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Abstract. Let T and S be commuting contractions on a Banach space
X. We consider the problem of when a vector x ∈ X is a double cobound-
ary – i.e. is of the form x = (I − T )(I − S)y for some y ∈ X. We show
that when T and S are uniformly ergodic with the same sets of fixed
points, x is a double coboundary if and only if

sup
n
‖(

∑
0≤k≤n−1

Sk)(
∑

0≤k≤n−1

T k)x‖ <∞,

and deduce a characterization of when T and S are both uniformly
ergodic, extending a result of Fonf, Lin and Rubinov for a single con-
traction. When X is a dual space and the contractions S and T are dual
operators, x is a double coboundary if and only if

sup
n
‖(

∑
0≤k≤n−1

Sk)(
∑

0≤k≤n−1

T k)x‖ <∞,

with no additional assumptions.

1. Introduction

Gottschalk and Hedlund proved in their book [23, p. 135] that if θ is a
minimal homeomorphism of a compact Hausdorff space K (i.e. for every
x ∈ K the orbit {θkx}k≥0 is dense in K), then a continuous function f is of
the form f = g − g ◦ θ for some continuous g if (and only if)

supn ‖
∑n−1

k=0 f ◦ θk‖C(K) < ∞. Browder [7] proved that if T is a power-
bounded operator in a reflexive Banach space X, then

(1.1) x ∈ (I − T )X if and only if sup
n
‖
n−1∑
k=0

T kx‖ <∞.

Browder’s result was rediscovered in [9]. Lin [36, Theorem 3.1] (see also Lin
and Sine [37]) extended Browder’s result to the case that T is a dual operator
in a dual Banach space; Browder’s result is then a corollary. Additional
information is given in [16, Part 2]. It was also proved in [37] that every
contraction in L1 satisfies (1.1). Note that by [21], there is a power-bounded
T on L1 for which (1.1) fails. Wittmann (see [31]) proved that if T is the
Markov operator induced on the space of bounded measurable functions by
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a transition probablity, then (1.1) holds. The result of [23] was extended to
irreducible Markov operators on C(K) of a compact Hausdorff space K by
Kornfeld and Lin [31].

Unaware of Browder’s result, Robinson [41] proved (1.1) when X is a
Hilbert space and T is unitary (using the spectral theorem). Leonov [34]
gave a proof of (1.1) for contractions in a Hilbert space (although his state-
ment is for isometries) satisfying a ”mixing condition”. It was later noted by
Aaronson and Weiss [1] that Leonov’s proof yields (1.1) when X = Lp(µ),
1 < p <∞, and T is induced by a transformation preserving the probability
µ; it is also indicated in [1] how to modify Leonov’s proof to obtain the
result when p = 1. Kozma and Lev [32, Theorem 4.1] noticed that Robin-
son’s proof yields that for T unitary on a Hilbert space H, the condition
supN

1
N

∑N
n=1 ‖

∑n−1
k=0 T

kx‖2 <∞ is sufficient (and obviously necessary) for
x ∈ (I − T )H, and gave an even weaker sufficient condition. Conditions
for solving the equation f = h − h ◦ θ when θ is a probability preserving
transformation and f is a given measurable function were given in [2], [42]
and [43]; Anosov [3] proved that if f is integrable, then

∫
f = 0 (even if h

is not integrable). As an example, Anosov proved that for θ an irrational
rotation of the circle there exists a continuous function f = h− h ◦ θ with h
not integrable; see also [29]. On the other hand, it follows from the work of
Quas [40, Theorem 1] that if f is continuous and f = h−h◦θ with h ∈ L∞,
then there exists g continuous such that f = g − g ◦ θ. For some additional
results on coboundaries of rotations see [44],[24],[6].

Elements of the linear manifold (I − T )X are called coboundaries. The
equation (I − T )y = x with x given is called the cohomology equation in
ergodic theory, and the (discrete) Poisson equation in the theory of discrete
time Markov processes.

For a bounded representation T (s) of a semi-group S by linear operators
on a Banach space X, we call a function x(s) from S to X a coboundary if
there exists y ∈ X such that x(s) = (I − T (s))y for every s ∈ S. If x(s) is a
coboundary, then

x(s1s2) = (I − T (s1s2))y = y − T (s1)T (s2)y =

y − T (s1)y + T (s1)(y − T (s2)y = x(s1) + T (s1)x(s2).

A function x(s) satisfying x(s1s2) = x(s1) + T (s1)x(s2) is called a cocycle.
The above shows that a coboundary is a bounded cocycle. For the represen-
tation {Tn} of N by a power-bounded operator T , x(n) is a cocycle if and

only if it is of the form x(n) =
∑n−1

k=0 T
kx; when x = (I − T )y, then this

cocycle equals (I − Tn)y.

Moulin-Ollagnier and Pinchon [38] extended the theorem of Gottschalk
and Hedlund to group actions by homeomorphisms of a compact Haus-
dorff space, proving that a bounded cocycle of a minimal group action is a
coboundary. Browder’s theorem was extended by Parry and Schmidt [39] to
bounded representations of a LCA group G by linear operators in a reflexive
Banach space: a bounded cocycle is a coboundary. Unaware of [38], Korn-
feld and Lin [31] proved the result of [38] for minimal actions of semi-groups,
and extended it to irreducible Markov representations in C(K) of certain
semi-groups.
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In this paper we deal with two commuting contractions T and S on a Ba-
nach space X. The partial double sums

∑m−1
`=0

∑n−1
j=0 S

jT `x are not a cocycle

(of the N2 representation), but are uniformly bounded if x = (I−T )(I−S)y
for some y ∈ X. We call such an x a double coboundary (for T and S). Sim-
ilarly, for d commuting contractions T1, . . . , Td we call x ∈ X a d-tuple
coboundary if x = [Πd

j=1(I − Tj)]y for some y ∈ X. The problem of when x

is a d-tuple coboundary of duals in Lp (1 ≤ p < ∞) of d commuting prob-
ability preserving transformations was studied by Bradley [5] and Gordin
[22]; El Machkouri and Giraudo [18] gave conditions for representing a func-
tion as a sum of a martingale and sums of multiple coboundaries of subsets
of {T1, . . . , Td} (with the goal of obtaining some central limit theorems, by
martingale approximation).

In Section 2 we characterize uniform ergodicity of d commuting contrac-
tions with equal sets of fixed points (e.g. commuting ergodic Markov op-
erators) by the set of d-tuple coboundaries being closed. Fonf, Lin and
Rubinov [20, Theorem 1.1] observed that a contraction T is uniformly er-
godic if and only if the set of vectors x with bounded partial sums (i.e.
supn ‖sumn

k=0T
kx‖ < ∞) is closed. For d commuting contractions with

equal sets of fixed points we obtain a d-dimensional extension of the above
result of [20] when X is reflexive, and in the general case we prove it under
an additional mild ”ergodicity” assumption (which is automatically satisfied
by a single contraction).

In Section 3 we consider the problem of when boundedness of the par-
tial double sums (with respect to two commuting contractions S and T )
of a vector x implies that x is a double coboundary. This is an extension
in a different direction of the results of Gottschalk-Hedlund and Browder.
Bradley [5, Corollary 2.2] proved (using a different terminology) that for d
commuting probability preserving invertible transformations, boundedness
in Lp (1 ≤ p ≤ ∞) of the partial d-multiple sums of f ∈ Lp is equivalent
to f being a d-tuple coboundary. His proof cannot be used in the general
context of power-bounded operators on reflexive Banach spaces.

2. Multiple coboundaries and uniform ergodicity

It is well-known (e.g. [33, p. 73]) that if T is a power-bounded operator
on a Banach space X (not necessarily reflexive), then ‖ 1n

∑n
k=0 T

kx‖ → 0 if

and only if x ∈ (I − T )X. The set of x ∈ X such that 1
n

∑n
k=0 T

kx converges

is a closed subspace which equals F (T ) ⊕ (I − T )X, where F (T ) is the set
of fixed points of T ; when X is reflexive we have the ergodic decomposition
X = F (T )⊕ (I − T )X. When the ergodic decomposition holds for T power-
bounded (in a not necessarily reflexive space), T is called mean ergodic. If
the convergence of 1

n

∑n
k=0 T

k is uniform on the unit ball of X, we call T
uniformly ergodic.

In this section we obtain an ergodic decomposition for d commuting mean
ergodic power-bounded operators, using d-tuple coboundaries. The decom-
position is used to characterize the d-tuple coboundaries of commuting uni-
formly ergodic power-bounded operators with common fixed points.
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Proposition 2.1. Let T1, . . . , Td be commuting mean ergodic power-bounded
operators on a Banach space X. Then the linear manifold

Y := {x ∈ X : x =

d∑
j=1

zj + [Πd
j=1(I − Tj)]y y ∈ X, Tjzj = zj}

is dense in X.

Proof. For d = 1 this follows from the decomposition X = F (T )⊕(I − T )X.
We now prove for d = 2. By commutativity, T1z1 = z1 implies that

T1(T2z1) = T2z1. The ergodic decomposition yields that F (T2) + (I − T2)X
is dense, and for z2 + (I − T2)y2 we approximate y2 by z + (I − T1)y with
z ∈ F (T1). Then z2+(I−T2)(z+(I−T1)y) = z2+(z−T2z)+(I−T2)(I−T1)y
yields the result with z1 = z − T2z.

