ). We have since the power split
at the encoders is only used for facilitating cooperation with the
relay. The achievable rates are given by

(25)

The region is shown with a dotted line in Figs. 5 and 6. Note that
both regions shown by dot-dashed and dotted lines are obtained
when the relay performs message forwarding. The difference is
in decoding: in the first case, receiver 1 decodes both messages
whereas in the second case, it treats the undesired message as
noise. The benefit of one versus the other strategy depends on
the interference level at decoder 1 (i.e., on ) as illustrated in
Figs. 5 and 6. The difference between the two figures is in the
interference level experienced at decoder 1. When interference
is weak (i.e., is small), decoding it is less beneficial and
gains of interference forwarding are smaller. In particular, the
first sum-rate bound in (24), which comes from a constraint for
decoding both at decoder 1, becomes smaller as it
depends on . Then, treating interference as noise at decoder
1 performs better. As and, thus, interference increases, the
gains from interference forwarding increase.

Remark 7: The operation at the relay in Figs. 5 and 6 is
the most pronounced manifestation of interference forwarding.

Note that this situation differs from the case considered in [9]
and [16] where the interference is increased as a byproduct to
message forwarding. We do not refer to such strategy as inter-
ference forwarding.

VI. SPECIAL CASE: DECODING BOTH MESSAGES

We next derive sufficient conditions that allow the decoders
to decode both messages without decreasing the rates when sig-
naling with inputs (22) and (23).
When achievable rates are used for signaling, re-

ceiver 1 can decode , form , and with one block
delay (due to block Markov encoding) also form in
order to evaluate

(26)

From (2), (23), and (26), we obtain

(27)

By comparing and in (27), we conclude that receiver 1
obtains a less noisy signal than receiver 2 if the condition

(28)

is satisfied for every . For , this condition implies
and hence also is received with a higher power

at receiver 1 than at receiver 2. Therefore, since decoder 2 can
decode , so can receiver 1. Similarly, receiver 2 can decode

when

(29)

for every . Therefore, in this scenario, the receivers can de-
code each other’s message under conditions (28) and (29). We
emphasize that these conditions apply only for the case of inputs
(22) and (23), and thus, they are not general strong interference
conditions.
In order to further understand how far the obtained achiev-

able rates are from the capacity in Gaussian channels, we next
present an outer bound to the rate performance. In particular, we
derive a sum-rate outer bound for the Gaussian ICR and com-
pare it to the obtained achievable rate region (24).

VII. SUM-RATE OUTER BOUND FOR GAUSSIAN CHANNELS

A. Genie-Aided Approach

We next focus on the Gaussian ICR (2) and present a genie-
based outer bound on the sum rate. As in [11], the minimum
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information that allows decoding of both messages
is provided to a receiver. We let

(30)

where , are real numbers, and is zero-mean
Gaussian random variable with unit variance, independent
of other random variables. As in [11], we assume that signal
(30) is given to receiver 1. After processing the signal and its
own output, receiver 1 will be able to decode both messages

. This will hold regardless of what the relay channel
input is and yield the sum-rate bound given by the following
theorem:

Theorem 4: The capacity region of the Gaussian ICR (2) is
contained in the set of rate pairs satisfying

(31)

where the mutual information is evaluated for jointly Gaussian
inputs of the form and parameters

that satisfy

(32)

(33)

(34)

for some real numbers and .
Proof: The proof is given in Appendix D. The proof adapts

the approach of [11].

A corresponding sum-rate bound can be obtained by letting
a genie assist the other receiver. By minimizing the mutual in-
formation expression in (31) with respect to , we obtain the
optimum value of as

Remark 8: The bound of Theorem 4 applies also to the cog-
nitive Gaussian ICR.

Remark 9: Evaluated for Gaussian inputs, the sum-rate
bound (31) depends on the covariance matrix of sources and
relay inputs.

Remark 10: The bound can be made more general by al-
lowing the genie signal to depend also on the noise at the relay.
This would introduce one more parameter that can be optimized
in order to obtain a tighter sum-rate bound.

Remark 11: For , the bound reduces to the bound in
[11].

B. Cut-Set Bound

We next derive the cut-set bound [27, p. 445] for the ICR, and
compare it to the sum-rate bound presented in Theorem 4.

Lemma 3: For the ICR, the cut-set bound is given by

(35)

where denotes the set of rate pairs
that satisfy

(36)

evaluated for a distribution of the form .
For the Gaussian ICR (2), all the terms in (36) are maxi-

mized by jointly Gaussian inputs [27]. By comparing (31) and
(36), we observe that the bound of Theorem 4 is always at least
as tight as the first term in the sum rate of the cut-set bound,

. This is because the genie gives only the
minimum information that receiver 1 needs in order to decode
both messages . We next compare the two bounds nu-
merically.

