
Homework Set #1
Properties of Entropy, Mutual Information and Divergence

1. Entropy of functions of a random variable.
Let X be a discrete random variable. Show that the entropy of a
function of X is less than or equal to the entropy of X by justifying
the following steps:

H(X, g(X))
(a)
= H(X) +H(g(X)|X)

(b)
= H(X).

H(X, g(X))
(c)
= H(g(X)) +H(X|g(X))

(d)

≥ H(g(X)).

Thus H(g(X)) ≤ H(X).

Solution: Entropy of functions of a random variable.

(a) H(X, g(X)) = H(X)+H(g(X)|X) by the chain rule for entropies.

(b) H(g(X)|X) = 0 since for any particular value of X, g(X) is fixed,
and hence H(g(X)|X) =

∑
x p(x)H(g(X)|X = x) =

∑
x 0 = 0.

(c) H(X, g(X)) = H(g(X)) +H(X|g(X)) again by the chain rule.

(d) H(X|g(X)) ≥ 0, with equality iff X is a function of g(X), i.e.,
g(.) is one-to-one. Hence H(X, g(X)) ≥ H(g(X)).

Combining parts (b) and (d), we obtain H(X) ≥ H(g(X)).

2. Example of joint entropy.
Let p(x, y) be given by

Y

X 0 1

0 1
3

1
3

1 0 1
3

Find
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(a) H(X), H(Y ).

(b) H(X|Y ), H(Y |X).

(c) H(X, Y ).

(d) H(Y )−H(Y |X).

(e) I(X;Y ).

Solution: Example of joint entropy

(a) H(X) = 2
3
log 3

2
+ 1

3
log 3 = .918 bits = H(Y ).

(b) H(X|Y ) = 1
3
H(X|Y = 0)+ 2

3
H(X|Y = 1) = .667 bits = H(Y |X).

(c) H(X, Y ) = 3× 1
3
log 3 = 1.585 bits.

(d) H(Y )−H(Y |X) = .251 bits.

(e) I(X;Y ) = H(Y )−H(Y |X) = .251 bits.

3. Bytes.
The entropy, Ha(X) = −

∑
p(x) loga p(x) is expressed in bits if the

logarithm is to the base 2 and in bytes if the logarithm is to the base
256. What is the relationship of H2(X) to H256(X)?

Solution: Bytes.

limi=∞I(Yi;Y
i−1|Qi) = 0H2(X) = −

∑
p(x) log2 p(x)

= −
∑

p(x)
log2 p(x) log256(2)

log256(2)

(a)
= −

∑
p(x)

log256 p(x)

log256(2)

=
−1

log256(2)

∑
p(x) log256 p(x)

(b)
=

H256(X)

log256(2)
,

where (a) comes from the property of logarithms and (b) follows from
the definition of H256(X). Hence we get

H2(X) = 8H256(X).
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4. Two looks.
Here is a statement about pairwise independence and joint indepen-
dence. Let X, Y1, and Y2 be binary random variables. If I(X;Y1) = 0
and I(X;Y2) = 0, does it follow that I(X;Y1, Y2) = 0?

(a) Yes or no?

(b) Prove or provide a counterexample.

(c) If I(X;Y1) = 0 and I(X;Y2) = 0 in the above problem, does it
follow that I(Y1;Y2) = 0? In other words, if Y1 is independent of
X, and if Y2 is independent of X, is it true that Y1 and Y2 are
independent?

Solution: Two looks.

(a) The answer is “no”.

(b) Although at first the conjecture seems reasonable enough–after
all, if Y1 gives you no information about X, and if Y2 gives you no
information about X, then why should the two of them together
give any information? But remember, it is NOT the case that
I(X;Y1, Y2) = I(X;Y1)+I(X;Y2). The chain rule for information
says instead that I(X;Y1, Y2) = I(X;Y1)+I(X;Y2|Y1). The chain
rule gives us reason to be skeptical about the conjecture.

This problem is reminiscent of the well-known fact in probabil-
ity that pair-wise independence of three random variables is not
sufficient to guarantee that all three are mutually independent.
I(X;Y1) = 0 is equivalent to saying that X and Y1 are indepen-
dent. Similarly for X and Y2. But just because X is pairwise
independent with each of Y1 and Y2, it does not follow that X is
independent of the vector (Y1, Y2).

Here is a simple counterexample. Let Y1 and Y2 be independent
fair coin flips. And letX = Y1 XOR Y2. X is pairwise independent
of both Y1 and Y2, but obviously not independent of the vector
(Y1, Y2), since X is uniquely determined once you know (Y1, Y2).

(c) Again the answer is “no”. Y1 and Y2 can be arbitrarily dependent
with each other and both still be independent of X. For example,
let Y1 = Y2 be two observations of the same fair coin flip, and
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X an independent fair coin flip. Then I(X;Y1) = I(X;Y2) = 0
because X is independent of both Y1 and Y2. However, I(Y1;Y2) =
H(Y1)−H(Y1|Y2) = H(Y1) = 1.