For d > 2 we proceed by induction, using similarly the ergodic decompo-
sition of Td. �

Lemma 2.2. Let T1, . . . , Td be commuting mean ergodic power-bounded op-
erators on a Banach space X. Then

(2.1) X =
[ d⋂
j=1

F (Tj)
]
⊕

d∑
j=1

(I − Tj)X.

Proof. Denote An(T ) = 1
n

∑n−1
k=0 T

k and Mn := Πd
j=1An(Tj). Since An(Tj)

converges strongly as n→∞ to a projection Pj on F (Tj) which annihilates

(I − Tj)X, by commutativity Mnx converges strongly to Πd
j=1Pj , which is

a projection on
⋂d
j=1 F (Tj) which annihilates all the images (I − Tj)X, and

we get the decomposition as in the case of a single operator. �

Remark. The lemma follows also from the general Koliha-Nagel-Sato
decomposition (see [33, p. 79]), but for that we first show that the sum of

the ranges of the (I − Tj) contains all the ranges (I − Πd
j=1T

kj
j )X. This

proof is not shorter.

Theorem 2.3. Let T1, . . . , Td be commuting mean ergodic power-bounded
operators on a Banach space X. Then

(2.2) X =
d∑
j=1

F (Tj)⊕ [
d∏
j=1

(I − Tj)]X.

Proof. We use the notations of the previous lemma, Ej := I− limnAn(Tj) =
I−Pj is well-defined in the strong operator topology, and is a projection on

(I − Tj)X with null space F (Tj). Then F (Ej) = (I − Tj)X and (I−Ej)X =
PjX = F (Tj). Applying the previous lemma to E1, . . . , Ed we obtain

X =
[ d⋂
j=1

(I − Tj)X
]
⊕

d∑
j=1

F (Tj).

Now the set of d-tuple coboundaries
[
Πd
j=1(I − Tj)

]
X is a subset of the left

summand above, and by the density given in Proposition 2.1 we get the
assertion. �
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Remark. It is clear that [
∏d
j=1(I − Tj)]X ⊂

∑d
j=1(I − Tj)X. When

the commuting mean ergodic operators have the same set of fixed points
(e.g. induced by commuting ergodic measure preseving transformations on
a probability space (S,Σ, µ)), the decompositions (2.1) and (2.2) yield that
the two closed subspaces above are equal. Moreover, for each j the ergodic
decomposition for Tj then shows that these subspaces equal (I − Tj)X.

Definition. A vector x ∈ X is called a mixed coboundary for the (com-

muting) transformations T1, . . . , Td if x ∈
∑d

j=1(I − Tj)X.

Mixed coboundaries were used in [11]; a characterization of mixed cobound-
aries of commuting unitary operators with countable Lebesgue spectrum was
given (for d = 2) in [12, p. 13].

Theorem 2.4. Let T1, . . . , Td be commuting mean ergodic power-bounded
operators on a Banach space X with F (Tj) = F (T1) for 1 ≤ j ≤ d. Then
the following are equivalent:

(i) All the Tj are uniformly ergodic.
(ii) Every mixed coboundary is a d-tuple coboundary.

(iii) [
∏d
j=1(I − Tj)]X = (I − Tk)X for every 1 ≤ k ≤ d.

Proof. (i) =⇒ (ii): By the previous remark, for every k we have

[
d∏
j=1

(I − Tj)]X =
d∑
j=1

(I − Tj)X = (I − Tk)X.

By uniform ergodicity, (I − Tk)X is closed, and (I − Tk) is invertible on
it. Since these subspaces are the same, denoted by X0, all the I − Tk
are invertible on X0, so

∏d
j=1(I − Tj) is invertible on X0. Thus, if x =∑d

k=1(I − Tk)yk, then (I − Tk)yk = [
∏d
j=1(I − Tj)]zk, so x is a d-tuple

coboundary.
(ii) =⇒ (iii): Fix k and let x = (I−Tk)y. Then x is a mixed coboundary,

and by (ii) x = [
∏d
j=1(I − Tj)]z, so

(I − Tk)X ⊂ [
d∏
j=1

(I − Tj)]X ⊂ (I − Tk)X,

so equality holds and (iii) follows.
(iii) =⇒ (i): Fix k and assume that Tk is not uniformly ergodic. Then

(I−Tk)X is not closed, and we take y ∈ (I − Tk)X which is not in (I−Tk)X.

Put x = (I − Tk)y. By (iii) there is a z such that x = [
∏d
j=1(I − Tj)]z, so

(2.3) (I − Tk)
(
y − [

∏
j 6=k

(I − Tj)]z
)

= 0.

By (iii) (I − Tj)X = (I − Tk)X for j 6= k, hence y ∈ (I − Tj)X, so

y − [
∏
` 6=k(I − T`)]z is in (I − Tj)X = (I − Tk)X; since it is in F (Tk) by

(2.3), it is zero. Hence y ∈ (I − Tj)X for j 6= k, so by (iii) y ∈ (I − Tk)X
– a contradiction. Hence (I − Tk)X is closed, so Tk is uniformly ergodic
[35]. �
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Remarks. 1. Without the assumption that F (Tj) = F (Tk) for j 6= k, (i)
need not imply (ii). Let X 6= {0} be a finite dimensional Hilbert space, let
0 6= T1 6= I be an orthogonal projection, and define T2 = I − T1. Then the
mixed coboundaries are all of X, but 0 is the only double coboundary.

2. Under the assumptions on T1, . . . , Td, the equality (I − Tj)X =
(I − T1)X for every j is not sufficient for uniform ergodicity – take T1 not
uniformly ergodic and Tj = T1 for j > 1.

3. A non-trivial example can be obtained using Proposition 2.2 of [14]: Let
T be the unitary operator induced on L2 by an invertible ergodic measure
preserving transformation on a non-atomic probability space, and define

Tj =
∑∞

n=−∞ p
(j)
n Tn, where

p(j)n > 0,
∞∑

n=−∞
p(j)n = 1,

∞∑
n=−∞

|n|p(j)n <∞,
∞∑

n=−∞
np(j)n 6= 0.

Then F (Tj) = F (T ) by uniform convexity of L2, and by [14] (I − Tj)L2 =
(I − T )L2 for every j. Since the spectrum of T is the whole unit circle, 1 is
not isolated in the spectrum of Tj , so Tj is not uniformly ergodic.

4. On the other hand, if T and S are induced on L2 by commuting ergodic
invertible probability preserving transformations as above and (I − T )L2 =
(I − S)L2, then by the result of Kornfeld [30], T = S±1.

Lemma 2.5. Let T1, . . . , Td be commuting power-bounded operators on a
Banach space X with F (Tj) = F (T1) for 1 ≤ j ≤ d. Then

(2.4) {x ∈ X : [
d∏
j=1

(I − Tj)]x = 0} = F (T1)

Proof. The inclusion of the right-hand side of (2.4) in its left-hand side is
trivial. The proof of equality is by induction on the number of operators.
For d = 1 this is the definition of F (T1). Assume the assertion is true for
d− 1 operators, d > 1.

Let [
∏d
j=1(I − Tj)]x = 0. Then [

∏d−1
j=1(I − Tj)]x ∈ F (Td) = F (T1); but it

is obviously also in (I − T1)X, so [
∏d−1
j=1(I−Tj)]x = 0, and by the induction

hypothesis x ∈ F (T1). �

Theorem 2.6. Let T1, . . . , Td be commuting power-bounded operators on a
Banach space X with F (Tj) = F (T1) for 1 ≤ j ≤ d. Then the set of d-tuple

coboundaries [
∏d
j=1(I−Tj)]X is closed if and only if all the Tj are uniformly

ergodic.

Proof. We denote Y := [
∏d
j=1(I − Tj)]X. The case d = 1 is proved in [35],

so we assume d > 1.
Assume that Y is closed. We use the ideas of [35] to prove uniform

ergodicity of all Tj . The operator M =
∏d
j=1(I − Tj) maps X onto the

closed subspace Y , so by the open mapping theorem (e.g. [17, p. 487])
there is K > 0 such that for y ∈ Y there exists x ∈ X with ‖x‖ ≤ K‖y‖
and Mx = y. Denote by T̂j the restriction of Tj to the invariant subspace
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Y . Then for y ∈ Y we have

‖An(T1)y‖ ≤
‖I − Tn1 ‖

n

∥∥ d∏
j=2

(I − Tj)
∥∥‖x‖ ≤ ‖I − Tn1 ‖

n

∥∥ d∏
j=2

(I − Tj)
∥∥K‖y‖.

Hence
∥∥An(T̂1)

∥∥ → 0 (on Y ). Since I − An(T̂1) = I−T̂1
n

∑n−1
k=1

∑k−1
`=0 T̂

`
1 ,

when ‖An(T̂1)‖ < 1 we have that I − T̂1 is invertible on Y . Similarly, all

I − T̂j are invertible on Y , so Y = [
∏d
j=1(I − T̂j)]Y . Thus for x ∈ X

there is a z ∈ Y with Mx = Mz, so M(x − z) = 0, and by the previous
lemma x− z ∈ F (T1). We therefore obtain the ergodic decomposition X =

F (T1) ⊕ Y ⊂ F (T1) ⊕ (I − T1)X (note that the decompositions (2.1) and
(2.2) require mean ergodicity, which was not assumed). Hence

(I − T1)X ⊂ (I − T1)X = Y ⊂ (I − T1)X,
which shows that (I − T1)X = Y is closed, so T1 is uniformly ergodic by
[35]. Similarly all Tj are uniformly ergodic.