C. Numerical Results

Comparison of the bound in Theorem 4 and the cut-set bound
(36) is shown in Fig. 7. The figure demonstrates an improvement
of the sum-rate bound over the sum-rate cut-set bound for a
specific choice of channel gains and powers. Fig. 8 shows a
comparison of the bound in Theorem 4 with the outer bounds
developed for the cognitive ICR in [12, Th. 2 and Th. 3], as well
as with the cut-set bound (36). In all plots, the sum-rate bound
(31) is evaluated together with the individual cut-set bounds on
and given in (36).
Because the genie enables the receivers to decode both mes-

sages, we expect the outer bound to be close to the achievable
rates in the regimes in which such decoding is actually possible,
i.e., when the receivers experience strong interference. This be-
havior is illustrated in Fig. 9. The figure shows the achievable
rate region (24) and the derived outer bound. The gap between
the achievable rates and the outer bound in this regime is due to
constraint (33) imposed in the outer bound. This constraint may
not always be necessary in order to allow receivers to decode
both messages. Rather, this constraint comes from the proof ap-
proach

Remark 12: In general, in the regime of strong interference,
there will be a gap between the achievable rate region and our
outer bound because, in Theorem 4, constraint (33) does not
allow for (i.e., to turn OFF the genie.)

VIII. CONCLUSIONS AND FUTURE WORK

This paper considers cooperative strategies for multiple com-
municating pairs. In such networks, the presence of interfer-
ence impacts relaying schemes. We derived an achievable rate
region for the general ICR. Special cases in which this region
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Fig. 7. Comparison of the cut-set outer bound of Lemma 3 with the outer bound
of Theorem 4.

Fig. 8. Comparison of the new bound of Theorem 4 with the cut-set outer
bound of Lemma 3 and the outer bounds developed to the ICR from [12] (i.e.,
cognitive relay bounds).

achieves capacity were presented. Our results demonstrate that
forwarding interference—with a goal of enhancing an undesired
signal so that it can be canceled out at the assisted receiver—can
improve the performance. Therefore, in addition to forwarding
desiredmessages to their intended destinations, interference for-
warding should be considered when relaying in networks with
multiple communication pairs.
The considered encoding scheme does not include rate split-

ting at the encoders and/or the relay. The largest performance
gains are then obtained when the interference is strong, because
then the interference cancellation can readily be realized via in-
terference forwarding at the relay. This approach allowed us to
easily identify the scenarios in which interference forwarding
brings benefits. Rate splitting also facilitates (partial) interfer-
ence cancellation. In future work, we will investigate the gains
of interference forwarding when accompanied by rate splitting.
We presented a new sum-rate outer bound for the Gaussian

ICR. The bound also applies to the cognitive Gaussian ICR.

Fig. 9. Achievable rate region (24) vs. the outer bound of Theorem 4 and the
cut-set outer bound (Lemma 3).

The outer bound is obtained by adapting the approach devel-
oped for the interference channels in [11]. The bound is signif-
icantly tighter than the cut-set bound in some scenarios. One
limitation of the bound is that it requires a receiver to decode
both messages. This requirement could be relaxed by using the
genie technique in [30] that led to the sum capacity of the inter-
ference channel in the low interference regime [31]–[33]. The
biggest difficulty of this approach when applied in our scenario
is in showing the optimality of Gaussian inputs. This is one di-
rection of our future work. The other possible extension is to
apply the genie approach employed in this bound to larger net-
works.

APPENDIX A
PROOF OF THEOREM 1

In the subsequent proofs, we shall need the following lemma:

Lemma 4: If (5) and (6) are satisfied for any distribution
given by (4), then

(37)

(38)

Proof: Proof follows the same steps as in [34, Lemma 5].

Proof of Theorem 1: We use regular encoding and back-
ward decoding [2, Sec. 7].

Code Construction: Choose a distribution
.

1) Generate codewords , , by
choosing independently according to .

2) For each : generate codewords using
, .

3) Generate codewords , , by
choosing independently according to .

4) For each : generate codewords using
, .

5) For each pair : Generate in-
dependently from symbol to symbol using

.
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Fig. 10. Encoding at the sources and at the relay. , denotes the
message sent by the source in block , for . In this example,

.