5. A measure of correlation.
Let X1 and X2 be identically distributed, but not necessarily indepen-
dent. Let

ρ = 1− H(X1|X2)

H(X1)
.

(a) Show ρ = I(X1;X2)
H(X1)

.

(b) Show 0 ≤ ρ ≤ 1.

(c) When is ρ = 0?

(d) When is ρ = 1?

Solution: A measure of correlation.

X1 and X2 are identically distributed and

ρ = 1− H(X2|X1)

H(X1)

(a)

ρ =
H(X1)−H(X2|X1)

H(X1)

=
H(X2)−H(X2|X1)

H(X1)
(since H(X1) = H(X2))

=
I(X1;X2)

H(X1)
.

(b) Since 0 ≤ H(X2|X1) ≤ H(X2) = H(X1), we have

0 ≤ H(X2|X1)

H(X1)
≤ 1

0 ≤ ρ ≤ 1.

(c) ρ = 0 iff I(X1;X2) = 0 iff X1 and X2 are independent.
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(d) ρ = 1 iff H(X2|X1) = 0 iff X2 is a function of X1. By symmetry,
X1 is a function ofX2, i.e.,X1 andX2 have a one-to-one correspon-
dence. For example, if X1 = X2 with probability 1 then ρ = 1.
Similarly, if the distribution of Xi is symmetric then X1 = −X2

with probability 1 would also give ρ = 1.

6. The value of a question.
Let X ∼ p(x), x = 1, 2, . . . ,m.

We are given a set S ⊆ {1, 2, . . . ,m}. We ask whether X ∈ S and
receive the answer

Y =

{
1, if X ∈ S
0, if X ̸∈ S.

Suppose Pr{X ∈ S} = α.

(a) Find the decrease in uncertainty H(X)−H(X|Y ).

(b) Is it true that any set S with a given probability α is as good as
any other.

Solution: The value of a question.

(a) Consider

H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(Y ) = Hb(α) (1)

(b) Yes, since the answer depends only on α.

7. Relative entropy is not symmetric
Let the random variable X have three possible outcomes {a, b, c}. Con-
sider two distributions on this random variable

Symbol p(x) q(x)
a 1/2 1/3
b 1/4 1/3
c 1/4 1/3

Calculate H(p), H(q), D(p ∥ q) and D(q ∥ p).

Verify that in this case D(p ∥ q) ̸= D(q ∥ p).

Solution: Relative entropy is not symmetric.

5



(a) H(p) = 1/2 log 2 + 2× 1/4 log 4 = 1.5 bits.

(b) H(q) = 3× 1/3 log 3 = log 3 = 1.585 bits.

(c) D(p∥q) = 1/2 log 3/2+2×1/4 log 3/4 = log 3−3/2 = 0.0850 bits.

(d) D(q∥p) = 1/3 log 2/3+2×1/3 log 4/3 = 5/3− log 3 = 0.0817 bits.

D(p∥q) ̸= D(q∥p) as expected.

8. “True or False” questions

Copy each relation and write true or false. Then, if it’s true, prove it.
If it is false give a counterexample or prove that the opposite is true.

(a) H(X) ≥ H(X|Y )

(b) H(X) +H(Y ) ≤ H(X, Y )

(c) Let X, Y be two independent random variables. Then

H(X − Y ) ≥ H(X).

(d) Let X, Y, Z be three random variables that satisfies H(X, Y ) =
H(X) +H(Y ) and H(Y, Z) = H(Z) +H(Y ). Then the following
holds

H(X, Y, Z) = H(X) +H(Y ) +H(Z).

(e) For any X, Y, Z and the deterministic function f, g I(X;Y |Z) =
I(X, f(X, Y );Y, g(Y, Z)|Z).

Solution to “True or False” questions e.

(a) H(X) ≥ H(X|Y ) is true. Proof: In the class we showed that
I(X;Y ) > 0, hence H(X)−H(X|Y ) > 0.

(b) H(X) +H(Y ) ≤ H(X, Y ) is false. Actually the opposite is true,
i.e., H(X) +H(Y ) ≥ H(X, Y ) since I(X;Y ) = H(X) +H(Y )−
H(X, Y ) ≥ 0.

(c) Let X, Y be two independent random variables. Then

H(X − Y ) ≥ H(X).

True

H(X − Y )
(a)

≥ H(X − Y |Y ))
(b)

≥ H(X)
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(a) follows from the fact that conditioning reduces entropy.
(b) Follows from the fact that given Y , X−Y is a Bijective Func-
tion.