Assume now that each Tj is uniformly ergodic. As remarked above, the
mean ergodicity and the fact that all the operators have the same fixed points
imply that Y = (I − Tj)X for every j. By uniform ergodicity (I − Tj)X is

closed and (I − Tj) is invertible on (I − Tj)X = Y [35]. This yields that∏d
j=1(I − Tj) is invertible on Y , so Y = [

∏d
j=1(I − Tj)]Y ⊂ Y , which shows

that Y is closed. �

Example. Commuting uniformly ergodic contractions with common fixed
points.

Let µ be a probability measure on the Borel sets of the unit circle T. Fix
1 ≤ p < ∞, and on Lp(T, λ) (where λ is the normalized Haar measure)
define Tf = µ ∗ f . Then T is a Markov operator with invariant probability
λ, and ‖Tf −

∫
f dλ‖p ≤ ‖µ − λ‖ · ‖f‖p (where the norm of a measure is

its total variation). Let µ1, . . . , µd be probabilities on T with corresponding
operators T1, . . . , Td. Then TjTk corresponds to convolution by µj∗µk, which
commute since the unit circle is an Abelian group. If the µj are all absolutely
continuous, then F (Tj) consists precisely of the constant functions, and by
Theorem 3 of Bhattacharya [4] we have ‖µ∗nj − λ‖ → 0, which yields that

‖Tnj − E‖p → 0 (where Ef =
∫
f dλ).

Note that Tf = µ ∗ f in L2(T, λ) is uniformly ergodic if and only if the
Fourier-Stieltjes coefficients of µ satisfy infn6=0 |1− µ̂(n)| > 0 (e.g. [15]).

Theorem 2.7. Let T1, . . . , Td be commuting uniformly ergodic power-bounded
operators on a Banach space X with F (Tj) = F (T1) for 1 ≤ j ≤ d. Then
the following are equivalent for x ∈ X:

(i) x ∈ [
∏d
j=1(I − Tj)]X.

(ii) supn1,n2,...,nd>0

∥∥[
∏d
j=1(

∑nj−1
k=0 T kj )]x

∥∥ <∞.

(iii) supn>0

∥∥[
∏d
j=1(

∑n−1
k=0 T

k
j )]x

∥∥ <∞.

Proof. Clearly (i) implies (ii) and (ii) implies (iii).
Assume (iii), and let Y be as in the previous proof. By Theorem 2.6 Y

is closed. Since the operators are uniformly ergodic with the same sets of
fixed points, they have the same ergodic decomposition with (I−Tj)X = Y .
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Hence limn→∞An(Tj)x is independent of j, and we denote it by y, which is
Tj-invariant. Then∥∥[

d∏
j=1

An(Tj)]x− y
∥∥ =

∥∥[
d∏
j=2

An(Tj)](An(T1)x− y)
∥∥→ 0.

But by (iii)
∥∥[
∏d
j=1An(Tj)]x

∥∥ → 0, so y = 0. Thus An(T1)x → 0, and the

ergodic decomposition X = F (T1)⊕ Y yields that x ∈ Y . �

Remark. For any T1, . . . , Td commuting power-bounded operators on X,

(2.5) [

d∏
j=1

(I − Tj)]X ⊂ {x : sup
n>0

∥∥[

d∏
j=1

(

n−1∑
k=0

T kj )]x
∥∥ <∞}.

When all the Tj are uniformly ergodic with F (Tj) = F (T1) for 1 ≤ j ≤ d,
Theorems 2.7 and 2.6 yield equality in (2.5), and this linear manifold is
closed. Conversely, when F (Tj) = F (T1) for 1 ≤ j ≤ d and the left hand
side of (2.5) is closed, Theorem 2.6 yields that all the Tj are uniformly
ergodic, so we have equality in (2.5) by Theorem 2.7.

A natural question is whether commuting T1, . . . , Td with F (Tj) = F (T1)

must be uniformly ergodic when {x : supn>0

∥∥[
∏d
j=1(

∑n−1
k=0 T

k
j )]x

∥∥ < ∞} is
closed. The answer is positive when X is reflexive, since by Theorem 3.1 in
the next section we have equality in (2.5), and then Theorem 2.6 applies. A
partial (positive) answer is given in the next theorem.

Theorem 2.8. Let T1, . . . , Td be commuting power-bounded operators on a
Banach space X with F (Tj) = F (T1) for 1 ≤ j ≤ d, and assume that for

x ∈ (I − T1)X we have

(*) 1
n

∑n
k=0R

kx → 0 for every R 6= I of the form R =
∏d
j=1 T

εj
j with εj

zero or one.
If {x : supn>0

∥∥[
∏d
j=1(

∑n−1
k=0 T

k
j )]x

∥∥ < ∞} is closed, then all the Tj are
uniformly ergodic.

Proof. Denote Y := [
∏d
j=1(I − Tj)]X. Then Y is invariant for all the Tj ,

and we denote by T̂j the restriction of Tj to Y . Put Sn :=
∏d
j=1

(∑n−1
k=0 T

k
j

)
and similarly define Ŝn.

If y =
∏
j(I − Tj)x, then for each k we have ‖An(Tk)y‖ → 0 as n → ∞,

which shows that T̂k is mean ergodic (on Y ). Hence (I − T̂k)Y = Y , and by

the remark following Theorem 2.3 applied to Y , also Y =
[∏d

j=1(I − T̂j)
]
Y .

By (2.5) and the assumption, Y ⊂ {x ∈ X : supn ‖Snx‖ < ∞}, so

supn ‖Ŝn‖ <∞ by the Banach-Steinhaus theorem.

If y =
∏
j(I − Tj)x with x ∈ Y , then Ŝiy = Siy =

∏d
j=1(I − T ij )x. Then

(2.6)
1

n

n∑
i=1

Ŝiy = x+
∑
`

± 1

n

n∑
i=1

Ri`x→n→∞ x

by assumption (*), where ` goes over all non-zero (ε1, . . . , εd) ∈ {0, 1}d.
Since supn ‖Ŝn‖ <∞, we obtain that S̃ny := 1

n

∑n
i=1 Ŝiy converges strongly

on Y .
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Now let y ∈ Y and let xk ∈ Y with limk[
∏d
j=1(I − T̂j)]xk = y. Put

z = limn S̃ny. Since S̃nxk → xk as n→∞, we have

‖z − xk‖ = lim
n
‖S̃ny − xk‖ ≤

lim sup
n
‖S̃ny − S̃n

∏
j

(I − T̂j)xk‖+ lim
n
‖xk − S̃n

∏
j

(I − T̂j)xk‖ ≤

K‖y −
∏
j

(I − T̂j)xk‖,

which shows that xk → z, hence y = [
∏d
j=1(I − T̂j)]z. We have obtained

that

Y = [

d∏
j=1

(I − T̂j)]Y ⊂ [

d∏
j=1

(I − Tj)]X ⊂ Y

so [
∏d
j=1(I − Tj)]X is closed, and Theorem 2.6 yields that all the Tj are

uniformly ergodic. �

Remarks. 1. When d = 1, condition (*) is automatically satisfied, and
we obtain that if T is power-bounded with {x ∈ X : supn ‖

∑n
k=0 T

kx‖ <∞}
closed, then T is uniformly ergodic. This was observed by Fonf, Lin and
Rubinov in [20, Theorem 1.1].

2. For commuting Tj as in the theorem, condition (*) is satisfied when
Tnj (I − Tj) converges strongly to zero for each j.

3. Double coboundaries of dual power-bounded operators in
dual spaces

Let T and S be commuting power-bounded operators on a Banach space
X. Then ‖|x‖| := supj,k≥0 ‖SjT kx‖ is an equivalent norm on X for which
T and S are contractions. For brevity, we therefore state our results below
for contractions, but they apply to power-bounded operators as well.

Theorem 3.1. Let T and S be commuting contractions on a reflexive Ba-
nach space X. Then the following are equivalent for x ∈ X:

(i) sup
n,m≥1

‖
∑n−1

j=0

∑m−1
`=0 SjT `x‖ <∞.

(ii) There exists z ∈ X such that x = (I − S)(I − T )z.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 S

jT `x‖ <∞.

Proof. Clearly (ii) implies (i). Obviously (i) implies (iii).

Assume (iii). Define Rn =
∑n−1

j=0

∑n−1
`=0 S

jT ` = (
∑n−1

j=0 S
j)(
∑n−1

`=0 T
`).

Then

Rn+1 − TSRn = (I +

n∑
j=1

Sj)(I +

n∑
`=1

T `)− (

n∑
j=1

Sj)(

n∑
`=1

T `) =

I +

n∑
j=1

Sj +

n∑
`=1

T `.
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Hence (iii) yields supn ‖
∑n

j=1 S
jx+

∑n
`=1 T

`x‖ ≤ ‖x‖+ 2 supn ‖Rnx‖ <∞,
which yields

(3.1) ‖ 1

n

n∑
j=1

Sjx+
1

n

n∑
`=1

T `x‖ → 0.