Encoders: (see Fig. 10).
As in [1], the message at each source is sent over blocks. In

block , encoder 1 transmits
and encoder 2 transmits . We choose

, . At the end of block , the
relay observes , and chooses
such that

(39)

where are relay estimates made in the
previous block, and denotes the jointly -typical set with
respect to , see [27, Sec. 8.6].
In block , the relay then transmits .
Decoders: Assume is sent in each block. Decoders

1 and 2 use backward decoding. In particular, they start by de-
coding in block .
Decoder 1 has observed . It chooses

if

If there is more than one such pair, choose one. If there is no
such pair, choose .
Similarly, in any block , decoder 1 has observed , and

has decided . It then chooses (assuming decoding
in block was correct) if

The exact same decoding is done at destination 2 by using
instead of for all .
Analysis: Since was sent in each block, the error

events at decoder 1 in block are
and .

Consider the probability of event

(40)

by [27, Sec.8.6.1]. From (40), achieving arbitrarily small error
probability of requires

(41)

yielding (3c).
Consider the probability of event

(42)

(43)

by [27, Sec.8.6.1]. From (43), achieving arbitrarily small error
probability of requires

(44)

or equivalently

(45)

yielding (3a). Similar analysis holds for decoder 2 resulting in
(3b) and (3d). The three error events at the relay in block are,
as in the MAC [27], ,

, and .
Then, from (39)

(46)

and hence

(47)

yielding (39).

(48)

Similar steps as in (48) show that

(49)

From (48) and (49), we, respectively, obtain (3e) and (3f).
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APPENDIX B
PROOF OF THEOREM 2

We first prove that bound (3c) is tight. Following Fano’s in-
equality, we have

(50)

where follows by independence of ; and
follow by the encoding, and follows by (6) and Lemma 4.
Using a similar approach, it can be shown that bound (3d) is

tight. Bounds (3a) and (3b) can be shown by following the same
approach as in [2, Sec. 6]:

(51)

where follows by the encoding; follows by Markovity
and by denoting

(52)

Bound (7b) can be shown by repeating the same steps for .
The approach in [2, Sec. 6] also implies the chain (4).
Bounds (7e) and (7f) can be shown using similar steps as in

[1, Lemma 4]:

(53)

where follows by the Markov chain
, and by using (52).

Similar steps yield (3f). Finally, (3g) can be proven in the
similar way

(54)

APPENDIX C
PROOF OF PROPOSITION 1

Under assumptions (13) and (14), the relay signal does not de-
pend on and we have , . The achiev-
able rate region (3a)–(3g) reduces to

(55)

(56)

(57)

(58)

(59)

evaluated for input distributions that factor as
. Comparing (55)–(59) with

rate-splitting rates (15a)–(15e), we see that (56) and (58),
respectively, are equal to (15b) and (15d) and are evaluated for
the same distribution . This is expected as the relay
does not impact signal when are known. We next
show that the bound in (15a) is tighter than (55)
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(60)

where follows since is independent of
under ; and follows since

. Comparing the
sum-rate constraints (57) and (15c), we obtain

(61)

where follows by Markovity and follows by (16). Con-
dition (17) assures that bound (59) is looser compared to (56).

APPENDIX D
PROOF OF THEOREM 4

We consider signaling at achievable rates . Each re-
ceiver , can then reliably decode its desired message
. A genie gives receiver 1 the signal given by (30).
Receiver 1 processes its channel output and the information

obtained from the genie in the same manner as in [11]: after
decoding , it forms

(62)

for some real numbers and . This yields

(63)

We choose

(64)

which yield conditions (33) and (34). Then, (63) becomes

(65)

Comparing (65) to the channel output at receiver 2 given by (2),
we conclude that when the equivalent noise variance in (65) is
smaller than the noise variance at receiver 2, i.e., when

(66)

then, since receiver 2 can decode , receiver 1 can decode
as well. This conclusion holds regardless of what the relay

channel input is. By substituting the expression for from (34)
into (66), we obtain (32), which is an equivalent condition to the
condition for the interference channel bound in [11].
Because receiver 1 can reliably decode both messages, we

can now bound the sum rate using Fano’s inequality as

(67)

where follows because receiver 1 can decode bothmessages,
follows by causality, and follows by the memoryless

property of the channel.
By introducing a time-sharing random variable in (67) as in

[27, Th. 14.10.1], we obtain the sum-rate bound as

(68)

It follows from the maximum entropy theorem [27, Th. 9.6.5]
that Gaussian inputs maximize the mutual information expres-
sion in (68). As the final step, we optimize this bound over pa-
rameters subject to (64) and (66).
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