(d) Let X, Y, Z be three random variables that satisfies H(X, Y ) =
H(X) +H(Y ) and H(Y, Z) = H(Z) +H(Y ). Then the following
holdsH(X, Y, Z) = H(X)+H(Y )+H(Z). This is false. Consider
the following derivations

H(X, Y, Z) = H(X, Y ) +H(Z|X, Y ) (2)

= H(X) +H(Y ) +H(Z)− I(Z;X, Y ) (3)

= H(X) +H(Y ) +H(Z)− I(Z;X|Y ) (4)

≤ H(X) +H(Y ) +H(Z) (5)

since I(Z;X|Y ) can be greater than 0. For example, X, Y are
two independent RV distributed uniformly over {0, 1} and Z =
X
⊕

2 Y . In this case, X is independent of Y and Y is independent
of Z buy Z is dependent on (X, Y ).

(e) For any X, Y, Z and the deterministic function f, g, I(X;Y |Z) =
I(X, f(X, Y );Y, g(Y, Z)|Z) is false since adding the function f(X, Y )
to the left hand side increases the mutual information.

I(X, f(X, Y );Y, g(Y, Z)|Z) = I(X, f(X, Y );Y |Z) (6)

= I(X;Y |Z) + I(f(X, Y );Y |Z,X)(7)

= I(X;Y |Z) +H(f(X, Y )|Z,X)(8)

≥ I(X;Y |Z) (9)

since H(f(X, Y )|Z,X) ≥.

9. Entropy of 3 pairwise independent random variables:

LetW,X, Y be 3 random variables distributed each Bernoulli (0.5) that
are pairwise independent, i.e., I(W ;X) = I(X;Y ) = I(W ;Y ) = 0.

(a) What is the maximum possible value of H(W,X, Y )?
From the chain rule for entropy and the fact that W and X are
independent,

H(W,X, Y ) = H(W ) +H(X) +H(Y |W,X) ≤ H(W ) +H(X) +H(Y ),
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where the inequality follows since conditioning reduces entropy.
H(W ) = H(X) = H(Y ) = 1, thus H(W,X, Y ) ≤ 3.

(b) What is the condition under which this maximum is achieved?
Notice that the maximum is achieved if H(Y |X,W ) = H(Y ), i.e.,
Y is independent of the pair (X,W ) (or similarlyW is independent
of (X, Y ), or X is independent of (W,Y )).

(c) What is the minimum possible value of H(W,X, Y )?
On the other hand,

H(W,X, Y ) = H(W ) +H(X) +H(Y |W,X) ≥ H(W ) +H(X),
(10)

where the inequality follows from the non-negativity of the con-
ditional entropy H(Y |W,X). Thus, H(W,X, Y ) ≥ 2.

(d) Give a specific example achieving this minimum.
If Y is a deterministic function of both (W,X), the inequality is
achieved. Notice that it cannot be a deterministic function of just
one of them since it contradicts the assumption of the question.
Let, for instance, Y = W ⊕ X, where ⊕ denotes the addition
modulo 2 (i.e., XOR).

10. Joint Entropy Consider n different discrete random variables, named
X1, X2, ..., Xn. Each random variable separately has an entropy H(Xi),
for 1 ≤ i ≤ n.

(a) What is the upper bound on the joint entropy H(X1, X2, ..., Xn)
of all these random variables X1, X2, ..., Xn given that H(Xi), for
1 ≤ i ≤ n are fixed?

(b) Under what conditions will this upper bound be reached?

(c) What is the lower bound on the joint entropy H(X1, X2, ..., Xn)
of all these random variables?

(d) Under what condition will this upper bound be reached?

Solution:
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(a) The upper bound is
∑n

i=1H(Xi).

H(Xn) =
n∑

i=1

H(Xi|X i−1)

≤
n∑

i=1

H(Xi) (11)

(please explain each step of the equation above)

(b) It can be achieved if all {Xi}ni=1 are independent, since for this
case H(Xn) =

∑n
i=1H(Xi).

(c) The lower bound is H(Xi), where Xi has the largest entropy.

H(Xn) ≥ H(Xi) ∀i = 1, 2, ..., n. (12)

(d) It can be achieved if for all j ̸= i: Xj = fj(Xi) for some determin-
istic function fj.

11. True or False

Let X, Y, Z be discrete random variable. Copy each relation and write
true or false. If it’s true, prove it. If it is false give a counterexample
or prove that the opposite is true.

For instance:

• H(X) ≥ H(X|Y ) is true. Proof: In the class we showed that
I(X;Y ) > 0, hence H(X)−H(X|Y ) > 0.

• H(X) +H(Y ) ≤ H(X, Y ) is false. Actually the opposite is true,
i.e., H(X) +H(Y ) ≥ H(X, Y ) since I(X;Y ) = H(X) +H(Y )−
H(X, Y ) ≥ 0.

(a) If H(X|Y ) = H(X) then X and Y are independent.