Put yn = 1
n

∑n
k=1

∑
0≤j,`≤k−1

SjT `x and

(3.2) xn = (I − S)(I − T )yn = (I − S)(I − T )
[ 1

n

n∑
k=1

∑
0≤j,`≤k−1

SjT `x
]
.

Since (yn) is assumed bounded, by weak sequential compactness there is
a subsequence (ynj ) which converges weakly, say to y, and then xnj →
(I − S)(I − T )y weakly. But

xn =
1

n

n∑
k=1

(I − Sk)(I − T k)x = x− 1

n

n∑
k=1

Skx− 1

n

n∑
k=1

T kx+
1

n

n∑
k=1

(ST )kx.

Put v = limn→∞
1
n

∑n
k=1(TS)kx. Using (3.1) we obtain xn → x + v, so

(I − S)(I − T )y = x + v. Put u = limn
1
n

∑n
k=1(TS)ky. Since (TS)v = v,

we obtain

2v = lim
n→∞

1

n

n∑
k=1

(TS)k(x+ v) = lim
n→∞

(I − S)(I − T )
1

n

n∑
k=1

(TS)ky =

(I − S)(I − T ) lim
n→∞

1

n

n∑
k=1

(TS)ky = (I − S)(I − T )u.

Hence x = (I − S)(I − T )y − v = (I − S)(I − T )(y − 1
2u), so (ii) holds with

z = y − 1
2u. �

Remarks. 1. Given a power-bounded operator T on X reflexive, if x ∈ X
satisfies supn>0 ‖

∑n
k=1 T

kx‖ < ∞, then x is a coboundary: by Browder’s
theorem Tx = (I − T )z for some z, and then x = (I − T )(x + z). For two
operators, if in (i) of the theorem we start the summation from 1 instead of
0, the condition need not imply that x is a double coboundary. For example,
let X = R3, T (a, b, c) = (a, 0, 0), and S(a, b, c) = (0, b, 0). It is easily checked
that (I − T )(I − S)(a, b, c) = (0, 0, c), so the double cobundaries are the set
{(0, 0, c) : c ∈ R}. However,

∑m
j=1

∑n
`=1 S

jT `(a, b, c) = (0, 0, 0) for every

(a, b, c) ∈ X, since TS = 0.
2. Note that once (ii) is proved, we see that the whole sequence {yn}

defined in the above proof actually converges in norm.

Example. Fourier characterization of double coboundaries for the ”shifts”
on L2(T2).
Let X = L2(T2) with the normalized Lebesgue measure. We identify
the unit circle T with the interval [0, 2π), and define on X the operators
Tf(s, t) = eitf(s, t) and Sf(s, t) = eisf(s, t). Let

f̂(k, j) =

∫ ∫
e−ikte−ijsf(s, t)dt ds
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be the two-dimensional Fourier coefficients of f(s, t). Then

T̂ f(k, j) = f̂(k − 1, j) and Ŝf(k, j) = f̂(k, j − 1),

so T and S shift the Fourier coefficients. Computing the double sums we
obtain ∣∣ n−1∑

j=0

n−1∑
`=0

SjT `f
∣∣2 =

∑
0≤j,j′,`,`′<n

ei(j−j
′)sei(`−`

′)t|f(t, s)|2.

Put g = |f |2, and let ĝ(k, j) be its two-dimensional Fourier coefficients.
Then ∥∥ n−1∑

j=0

n−1∑
`=0

SjT `f
∥∥2 =

∑
0≤j,j′,`,`′<n

ĝ(`′ − `, j′ − j).

Thus, by Theorem 3.1, f ∈ X is a double coboundary if and only if

(3.3) sup
n

∑
0≤j,j′,`,`′<n

|̂f |2(`− `′, j − j′) <∞.

The above example yields the following application to two-dimensional
Fejér means. Let 0 ≤ g ∈ L1(T2) and denote by σn,m(g) and σn(g) = σn,n(g)
the Fejér means of g along rectangles and squares, respectively (see Zygmund
[46, Ch. XVII]).

Corollary 3.2. Let 0 ≤ g ∈ L1(T2). Then for every (s, t) ∈ T2,

sup
n
n2σn(g)(s, t) <∞ if and only if sup

n,m
nmσn,m(g)(s, t) <∞.

Proof. First we prove the case s = t = 0. Put f =
√
g. For the operators S

and T in the example, Theorem 3.1 yields that condition (3.3) is equivalent
to

(3.4) sup
n,m

∑
0≤j,j′<n

∑
0≤`,`′<m

|̂f |2(`− `′, j − j′) <∞.

Putting Sn(g)(s, t) =
∑

0≤|k|,|j|<n
ĝ(k, j)ei(jt+ks), we see that (3.3) is equivalent

to

sup
n

∣∣ n∑
`=0

S`(g)(0, 0)
∣∣ <∞.

By the definition of Fejér means, (3.3) and (3.4) are equivalent to
supn n

2σn(g)(0, 0) <∞ and supn,m nmσn,m(g)(0, 0) <∞, respectively. The
equivalence (3.3)⇔(3.4) yields the case (0, 0).

The general case then follows by a suitable translations of the arguments
of g. �

Remarks. 1. It is known that for a bounded and continuous function g
with g(0, 0) = 0 we have σn,m(g)(0, 0) →n,m 0, [46, Ch. XVII, Th. 1.20].
Without any additional conditions, this convergence does not hold with a
rate. However, for a coboundary we obtain a rate.

2. For an L1 function g, the means along squares σn(g) converge a.e. [46,
Ch. XVII, Th. 3.1] while the means along unrestricted rectangles σn,m(g)
may diverge (e.g., see [27]). The above corollary yields that we have a
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convergence to zero with a rate 1/n2 along squares if and only if we have a
convergence with rate 1/nm along rectangles.

Lemma 3.3. Let T and S be commuting contractions on a Banach space
X with Tn and Sm converging in the weak operator topology. If there exist
infinite increasing sequences {mi} and {ni} such that

(3.5) sup
i
‖
ni−1∑
j=0

mi−1∑
`=0

SjT `x‖ = K <∞,

then x ∈ (I − T )(I − S)X.

Proof. By the assumption T and S are mean ergodic, with weak-lim Sm =
P1 := limAm(S) and weak-lim Tn = P2 := limAn(T ). Since TS = ST , also
P1 and P2 commute, and they also commute with T and S. By Theorem
2.3 X = F (S) + F (T ) ⊕ (I − S)(I − T )X. Then P := P1 + P2 − P1P2 is

the projection on F (S) + F (T ) corresponding to the above decomposition
of X, and P commutes with T and S. Let x satisfy (3.5). Then P1P2x = 0.

Since P1S
j = P1, application of P1 to (3.5) yields ‖ni

∑mi−1
k=0 T kP1x‖ ≤ K.

Applying I−T we obtain ‖(I−Tmi)P1x‖ ≤ K‖I−T‖/ni. But Tmi converges
weakly to P2, so letting i→∞ we obtain P1x = P1x−P2P1x = 0. Similarly
also P2x = 0, and thus Px = 0, which proves the assertion. �

Theorem 3.4. Let T and S be commuting contractions on a reflexive Ba-
nach space, with Tn converging weakly and Sm converging strongly. If there
exist infinite increasing sequences {mi} and {ni} such that

sup
i
‖
ni−1∑
j=0

mi−1∑
`=0

SjT `x‖ <∞,

then x ∈ (I − T )(I − S)X.

Proof. By Lemma 3.3, x ∈ (I − T )(I − S)X. By reflexivity, there is a sub-

sequence {ir} such that {
∑nir−1

j=0

∑mir−1
`=0 SjT `x} converges weakly, and we

replace {ni} and {mi} by the corresponding subsequences, so we may as-

sume now that {
∑ni−1

j=0

∑mi−1
`=0 SjT `x} converges weakly, say to y. Since

x ∈ (I − T )(I − S)X, also y is in that subspace. Let P1 and P2 be the
ergodic projections corresponding to S and T , as defined in Lemma 3.3.
Then

(I − T )(I − S)y = weak- lim
i

(I − Tni)(I − Smi)x =

x−weak- lim
i

(Tnix+ Smix) + weak- lim
i
TniSmix = x−P2x−P1x+P2P1x.

Since x ∈ (I − T )(I − S)X, we have P1x = P2x = 0, so (I − T )(I − S)y = x.
�

Remark. Putting S = 0 we get an improvement of part (c) of the result
of Browder and Petryshyn [8] (which holds also for weak convergence).

It is well-known (e.g. [33, p. 65]) that if P is a Markov operator with in-
variant measure m, then P induces a contraction on each Lp(m), 1 ≤ p ≤ ∞.
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Proposition 3.5. Let P and Q be commuting ergodic Markov operators on
a probability space (S,Σ, µ) with µ invariant for both. For 1 < p ≤ ∞, the
following are equivalent for f ∈ Lp(S,Σ, µ):

(i) supn,m≥1 ‖
∑n−1

j=0

∑m−1
`=0 P jQ`f‖p <∞.

(ii) There exists g ∈ Lp with
∫
g dm = 0 satisfying f = (I − P )(I −Q)g.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 P

jQ`f‖p <∞.

Proof. Since
∫
P jf dµ =

∫
Q`f dµ =

∫
P jQ`f dµ =

∫
f dµ by invariance of

µ, each of the three conditions implies that
∫
f dµ = 0. For 1 < p < ∞,

take in the previous corollary X = L0
p := {f ∈ Lp :

∫
f dm = 0}.

For p = ∞ we have to prove only that (iii) implies (ii). For simplicity
we shall assume that L1(µ) is separable, so the unit ball of L∞(µ) with
the weak-* topology is compact metrizable [17, Theorem V.5.1]. As in the
proof of Theorem 3.1, we put gn := 1

n

∑n
k=1

∑
0≤j,`≤k−1

SjT `f and fn :=

(I − P )(I − Q)gn. The assumption (iii) yields that (gn) is bounded in
L∞, so there exists a subsequence (gnj ) which converges weak-* to some
g ∈ L∞(µ). Since µ is a probability, we obtain that gnj → g weakly in

L2(µ), and similarly L2 − limn
1
n

∑n
k=1(PQ)kf is a bounded function. Now

the proof of Theorem 3.1 for L2 yields that f = (I − P )(I − Q)h for some
h ∈ L∞. �

Remark. Proposition 3.5 applies when P and Q are induced by com-
muting probability preserving ergodic transformations θ and τ on (S,Σ, µ).
For example, let θ and τ be irrational rotations on the unit circle. An-
other example is obtained when θx = rx mod 1 and τx = sx mod 1 on
([0, 1),B, dx) for any pair of positive integers r and s (since rx mod 1 is iso-
morphic, via expansion by basis r, to the one-sided Bernoulli shift of i.i.d.
random variables with equi-probable r outcomes, it is ergodic).

Theorem 3.6. Let X = Y ∗ be a dual Banach space, and let T and S be
commuting power-bounded operators on X which are duals of operators on
Y . Then the following are equivalent for x ∈ X:

(i) supn,m≥1 ‖
∑n−1

j=0

∑m−1
`=0 SjT `x‖ <∞.

(ii) x is a double coboundary, i.e. there exists y ∈ X such that x =
(I − S)(I − T )y.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 S

jT `x‖ <∞.

Proof. Since (ii) clearly implies (i) and (i) obviously implies (iii), we need
to prove only that (iii) implies (ii).

By the proof of (3.1) in Theorem 3.1, (iii) implies that

(3.6) ‖ 1

n

n∑
j=1

Sjx+
1

n

n∑
`=1

T `x‖ → 0.

In order to avoid difficulties with the weak-* topology when Y is not sep-
arable, we use the following approach. Let LIM be a fixed Banach limit
(defined on `∞) which extends Cesàro convergence [19, pp. 33-34] (see also
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[33, p. 135]). By (iii), we can define

〈y, v〉 := LIM{〈
∑

0≤j,`≤n−1
SjT `x, v〉} v ∈ Y.

Then y is a bounded linear functional on Y , i.e. y ∈ X.
Let T̂ and Ŝ be the preduals on Y of T and S. Using the definition, com-

mutativity, (3.6) and the property of LIM preserving Cesàro convergence,
for each v ∈ Y we have

〈(I − T )(I − S)y, v〉 = 〈y, (I − T̂ )(I − Ŝ)v〉 =

LIM{〈
∑

0≤j,`≤n−1
SjT `x, (I − T̂ )(I − Ŝ)v〉} = LIM{〈(I − Tn)(I − Sn)x, v〉} =

LIM{〈(x− (Tn + Sn)x+ (TS)nx, v〉} = 〈x, v〉+ LIM{〈(TS)nx, v〉}.
Defining z ∈ X by 〈z, v〉 := LIM{〈(TS)nx, v〉} we obtain (I − T )(I − S)y =
x + z. By shift-invariance of Banach limits, (TS)z = z. We now define
〈u, v〉 := LIM{〈(TS)ny, v〉}. Then

〈(I − T )(I − S)u, v〉 = LIM{〈(TS)n(I − T )(I − S)y, v〉} =

LIM{〈(TS)n(x+ z, v〉 = LIM{(TS)nx, v〉}+ 〈z, v〉 = 2〈z, v〉.
Hence 2z = (I − T )(I − S)u, so x = (I − T )(I − S)(y − 1

2u). �

Remark. Theorem 3.1 is a corollary of Theorem 3.6. The proof of
Theorem 3.1 is closer in spirit to Browder’s, and adapts directly to prove
Theorem 3.6 when Y is separable.

Corollary 3.7. Let X = Y ∗ be a dual Banach space, and let T be a power-
bounded operator on X which is the dual of an operator on Y . Then the
following are equivalent for x ∈ X:

(i) supn≥1 ‖(
∑n−1

j=0 T
j)2x‖ <∞.

(ii) There exists y ∈ X such that x = (I − T )2y.

Example. Bounded double cobundaries of commuting Markov operators
on L∞.
Let P and Q be commuting Markov operators on (S,Σ), and let µ be a
finite measure such that the measures µP and µQ, defined by (µP )(A) :=∫
P (s,A)dµ(s) and (µQ)(A) :=

∫
Q(s,A)dµ(s), are absolutely continuous

with respect to µ. Then the operators T̂ and Ŝ, defined on the space
M(S,Σ, µ) of finite signed measures absolutely continuous with respect to

µ by T̂ ν(A) =
∫
P (s,A)dν(s) and Ŝν(A) =

∫
Q(s,A)dν(s), satisfy T̂ ∗ = P

and Ŝ∗ = Q on M(S,Σ, µ)∗ = L∞(S,Σ, µ). Theorem 3.6 yields that the
following are equivalent for f ∈ L∞(S,Σ, µ):

(i) supn,m≥1 ‖
∑n−1

j=0

∑m−1
`=0 P jQ`f‖∞ <∞.

(ii) f is a double coboundary for P and Q.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 P

jQ`f‖∞ <∞.
Remarks. 1. The separability of L1(S,Σ, µ) (identified with M(S,Σ, µ)

via the Radon-Nikodým theorem), used in the proof of Proposition 3.5, is
not needed.

2. The previous example applies to the characterization of bounded dou-
ble coboundaries of commuting non-singular transformations.



DOUBLE COBOUNDARIES FOR COMMUTING CONTRACTIONS 15

Corollary 3.8. Let T and S be commuting power-bounded operators on a
Banach space X. If supn≥1 ‖

∑n−1
j=0

∑n−1
`=0 S

jT `x‖ < ∞, then there exists
φ ∈ X∗∗ such that

x = (I − T ∗∗)(I − S∗∗)φ,
and then supn,m≥1 ‖

∑n−1
j=0

∑m−1
`=0 SjT `x‖ <∞.

Proof. We identify X with its canonical embedding in X∗∗, and then T and
S are the restrictions to X of T ∗∗ and S∗∗. Now apply Theorem 3.6 to T ∗∗

and S∗∗. �

Remark. By corollary (3.8), if supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 S

jT `x‖ < ∞, then

‖ 1n
∑n

`=1 T
`x‖ → 0 and ‖ 1n

∑n
j=1 S

jx‖ → 0, which is a strengthening of

(3.1).

As an application, we look at commuting irreducible Markov operators on
compact spaces. Let K be a compact Hausdorff space. A Markov operator
on C(K) is a positive linear operator P on C(K) with P1 = 1; it is given by
the transition probability P (s,A) = P ∗δs(A). A Markov operator is called
irreducible if the only absorbing closed set is K, and uniquely ergodic if it
has only one invariant probability µ (a probability µ is called invariant if
µP := P ∗µ = µ; an invariant probability always exists [30, p. 178]). A
uniquely ergodic Markov operator is irreducible if and only if the support of
the (unique) invariant probability is K (see [31], [30, pp. 177-179] for more
details).

If µ is an invariant probability for P , then P defines a Markov operator
on L∞(µ); when P on L∞(µ) is ergodic (Pf = f ∈ L∞(µ) holds only if f
is constant a.e.), µ is called ergodic. Since the set of P -invariant probabili-
ties on K is non-empty, convex and weak-* compact, by the Krein-Milman
theorem [17, p. 440] it has extreme points, which are precisely the ergodic
probabilities for P .

Lemma 3.9. Let K be a compact Hausdorff space and P an irreducible
Markov operator on C(K). Let f ∈ C(K) and assume that for some P -
invariant probability µ there is ψ ∈ L∞(µ) such that f = (I − P )ψ a.e.
Then there exists g ∈ C(K) with f = (I − P )g.

Proof. By assumption, |
∑n

k=0 P
kf(s)| = |(I −Pn+1)ψ(s)| ≤ 2‖ψ‖L∞(µ) a.e.