(b) For any two probability mass functions (pmf) P,Q,

D

(
P +Q

2
||Q
)

≤ 1

2
D(P ||Q),

where D(||) is a divergence between two pmfs.
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(c) Let X and Y be two independent random variables. Then

H(X + Y ) ≥ H(X).

(d) I(X;Y )− I(X;Y |Z) ≤ H(Z)

(e) If f(x, y) is a convex function in the pair (x, y), then for a fixed
y, f(x, y) is convex in x, and for a fixed x, f(x, y) is convex in y.

(f) If for a fixed y the function f(x, y) is a convex function in x ,
and for a fixed x, f(x, y) is convex function in y, then f(x, y)
is convex in the pair (x, y). (Examples of such functions are
f(x, y) = f1(x) + f2(y) or f(x, y) = f1(x)f2(y) where f1(x) and
f2(y) are convex.)

(g) Let X, Y, Z,W satisfy the Markov chain X−Y −Z and Y −Z−W.
Does the MarkovX−Y −Z−W hold? (The MarkovX−Y −Z−W
means that P (x|y, z, w) = P (x|y) and P (x, y|z, w) = P (x, y|z).)

(h) H(X|Z) is concave in PX|Z for fixed PZ .

Solution to True or False

(a) If H(X|Y ) = H(X) then X and Y are independent.

True:

I(X;Y ) = H(X)−H(X|Y )

If I(X;Y ) = 0 then H(X) = H(X|Y ). We can write:

I(X;Y ) = D( PX,Y || PXPY ) = 0

D(Q||P ) = 0 iff P (x) = Q(x) ∀x, therefore PX,Y (x, y) = PX(x)PY (y)
for every x, y and as result X ⊥ Y .

(b) For any two probability mass functions (pmf) P,Q,

D

(
P +Q

2
||Q
)

≤ 1

2
D(P ||Q),

where D(||) is a divergence between two pmfs.

True:
Using the concave property of the divergence function:

D (λP + (1− λ)Q || Q) ≤ λD(P || Q) + (1− λ)D(Q || Q)
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Assigning λ = 1
2
, and since D(Q||Q) = 0:

D

(
1

2
P +

1

2
Q || Q

)
≤ 1

2
D(P ||Q)

(c) Let X and Y be two independent random variables. Then

H(X + Y ) ≥ H(X).

True:

H(X + Y ) ≥ H(X + Y |Y )
(a)
= H(X)

(a) - since X is independent of Y.

(d) I(X;Y )− I(X;Y |Z) ≤ H(Z)

True:

I(X;Y )− I(X;Y |Z) = H(X)−H(X|Y )− [H(X|Z)−H(X|Y, Z)]
= H(X)−H(X|Z)︸ ︷︷ ︸

I(X;Z)

− [H(X|Y )−H(X|Y, Z)]︸ ︷︷ ︸
≥0

≤ I(X;Z)

= H(Z)−H(Z|X)︸ ︷︷ ︸
≥0

≤ H(Z)

(e) If f(x, y) is a convex function in the pair (x, y), then for a fixed
y, f(x, y) is convex in x, and for a fixed x, f(x, y) is convex in y.

True If the function is Convex for every combination of (x, y) it
is necessarily Convex for Affine Function of the pair.

(f) If for a fixed y the function f(x, y) is a convex function in x , and
for a fixed x, f(x, y) is convex function in y, then f(x, y) is convex
in the pair (x, y).

False

Consider the function f(x, y) = xy. Its linear in x for fixed y and
vice versa but the function its neither convex nor concave. The
second derivative matrix is not semi-definite positive.
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(g) False Let us assume that

Z ∼ Bern(0.5), (13)

W ∼ Bern(0.5), (14)

X = Z ⊕W, (15)

Y = X ⊕ A, (16)

where A ∼ Bern(0.1). The Markov X−Y −Z holds since X and
Z are independent and the relation Y −Z−W holds from the fact
that Y is independent of (Z,W ). However, by knowing Z and W
we know X and therefore p(x, y|z, w) = p(x, y|z) does not hold in
general.

(h) True We know that,

H(X|Z) =
∑
z∈Z

p(z)H(X|Z = z). (17)

For a fixed p(z), H(X|Z) is formed as a linear combination of
concave functions (H(X|Z = z) is concave), thus, H(X|Z) is
concave in PX|Z .

12. Random questions.
One wishes to identify a random object X ∼ p(x). A question Q ∼ r(q)
is asked at random according to r(q). This results in a deterministic
answer A = A(x, q) ∈ {a1, a2, . . .}. Suppose the object X and the
question Q are independent. Then I(X;Q,A) is the uncertainty in X
removed by the question-answer (Q,A).

(a) Show I(X;Q,A) = H(A|Q). Interpret.