Define A := {s ∈ K : supn |
∑n

k=0 P
kf(s)| > 3‖ψ‖L∞(µ)}. Then A

is open, and by assumption µ(A) = 0. Since the support of µ is K, by
irreducibility, A = ∅. Hence supn ‖

∑n
k=0 P

kf‖C(K) < ∞, and by [31] there
exists g ∈ C(K) with f = (I − P )g. �

Remarks. 1. Without irreducibility the result of [31] may fail. Example
3 in [37] exhibits P (induced by a continuous map) uniquely ergodic but not
irreducible on C(K) of a compact metric space, and f /∈ (I − P )C(K) with
supn ‖

∑n
k=0 P

kf‖C(K) <∞.
2. For P induced by a minimal continuous map of K, Lemma 3.9 is a

special case of Theorem 1 of Quas [40].

Theorem 3.10. Let P and Q be commuting irreducible Markov operators
on C(K) of a compact Hausdorff space K, and assume they have a common
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invariant probability µ which is ergodic for P . If f ∈ C(K) satisfies

sup
n≥1
‖
n−1∑
j=0

n−1∑
`=0

P jQ`f‖L∞(µ) <∞,

then there exists a function g ∈ C(K) such that f = (I − P )(I −Q)g.

Proof. By invariance of µ, P and Q are contractions also of L∞(µ), and
are the duals of the contractions induced on L1(µ), via the Radon-Nikodým
theorem, by P ∗ and Q∗ which preserve absolute continuity with respect to µ.
Hence by Theorem 3.6 there exists ψ ∈ L∞(µ) such that f = (I−P )(I−Q)ψ
a.e.-µ. We apply Lemma 3.9 to P and obtain a function h ∈ C(K) with
f = (I − P )h. Since µ is ergodic, when we normalize h to have

∫
h dµ = 0

we obtain that h = (I − Q)ψ a.e.-µ. We now apply Lemma 3.9 to Q, and
obtain a function g ∈ C(K) with h = (I − Q)g. Hence f = (I − P )h =
(I − P )(I −Q)g. �

Remark. The set of probabilities on K is convex and weak-* compact;
since it is invariant under P ∗ and Q∗, by the Markov-Kakutani fixed point
theorem [17, p. 456] it contains a common invariant probability. What the
proof of Theorem 3.10 needs is a common invariant probability which is
ergodic for at least one of the operators.

Corollary 3.11. let P be an irreducible Markov operator on C(K) of a
compact Hausdorff space K. Then f ∈ (I − P )2C(K) if and only if

sup
n≥1
‖(
n−1∑
j=0

P j)2f‖C(K) <∞,

Corollary 3.12. Let P and Q be commuting irreducible uniquely ergodic
Markov operators on C(K) of a compact Hausdorff space K. Then the
following are equivalent for f ∈ C(K):

(i) supn,m≥1 ‖
∑n−1

j=0

∑m−1
`=0 P jQ`f‖C(K) <∞.

(ii) f is a double coboundary for P and Q.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 P

jQ`f‖C(K) <∞.

Proof. We have only to show that (iii) implies (ii). First note that P and Q
have the same invariant probability: if µ is the unique invariant probability
of P , then (µQ)P = (µP )Q = µQ, and by uniqueness µQ = µ. The
invariant probability µ is ergodic by unique ergodicity, and is supported by
K by irreducibility of P and Q. We can now apply the previous theorem
and obtain (ii). �

Example. Continuous double coboundaries of convolutions on the circle.
Let ν and η be two probabilities on the unit circle, whose supports contain
an ”irrational” point. Hence they are uniquely ergodic and commute, so the
corollary can be applied. A particular case is when ν and η are irrational
rotations.
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4. Double coboundaries of commuting contractions in L1

Although L1 is not reflexive and contractions need not be duals, Browder’s
theorem was extended to contractions of L1 in [37]. The following theorem,
based on this result, yields as corollary the case p = 1 of Proposition 3.5.

Theorem 4.1. Let (S,Σ, µ) be a σ-finite measure space, let T and S be be
commuting contractions on L1(S,Σ, µ), and assume that T is mean ergodic.
Then the following are equivalent for f ∈ L1(µ):

(i) supn,m≥1 ‖
∑n−1

j=0

∑m−1
`=0 SjT `f‖ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 S

jT `f‖ <∞.

Proof. We have only to prove that (iii) implies (ii).
By Corollary 3.8 also (i) holds, which implies that

sup
n
‖
n−1∑
`=0

T `f‖ = sup
n
‖
n−1∑
`=0

T ∗∗`f‖ <∞.

Hence, by [37], there exists h ∈ L1(µ) with (I−T )h = f . Since T is assumed
mean ergodic, we may assume that lim ‖ 1n

∑n
`=1 T

`h‖ → 0, and then

(4.1)
1

N

N∑
n=1

n−1∑
`=0

T `f =
1

N

N∑
n=1

n−1∑
`=0

T `(I − T )h =
1

N

N∑
n=1

(I − Tn)h →
N→∞

h,

with convergence in norm. Let M be the supremum in (i). Then

(4.2) sup
N,m≥1

‖ 1

N

N∑
n=1

n−1∑
`=0

T `
m−1∑
j=0

Sjf‖ ≤M.

For fixed m this yields

‖
m−1∑
j=0

Sjh‖ = ‖
m−1∑
j=0

Sj( lim
N→∞

1

N

N∑
n=1

n−1∑
`=0

T `f)‖ =

lim
N
‖
m−1∑
j=0

Sj
1

N

N∑
n=1

n−1∑
`=0

T `f‖ ≤M.

We now apply again [37]: there exists g ∈ L1(µ) such that (I − S)g = h.
Hence f = (I − T )h = (I − T )(I − S)g. �

Remark. We conjecture that the theorem is true without assuming mean
ergodicity of one of the contractions, but we have not been able to prove it.
The mean ergodicity of T was used in obtaining the iterative solution (4.1)
of Poisson’s equation. Without mean ergodicity, the left-hand side of (4.1)
need not converge even weakly to a solution, although there is one (see [37,
Example 1]).

Definition. A contraction T on L1 is said to satisfy the pointwise er-
godic theorem if for every f ∈ L1 the ergodic averages converge a.e. to a
(necessarily integrable, by Fatou’s lemma) T -invariant function.



18 GUY COHEN AND MICHAEL LIN

Lemma 4.2. Let T be a positive contraction on L1. Let 0 ≤ f ∈ L1 have
a.e. convergent ergodic averages. Then the limit is an integrable invariant
function.

Proof. Put g := limn
1
n

∑n
k=1 T

kf . By Fatou’s lemma g is integrable, and

Tg = T (lim
n

1

n

n∑
k=1

T kf) ≤ lim inf T (
1

n

n∑
k=1

T kf) = g,

since lim inf 1
nT

n+1f = 0 a.e. by Fatou’s lemma. Thus Tg ≤ g, and by [33,
Lemma 3.10, p. 131] Tg = g on the conservative part C. But by Hopf’s
decomposition

∑∞
k=1 T

kf < ∞ a.e. on the dissipative part D, so g = 0 on
D, and 0 ≤ Tg ≤ g shows that Tg = g on D. Hence Tg = g. �

A positive mean ergodic contraction of L1 satisfies the pointwise ergodic
theorem [26], but in general, if T is a mean ergodic contraction and its
linear modulus is not mean ergodic, T need not satisfy the pointwise ergodic
theorem [13, p. 115].

Theorem 4.3. Let (S,Σ, µ) be a σ-finite measure space,and let T and S
be be commuting contractions on L1(S,Σ, µ). Assume that T satisfies the
pointwise ergodic theorem, and S preserves almost everywhere convergence
of sequences of integrable functions. Then the following are equivalent for
f ∈ L1(µ):

(i) supn,m≥1 ‖
∑n−1

j=0

∑m−1
`=0 SjT `f‖ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 S

jT `f‖ <∞.

Proof. The proof follows the proof of Theorem 4.1, till (4.1), but now in (4.1)
the convergence to the solution h of Poisson’s equation is almost everywhere;
Lemma 4.2 is used for the assumption that 1

n

∑n
`=1 T

`h→ 0 a.e.

Put hN := 1
N

∑N
n=1

∑n−1
k=0 T

kf . Then hN ∈ L1 and converges a.e. to h.
Since S preserves a.e. convergence of sequences of integrable functions, so
do its powers. For fixed m we use Fatou’s lemma and (4.2) to obtain

‖
m−1∑
j=0

Sjh‖ = ‖
m−1∑
j=0

Sj( lim
N→∞

hN )‖ = ‖ lim
N

m−1∑
j=0

SjhN‖ ≤

lim inf
N→∞

‖
m−1∑
j=0

SjhN‖ ≤M.

We now apply again [37]: there exists g ∈ L1(µ) such that (I − S)g = h.
Hence f = (I − T )h = (I − T )(I − S)g. �

Corollary 4.4. Let θ and τ be commuting measure preserving transforma-
tions on a σ-finite measure space (S,Σ, µ), and let T and S be the con-
tractions they induce on L1(S,Σ, µ). Then the following are equivalent for
f ∈ L1(µ):

(i) supn,m≥1 ‖
∑n−1

j=0

∑m−1
`=0 SjT `f‖ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 S

jT `f‖ <∞.
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Example. Contractions to which Theorem 4.3 applies but Theorem 4.1
does not.