(b) Now suppose that two i.i.d. questions Q1, Q2 ∼ r(q) are asked,
eliciting answers A1 and A2. Show that two questions are less
valuable than twice the value of a single question in the sense
that I(X;Q1, A1, Q2, A2) ≤ 2I(X;Q1, A1).

Solution: Random questions.

(a) Since A is a deterministic function of (Q,X), H(A|Q,X) = 0.
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Also since X and Q are independent, H(Q|X) = H(Q). Hence,

I(X;Q,A) = H(Q,A)−H(Q,A, |X)

= H(Q) +H(A|Q)−H(Q|X)−H(A|Q,X)

= H(Q) +H(A|Q)−H(Q)

= H(A|Q).

The interpretation is as follows. The uncertainty removed in X
given (Q,A) is the same as the uncertainty in the answer given
the question.

(b) Using the result from part (a) and the fact that questions are
independent, we can easily obtain the desired relationship.

I(X;Q1, A1, Q2, A2)
(a)
= I(X;Q1) + I(X;A1|Q1) + I(X;Q2|A1, Q1)

+ I(X;A2|A1, Q1, Q2)
(b)
= I(X;A1|Q1) +H(Q2|A1, Q1)−H(Q2|X,A1, Q1)

+ I(X;A2|A1, Q1, Q2)
(c)
= I(X;A1|Q1) + I(X;A2|A1, Q1, Q2)

= I(X;A1|Q1) +H(A2|A1, Q1, Q2)−H(A2|X,A1, Q1, Q2)
(d)
= I(X;A1|Q1) +H(A2|A1, Q1, Q2)
(e)

≤ I(X;A1|Q1) +H(A2|Q2)
(f)
= 2I(X;A1|Q1)

(a) Chain rule.
(b) X and Q1 are independent.
(c) Q2 are independent of X, Q1, and A1.
(d) A2 is completely determined given Q2 and X.
(e) Conditioning decreases entropy.
(f) Result from part (a).

13. Entropy bounds.
Let X ∼ p(x), where x takes values in an alphabet X of size m. The
entropy H(X) is given by

H(X) ≡ −
∑

x∈X p(x) log p(x)
= Ep log

1
p(X)

.
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Use Jensen’s inequality (Ef(X) ≤ f(EX), if f is concave) to show

(a) H(X)≤ logEp
1

p(X)

=logm.

(b) −H(X) ≤ log(
∑

x∈X p2(x)), thus establishing a lower bound on
H(X).

(c) Evaluate the upper and lower bounds on H(X) when p(x) is uni-
form.

(d) LetX1, X2 be two independent drawings ofX. Find Pr{X1 = X2}
and show Pr{X1 = X2} ≥ 2−H .

Solution: Entropy Bounds.
To prove (a) observe that

H(X) = Ep log
1

p(X)

≤ logEp
1

p(X)

= log
∑
x∈X

p(x)
1

p(x)

= logm

where the the first inequality follows from Jensen’s, and the last step
follows since the size of X is m.

To prove (b) proceed

−H(X) = Ep log p(X)

≤ logEpp(X)

= log

(∑
x∈X

p2(x)

)

where the second step again follows from Jensen’s and the third step
is just the definition of Ep(p(X). Thus, we have the lower bound

H(X) ≥ − log

(∑
x∈X

p2(x)

)
.
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The upper bound is m irrespective of the distribution. Now, p(x) =
1/m for the uniform distribution, and therefore

− log
∑
x∈X

p2(x) = − log
∑
x∈X

1

m2

= − log
1

m

and therefore the upper and lower bounds agree, and are logm. A
direct calculation of the entropy yields the same result immediately.

The derivation of (d) follows from

Pr{X1 = X2} =
∑
x,y∈X

Pr{X1 = x,X2 = y}δxy

=
∑
x∈X

p2(x)

where the second step follows from the independence of X1, X2, and
the fact that they are identically distributed X1, X2 ∼ p(x). Here δxy
is Kronecker’s delta function.

14. Bottleneck.
Suppose a (non-stationary) Markov chain starts in one of n states, necks
down to k < n states, and then fans back to m > k states. Thus X1 →
X2 → X3, X1 ∈ {1, 2, . . . , n}, X2 ∈ {1, 2, . . . , k}, X3 ∈ {1, 2, . . . ,m},
and p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2).

(a) Show that the dependence of X1 and X3 is limited by the bottle-
neck by proving that I(X1;X3) ≤ log k.

(b) Evaluate I(X1;X3) for k = 1, and conclude that no dependence
can survive such a bottleneck.

Solution: Bottleneck.

(a) From the data processing inequality, and the fact that entropy is
maximum for a uniform distribution, we get

I(X1;X3) ≤ I(X1;X2)

= H(X2)−H(X2

∣∣ X1)

≤ H(X2)

≤ log k.
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Thus, the dependence between X1 and X3 is limited by the size
of the bottleneck. That is I(X1;X3) ≤ log k.

(b) For k = 1, 0 ≤ I(X1;X3) ≤ log 1 = 0 so that I(X1, X3) = 0.
Thus, for k = 1, X1 and X3 are independent.

15. Convexity of Halfspaces, hyperplanes and polyhedron

Let x be a real vector of finite dimension n, i.e., x ∈ Rn. A halfspace
is the set of all x ∈ Rn that satisfies aTx ≤ b, where a ̸= 0. In other
words a halfspace is the set

{x ∈ Rn : aTx ≤ b}.

A hyperplan is the set of the form

{x ∈ Rn : aTx = b}.

(a) Show that a halfspace and a hyperplan are convex sets.

(b) show that for any two setsA and B that are convex the intersection
A
⋂

B is also convex.

(c) A polyhedron is an intersection of halfspaces and a hyperplans.
Deduce that a polyhedron is a convex set.

(d) A probability vector x is such that each element is positive and
it sums to 1. Is the set of all vector probabilities of dimension n
(called the probability simplex) a halfspace, hyperplan or polyhe-
dron?

Solution:

(a) Hyperplane : Let x1 and x2 be vectors that belong to the hyper-
plane. Since they belong to the hyperplane,aTx1 = b and aTx2 = b
(where a is the scalar vector).

aT (λx1 + (1− λ)x2) = λaTx1 + (1− λ)aTx2

= λb+ (1− λ)b = b. (18)

So the set is indeed convex.
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Now consider a Halfspace :Let x1 and x2 be vectors that belong
to the halfspace. Since they belong to the hyperplane,aTx1 ≤ b
and aTx2 ≤ b.

aT (λx1 + (1− λ)x2) = λaTx1 + (1− λ)aTx2

= λaTx1 + (1− λ)aTx2 ≤ λb+ (1− λ)b

= b. (19)

So the set is indeed convex.

(b) Let A and B be convex sets. We want to show that A
⋂
B is also

convex. Take x1, x2 ∈ A
⋂
B, and let x lie on the line segment

between these two points. Then x ∈ A because A is convex, and
similarly, x ∈ B because B is convex. Therefore x ∈ A

⋂
B, as

desired.

(c) Let x1 and x2 be vectors that belong to the halfspace or the hy-
perplan sets. then as was shown in (b) x1

⋂
x2 is also a convex

set. Therefore polyhedron is indeed a convex set. definition of
polyhedron: [x|Ax ≤ b;Cx = d].

(d) The probability simplex
∑n

i=1 xi = 1 and xi ≥ 0 is a special case
of a polyhedron.

16. Some sets of probability distributions.

Let X be a real-valued random variable with Pr(X = ai) = pi, i =
1, ..., n, where a1 < a2 < . . . < an. Let p denote the vector p1, p2, ..., pn.
Of course p ∈ Rn lies in the standard probablility simplex. Which of
the follwing conditions are convex in p? (That is, for which of the fol-
lowing conditions is the set of p ∈ P that satisfy the condition convex?)

(a) α ≤ E[f(X)] ≤ β,where E[f(X)] is the expected value of f(X),
i.e. E[f(x)] =

∑n
i=1 pif(ai) (The function f : R 7→ R is given.)
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(b) Pr(X > α) ≤ β

(c) E[|X3|] ≤ αE[|X|].
(d) var(X) ≤ α, where var(X) = E(X −EX)2 is the variance of X.

(e) E[X2] ≤ α

(f) E[X2] ≥ α

Solution : First we note that P is a polyhedron because pi, i = 1, ..., n
defines halfspaces and

∑n
i=1 pi = 1 defines a hyperplane.

(a) α ≤
∑n

i=1 pif(ai) ≤ β,so the constraint is equivalent to two linear
inequalities in the probabilities pi -convex set.

(b) Pr(X > α) ≤ β is equivalent to a linear inequality:
∑n

i:ai≥α pi ≤ β
- convex set.

(c) The constraint is equivalent to a linear inequality:∑n
i=1 pi(|a3i | − α∥ai|) ≤ 0 - convex set.

(d) var(X) =
∑n

i=1 pia
2
i − (

∑n
i=1 piai)

2 ≤ α is not convex in general.
As a counterexample, we can take
n = 2, a1 = 1, a2 = 0, and α = 1/8. p = (0,1) are two points that
satisfy var(x)=0 ≤ α , but if we take the convex combination p =
(1/2, 1/2) then var(x)=1/4 - not a convex set.

(e) The constraint is equivalent to a linear inequality:
∑n

i=1 pia
2
i ≤ α

- convex set.

(f) The constraint is equivalent to a linear inequality:
∑n

i=1 pia
2
i ≥ α

- convex set.

17. Perspective transformation preserve convexity Let f(x), f :
R → R, be a convex function.

(a) Show that the function

tf(
x

t
), (20)

is a convex function in the pair (x, t) for t > 0. (The function
tf(x

t
) is called perspective transformation of f(x).)