Let θ and τ be commuting measure preserving transformations on a σ-
finite measure space (S,Σ, µ), and let T and S be the contractions they
induce on L1(S,Σ, µ). Let T1 :=

∑
j≥0 ajT

j , with aj ≥ 0 and
∑

j≥0 aj = 1.
Then T1 is a Markov operator having µ as invariant measure. By the Hopf-
Dunford-Schwartz theorem, T1 satisfies the pointwise ergodic theorem, and
commutes with S since T does. Corollary 4.4 does not apply to T1 and
S, but Theorem 4.3 does. When µ is infinite and the transformations are
ergodic, Theorem 4.1 does not apply.

Example. Contractions to which Theorem 4.1 applies but Theorem 4.3
does not.

Let ν and η be continuous probabilities on the unit circle T with all convo-
lution powers singular, and denote by λ the normalized Lebesgue measure.
On L1(λ) define Tf := ν ∗ f and Sf := η ∗ f . Then T and S are commut-
ing Markov operators which preserve λ. Hence they are mean ergodic on
L1(λ), so Theorem 4.1 applies. Theorem 4.3 need not apply. The assump-
tion of singular convolution powers is since if some power of ν (or η) has an
absolutely continuous component, then T (or S) is uniformly ergodic [4].

Our next result uses Komlós’s theorem [28]. Aaronson and Weiss [1]
suggested to use Komlós’s theorem for solving Poisson’s equation (the co-
homology equation) in L1 for a single probability preserving transformation
(a special case of [37]). We note that Komlós’s theorem, although stated
in probabilistic notation, is valid in σ-finite measure spaces, since we can
always change the measure to an equivalent probability, and obtain an iso-
morphism of the spaces of integrable functions which preserves pointwise
convergence.

Theorem 4.5. Let (S,Σ, µ) be a σ-finite measure space and let T and S
be commuting contractions on L1(S,Σ, µ). Assume that T and S preserve
almost everywhere convergence of sequences of integrable functions. Then
the following are equivalent for f ∈ L1(µ):

(i) supn,m≥1 ‖
∑n−1

j=0

∑m−1
`=0 SjT `f‖ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 S

jT `f‖ <∞.

Proof. The proof follows the proof of Theorem 4.1, till the identity part of
(4.1).

Without loss of generality µ is a probability. Since ‖Tn+1h‖/n → 0, it
converges in probability, hence there is a subsequence with TNk+1h/Nk → 0

a.e. The sequence { 1
Nk

∑Nk
n=1 T

nh} is norm bounded in L1, so by Komlós’s

theorem there exist h′ ∈ L1 and a subsequence {ki} such that

1

K

K∑
i=1

(
1

Nki

Nki∑
n=1

Tnh) →
K→∞

h′ a.e.
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Since T preserves a.e. convergence of sequences of integrable functions,

Th′ = lim
K→∞

1

K

K∑
i=1

(
1

Nki

Nki∑
n=1

Tn+1h) =

h′ + lim
K→∞

1

K

K∑
i=1

1

Nki

(TNki
+1h− Th) = h′.

We then obtain from (4.1) that

1

K

K∑
i=1

1

Nki

Nki∑
n=1

n−1∑
`=0

T `f =
1

K

K∑
i=1

1

Nki

Nki∑
n=1

(I − Tn)h →
K→∞

h− h′ a.e.

Since h′ is T -invariant (zero if T has no fixed points), also (I−T )(h−h′) = f ,
so replacing h by h− h′ we may assume h′ = 0, and then

hK :=
1

K

K∑
i=1

1

Nki

Nki∑
n=1

n−1∑
`=0

T `f → h a.e.

By averaging in (4.2) we obtain

(4.3) sup
K,m≥1

‖
m−1∑
j=0

SjhK‖ = sup
K,m≥1

‖ 1

K

K∑
i=1

1

Nki

Nki∑
n=1

n−1∑
`=0

T `
m−1∑
j=0

Sjf‖ ≤M.

Since S preserves a.e. convergence of sequences of integrable functions, so
do its powers. For fixed m ≥ 1, Fatou’s lemma and (4.3) yield

‖
m−1∑
j=0

Sjh‖ = ‖
m−1∑
j=0

Sj( lim
K→∞

hK)‖ = ‖ lim
K

m−1∑
j=0

SjhK‖ ≤

lim inf
K→∞

‖
m−1∑
j=0

SjhK‖ ≤M.

By [37], there exists g ∈ L1(µ) such that (I−S)g = h. Hence f = (I−T )h =
(I − T )(I − S)g. �

Example. Contractions to which Theorem 4.5 applies, Theorems 4.1 and
4.3 do not.

Let τ be the non-singular invertible transformation on [0, 1] with Lebesgue
measure µ, constructed by Chacon (see [33, pp. 151-153]); its pre-dual

operator Tf(x) := dµ◦τ−1

dµ (x)f(τ−1x) induced on L1 (with T ∗g = g ◦ τ)

does not satisfy the pointwise ergodic theorem, and since T is positive, it is
not mean ergodic [26]. However, its structure shows that it preserves a.e.
convergence of sequences of integrable functions. Looking at τ × τ on the
unit square, we obtain two commuting contractions T1 and T2 which are not
mean ergodic and do not satisfy the pointwise ergodic theorem, but each
preserves pointwise convergence of sequences of integrable functions.

Remarks. 1. Theorem 4.5 does not apply in the examples following
Corollary 4.4, so Theorems 4.1, 4.3 and 4.5 are not comparable.

2. Corollary 4.4 is also a consequence of Theorem 4.5.
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We now present a different proof of Theorem 4.5, which may be of interest.
It uses (3.1), but does not use Corollary 3.8, nor [37]. Instead, the strong
Komlós theorem [28, Theorem 1a] is used.

Proof. We have only to show that (iii) implies (ii). Define

gn :=
1

n

n∑
k=1

∑
0≤j,`≤k−1

SjT `f =
1

n

n∑
k=1

(
k−1∑
j=0

Sj)(
k−1∑
`=0

T `)f.

By (iii), supn ‖gn‖1 < ∞. Also the sequences { 1n
∑n

k=1(T
kf + Skf)}, and

{ 1n
∑n

k=1(TS)kf} are norm bounded in L1.
By applying the strong version of Komlós’s theorem [28, Theorem 1a]

successively three times, there exist an increasing subsequence of integers
{mr} and functions g, h1 ∈ L1 such that for every subsequence {nr} ⊂ {mr},

1

n

n∑
r=1

gnr → g a.e.,
1

n

n∑
r=1

1

nr

nr∑
k=1

(TS)kf → h1 a.e.,

and 1
n

∑n
r=1

1
nr

∑nr
k=1(T

k + Sk)f converges a.e. By the proof of (3.1) in

Theorem 3.1, (iii) implies that ‖ 1n
∑n

j=1 S
jf + 1

n

∑n
`=1 T

`f‖1 → 0, so
1
n

∑n
r=1

1
nr

∑nr
k=1(T

k + Sk)f converges a.e. to 0, by Fatou’s lemma.
By assumption, T and S, and therefore also TS, preserve almost ev-

erywhere convergence. With the limits in the following equations being
pointwise a.e. limits, we obtain

(I − T )(I − S)g = lim
n

1

n

n∑
r=1

(I − T )(I − S)gmr =

lim
n

1

n

n∑
r=1

1

mr

mr∑
k=1

(I − T )(I − S)(

k−1∑
j=0

Sj)(

k−1∑
`=0

T `)f =

lim
n

1

n

n∑
r=1

1

mr

mr∑
k=1

(I − T k)(I − Sk)f =

lim
n

1

n

n∑
r=1

1

mr

mr∑
k=1

(f − T kf − Skf + (TS)kf).

We thus have (I − T )(I − S)g = f + h1. We now use Komlós’s theorem
to obtain a function h2 ∈ L1 and a subsequence {nr} ⊂ {mr} such that
1
N

∑N
r=1

1
nr

∑nr
k=1(TS)kg converges a.e. to h2. Since (TS)h1 = h1, we obtain

(I − T )(I − S)h2 = lim
N

1

N

N∑
r=1

1

nr

nr∑
k=1

(TS)k(I − T )(I − S)g =

lim
N

1

N

N∑
r=1

1

nr

nr∑
k=1

(TS)k(f + h1) = 2h1.

Hence f = (I − T )(I − S)g − h1 = (I − T )(I − S)(g − 1
2h2). �
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Notations. We denote by M(S,Σ, µ) the space of countably additive
finite signed measures absolutely continuous with respect to µ, and by
ba(S,Σ, µ) the space of bounded finitely additive measures (charges) van-
ishing on the null sets of µ. It is known that ba(S,Σ, µ) is the second dual of
M(S,Σ, µ) [17, p. 296]. By the Yosida-Hewitt decomposition [45, Theorem
1.24], every ν ∈ ba(S,Σ, µ) can be uniquely decomposed as ν = ν1 + ν0,
with ν1 ∈ M(S,Σ, µ) countably additive and ν0 ∈ ba(S,Σ, µ) a pure charge
(i.e. |ν0| does not bound any countably additive non-negative measure). S.
Horowitz [25] showed that L∞(S,Σ, µ) is isometrically and order isomorphic
to C(K) of a compact Hausdorff space in a way that M(S,Σ, µ) is isomet-
rically order isomorphic to the finite signed measures absolutely continuous
with respect to a probability µ̂, and pure charges in L∞(µ) correspond to
the finite signed measures on K singular to µ̂.