(b) Is the preservation true for concave functions too?
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(c) Use this property to prove that D(P ||Q) is a convex function in
(P,Q).

Solution:

(a) Let f(x), f : R → R, be a convex function. Lets define g(x, t) =
tf(x

t
).

g(λ(x1, t1) + λ̄(x2, t2)) = (λt1 + λ̄t2)f

(
λt1(

x1

t1
) + λ̄x2

t2

λt1 + λ̄t2

)

≤ (λt1 + λ̄t2)
λt1

λt1 + λ̄t2
f(

x1

t1
) +

λ̄t2
λt1 + λ̄t2

f(
x2

t2
)

= λt1f(
x1

t1
) + λ̄t2f(

x2

t2
)

= λg(x1, t1) + λ̄g(x2, t2) (21)

So g is indeed a convex function.

Another way to solve, is to assume that f() has a second derivative
and show that the Hessian is semi-definite positive. However, the
first proof is more general since its true for any convex function
even if the derivative does not exist.

(b) Now let f(x), f : R → R, be a concave function.
-f(x) is convex function and by the same way of (a) we got that g is
a concave function. therefore the preservation is true for concave
functions too.

(c) D(P ||Q) =
∑

x P (x) log P (x)
Q(x)

= −
∑

x P (x) log Q(x)
P (x)

. If we consider

Q = (q1, ..., qk) and P = (p1, ..., pk) and choose p1 = t and q1 = x ,
and f(x) = −log(x) (convex function) then we conclude from (a)
that p1 log

p1
q1

is convex in (p1, q1) and since D(P ||Q) a summation
of convex functions then it is convex.

18. Coin Tosses
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Consider the next joint distribution: X is the number of coin tosses
until the first head appears and Y is the number of coin tosses until the
second head appears. The probability for a head is q, and the tosses
are independent.

a. Compute the distribution of X, p(x), the distribution of Y , p(y),
and the conditional distributions p(y|x) and p(x|y).

b. Compute H(X), H(Y |X), H(X, Y ). Each term should not in-
clude a series. Hint: Is H(Y |X) = H(Y −X|X)?

c. Compute H(Y ), H(X|Y ), and I(X;Y ). If necessary, answers may
include a series.

Solution:

(a) Since X represents the number of coin tosses until the first head
appears, it is Geometrically distributed, i.e., X ∼ G(q).

p(x = k) =

{
(1− q)k−1q if k > 0;
0 if k ≤ 0.

Similarly, Y is Negative Binomial distributed, i.e., Y ∼ NB(2, 1−
q).

p(y = n) =

{
(n− 1)(1− q)n−2q2 if n > 1;
0 if n ≤ 0.

Since the coin tosses are independent, by knowing X, the distri-
bution of Y is Geometric distributed with an initial value at X,
i.e.,

p(y = n|x = k) =

{
(1− q)n−k−1q if n > k;
0 if n ≤ k.

Assuming the second head toss was at n, the distribution of X is
uniform over all values between 1 and n− 1, i.e.,

p(x = k|y = n) =

{
1

n−1
if 1 ≤ k ≤ n− 1;

0 else.
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(b) The computation of H(X), H(Y |X) is immediate by definition,

H(X) =
Hb(q)

q
, (22)

H(Y |X) = H(Y −X|X) (23)

= H(Y −X) (24)

=
Hb(q)

q
. (25)

(26)

H(X), H(Y |X) are equal since X and Y − X are both geomet-
rically distributed with the same success probability. From the
properties of joint entropy, we have that

H(X, Y ) = H(X) +H(Y |X) =
2Hb(q)

q
, (27)

(c) From the definition of entropy,

H(X|Y ) =
∑
y∈Y

Pr(Y = y)H(X|Y = y)

=
∑
y∈Y

Pr(Y = y) log(y − 1)

=
∞∑
y=2

(y − 1)(1− q)y−2q2 log(y − 1).

H(Y ) = H(X, Y )−H(X|Y )

=
2Hb(q)

q
−

∞∑
y=2

(y − 1)(1− q)y−2q2 log(y − 1).

I(X;Y ) = H(X)−H(X|Y )

=
Hb(q)

q
−

∞∑
y=2

(y − 1)(1− q)y−2q2 log(y − 1).

(28)

19. Inequalities Copy each relation to your notebook and write ≤, ≥ or
=, prove it.
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(a) LetX be a discrete random variable. Compare 1
2H(X) vs. maxx p(x).

(b) Let Hb(a) denote the binary entropy for a ∈ [0, 1] and Hter is the
ternary entropy i.e. Hter(a, b, c) = −a log a−b log b−c log c, where
p1, p2, p3 ∈ [0, 1], and p1 + p2 + p3 = 1.
Compare Hter(ab, ab̄, ā) vs Hb(a) + āHb(b).