For our next result we need the following lemma.

Lemma 4.6. Let T be a contraction on M(S,Σ, µ) and let η ∈ ba(S,Σ, µ)
satisfy T ∗∗η = η. Then ηc, the countably additive part of η, satisfies Tηc = ηc.

Proof. Let ηp = η − ηc be the pure charge part of η. Then (as in [37])

‖ηp‖ ≥ ‖T ∗∗ηp‖ = ‖ηc + ηp − Tηc‖ = ‖ηp‖+ ‖ηc − Tηc‖,
since ηc and ηp are ”mutually singular”. Hence Tηc = ηc. �

The authors are grateful to Christophe Cuny for the idea of the proof of
the next theorem.

Theorem 4.7. Let (S,Σ, µ) be a σ-finite measure space, and let T and S
be commuting contractions on L1(S,Σ, µ). If T has no non-zero invariant
functions, or if S is an invertible isometry, then the following are equivalent
for f ∈ L1:

(i) supn,m≥1 ‖
∑n−1

j=0

∑m−1
`=0 SjT `f‖ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 S

jT `f‖ <∞.

Proof. We have to prove only that (iii) implies (ii).
Via the Radon-Nikodým theorem, we identify L1(S,Σ, µ) with M(S,Σ, µ).

Then ν, defined by dν = fdµ, satisfies supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 S

jT `ν‖ <∞.

By Corollary 3.8, ν = (I − T ∗∗)(I − S∗∗)ψ for some ψ ∈ ba(S,Σ, µ).

Put η := (I − S∗∗)ψ. Then supn ‖
∑n−1

k=0 S
∗∗kη‖ = M < ∞. Decompose

η = η1 + η0 with η1 countably additive and η0 a pure charge.
Since (I − T ∗∗)η = ν, the proof of [37] shows that (I − T )η1 = ν and

T ∗∗η0 = η0. Since S∗∗ preserves countable additivity,
∑n−1

k=0 S
∗∗kη1 is count-

ably additive (and equals
∑n−1

k=0 S
kη1). To finish the proof we have to show

that these sums are norm-bounded.

Case 1: T has no non-zero fixed points in M(S,Σ, µ).
Since T and S commute, T ∗∗(S∗∗kη0) = S∗∗kη0. Hence by Lemma 4.6 and

the assumption,
∑n−1

k=0 S
∗∗kη0 is a pure charge for every n. Hence

(4.4) ‖
n−1∑
k=0

Skη1‖ ≤ ‖
n−1∑
k=0

S∗∗kη1‖+ ‖
n−1∑
k=0

S∗∗kη0‖ = ‖
n−1∑
k=0

S∗∗kη‖ ≤M.
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Case 2: S is an invertible isometry.
By [10, Lemma 4.2], S∗∗kη0 is a pure charge for any k, so as before (4.4)
holds.

In either case, we obtain supn ‖
∑n−1

k=0 S
kη1‖ ≤ M , so by [37] there is a

ζ ∈M(S,Σ, µ) with (I−S)ζ = η1; hence (I−T )(I−S)ζ = (I−T )η1 = ν. �

Definition. Let T be a positive contraction of L1(S,Σ, µ). A set B ∈ Σ
is called T -absorbing if Tf ∈ L1(B) whenever f ∈ L1(B). This is equivalent
to T ∗1S−B ≤ 1S−B [33, p. 118]. T is called irreducible if the only non-null
T -absorbing set is S (mod µ).

Corollary 4.8. Let (S,Σ, µ) be a σ-finite measure space, and let T and S
be commuting contractions on L1(S,Σ, µ). If T is an irreducible positive
contraction, then the following are equivalent for f ∈ L1:

(i) supn,m≥1 ‖
∑n−1

j=0

∑m−1
`=0 SjT `f‖ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 S

jT `f‖ <∞.

Proof. The set C, the conservative part of T , is T -absorbing [33, p. 118],
so by irreducibility either T is dissipative or T is conservative. If T is
dissipative, it has no non-zero fixed point (all invariant probabilities are
supported by C [33, p. 141]), and Theorem 4.7 applies.

We now assume that T is conservative, so it is ergodic by irreducibility.
If T has a fixed point h 6= 0 in L1, then, by irreducibility, |h|/‖h‖ defines
an equivalent invariant probability [33, p. 132], and then T is mean ergodic
(e.g. [33, p. 73]), so Theorem 4.1 applies. If T has no fixed points in L1

(except 0), then Theorem 4.7 applies. �

Remarks. 1. Theorem 4.7 applies when T is a dissipative positive con-
traction, even without irreducibility, since it has no fixed points, as observed
in the previous proof.

2. A conservative and ergodic positive contraction T on L1 is irreducible,
since T -absorbing sets are invariant.

Theorem 4.9. Let (S,Σ, µ) be a σ-finite measure space, and let T and S
be commuting conservative positive contractions on L1(S,Σ, µ). Then the
following are equivalent for f ∈ L1:

(i) supn,m≥1 ‖
∑n−1

j=0

∑m−1
`=0 SjT `f‖ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ‖
∑n−1

j=0

∑n−1
`=0 S

jT `f‖ <∞.

Proof. Since T is conservative, there exists a decomposition of the space
S = C1 ∪ C0, with each Ci invariant (i.e. T ∗ 1Ci = 1Ci for i = 0, 1), such
that every fixed point of T vanishes on C0, while there exists 0 ≤ p ∈ L1(S)
with Tp = p and {p > 0} = C1 [33, p. 141]. If µ(C0) = 0 or µ(C1) = 0,
the desired equivalence is proved like Corollary 4.8 (and S needs to be only
a contraction of L1(S), not necessarily positive). So we assume now that
µ(C0) > 0 and µ(C1) > 0.

By commutation, T (Sp) = S(Tp) = Sp, so the property of C0 yields
{Sp > 0} ⊂ C1. It follows easily that if h ∈ L1(C1) (i.e. h ∈ L1(S)
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supported on C1), then Sh is also supported on C1. Hence L1(C1) is in-
variant under S (i.e. C1 is absorbing for S), which yields S∗1C0 ≤ 1C0 .
Since S is conservative, S∗1C0 = 1C0 , and also S∗1 = 1, which implies that
S∗1C1 = 1C1 . This shows that also C0 is absorbing for S, and we conclude
that L1(C0) and L1(C1) are both invariant under T and under S. Denote
Ti = T|L1(Ci) and Si = S|L1(Ci).

Let f ∈ L1(S) satisfy (iii). Writing f = f1 + f0 with fi = f1Ci , we obtain

sup
n≥1

[
‖
n−1∑
j=0

n−1∑
`=0

Sj0T
`
0f0‖+ ‖

n−1∑
j=0

n−1∑
`=0

Sj1T
`
1f1‖

]
<∞.

Since T1 is mean ergodic and T0 has no fixed points (except 0), Theorems 4.1
and 4.7 yield the existence of gi ∈ L1(Ci) such that (I − Ti)(I − Si)gi = fi,
i = 0, 1. Hence (ii) holds with g = g1 + g0. �

Example. Contractions to which Theorem 4.7 applies, Theorems 4.1,
4.3 and 4.5 do not.

Let ν and η be absolutely continuous probabilities on R, and define on
L1(R) the convolution operators Tf = ν ∗ f and Sf = η ∗ f . Neither T
nor S has fixed points, so Theorem 4.7 applies. Neither operator is mean
ergodic in L1. Both satisfy the pointwise ergodic theorem, but they do not
preserve a.e. convergence of sequences of integrable functions. T and S are
irreducible, so also Corollary 4.8 applies.

Remark. In the second example following Corollary 4.4, also Theorem
4.7 does not apply. However, Theorem 4.9 does apply to that example.

Problem. Is Theorem 4.1 true without the assumption that T (or S) is
mean ergodic?
The problem is whether (iii) in Theorem 4.1 implies (ii) without any addi-
tional assumptions on T or S. Theorems 4.3 and 4.5 put different additional
assumptions on both T and S, and as remarked above, these three theorems
are not comparable. However, they suggest that they might just be special
cases of a general result which does not require additional assumptions. An
important special case of the problem is whether the three conditions in
Theorem 4.1 are equivalent when T and S are both positive contractions.
The answer is positive when one of them is dissipative (remark following
Corollary 4.8) or when both are conservative (Theorem 4.9), but we do not
know the answer in the general case.

Acknowledgement. The authors are grateful to Catalin Badea for pro-
viding them with a copy of the thesis [16], which brought [32] to their at-
tention.
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Ph.D. thesis, Université Lille 1, 2012.
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(1977), 311–313.
[39] W. Parry and K. Schmidt, A note on cocycles of unitary representations, Proc. Amer.

Math. Soc. 55 (1976), 185–190.
[40] A. Quas, Rigidity of continuous coboundaries, Bull. London Math. Soc. 29 (1997),

595–600.
[41] E. A. Robinson, Sums of stationary random variables, Proc. Amer. Math. Soc. 11

(1960), 77–79.
[42] R. Sato, A remark on real coboundary cocycles in L∞-spaces, Proc. Amer. Math. Soc.

131 (2003), 231–233.
[43] R. Sato, On solvability of the cohomology equation in function spaces, Studia Math.

156 (2003), 277–293.
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