Solution:

(a) Let us show that 1
2H(X) ≤ maxx p(x).

1

2H(X)
= 2EX [log p(X)]

(a)

≤ 2logEX [p(X)]

= EX [p(X)]

≤ max
x

p2(x)

≤ max
x

p(x),

where (a) follows fron Jensen’s inrquality.

(b) We show that Hter(ab, ab̄, ā) = Hb(a) + aHb(b).

Hter(ab, ab̄, ā) = −ab log(ab)− ab̄ log(ab̄)− ā log ā

= −ab log a− ab log b− ab̄ log a− ab̄ log b̄− ā log ā

= −(ab+ ab̄) log a− ab log b− ab̄ log b̄− ā log ā

= −a log a+ a(−b log b− b̄ log b̄)− ā log ā

= Hb(a) + aHb(b)

20. True or False of a constrained inequality (21 Points):

Given are three discrete random variablesX, Y, Z that satisfyH(Y |X,Z) =
0.

(a) Copy the next relation to your notebook and write true or false.

I(X;Y ) ≥ H(Y )−H(Z)

(b) What are the conditions for which the equality I(X;Y ) = H(Y )−
H(Z) holds.
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(c) Assume that the conditions for I(X;Y ) = H(Y )−H(Z) are sat-
isfied. Is it true that there exists a function such that Z = g(Y )?

Solution:

(a) True. Consider,

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−H(Y |X) +H(Y |X,Z)

= H(Y )−H(Z|X) +H(Z|X, Y )

(a)

≥ H(Y )−H(Z|X)

(b)

≥ H(Y )−H(Z),

where (a) follows fromH(Z|X, Y ) ≥ 0 and (b) follows fromH(Z) ≥
H(Z|X) (conditioning reduces entropy).

(b) We used two inequalities; the first becomes equality if Z is a de-
terministic function of (X, Y ), and the second becomes equality if
Z is independent of X.

(c) False. For example, X ∼ Bern(α), Z ∼ Bern(0.5), Y = X ⊕ Z
and X is independent of Z. All conditions are satisfied, and there
is no such function.

21. True or False of: Copy each relation to your notebook and write true
or false. If true, prove the statement, and if not provide a counterex-
ample.

(a) Let X − Y −Z −W be a Markov chain, then the following holds:

I(X;W ) ≤ I(Y ;Z).

(b) For two probability distributions, pXY and qXY , that are defined
on X × Y , the following holds:

D(pXY ||qXY ) ≥ D(pX ||qX).

(c) If X and Y are dependent and also Y and Z are dependent, then
X and Z are dependent.
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Solution:

(a) True. By the given Markov, we have that I(X, Y ;W ) ≤ I(X, Y ;Z).
By the facts that I(X;Z|Y ) = 0 and I(Y ;W |X) ≥ 0, we get the
desired inequality.

(b) True. Consider:

D(pXY ||qXY ) =
∑
x,y

p(x, y) log
p(x)

q(x)
+
∑
x,y

p(x, y) log
p(y|x)
q(y|x)

= D(pX ||qX) +
∑
x

p(x)D(pY |X=x||qY |X=x)

≥ D(pX ||qX),

where the inequality follows from the non-negativity of KL diver-
gence.

(c) False. For any two independent random variables X and Z, we
can take Y as the pair (X,Z) which results a contradiction.

22. Cross entropy:
Often in Machine learning, cross entropy is used to measure perfor-
mance of a classifier model such as neural network. Cross entropy is
defined for two PMFs PX and QX as

H(PX , QX)
△
= −

∑
x∈X

PX(x) logQX(x).

In a shorter notation we write as

H(P,Q)
△
= −

∑
x∈X

P (x) logQ(x).

Copy each of the following relations to your notebook and write true
or false and provide a proof/disproof.

(a) 0 ≤ H(P,Q) ≤ log |X | for all P,Q.

(b) minQ H(P,Q) = H(P, P ) for all P .

(c) H(P,Q) is concave in the pair (P,Q).

(d) H(P,Q) is convex in the pair (P,Q).
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Solution:

(a) False.
First, note that H(P,Q) can be rewritten as

H(P,Q) = −
∑
x∈X

P (x) logQ(x)

=
∑
x∈X

P (x) log
P (x)

Q(x)
−
∑
x∈X

P (x) logP (x)

= D(P ||Q) +HP (X). (29)

Thus, it obvious that H(P,Q) ≥ 0. However, if we let Punif be the
uniform measure on X , then

H(Punif, Q) = D(Punif||Q) +HPunif
(X)

= D(Punif||Q) + log |X |
≥ log |X |, (30)

due to the fact that D(Punif||Q) ≥ 0. Now, because D(Punif||Q) =
0 if and only if Q = Punif, by taking any Q ̸= Punif, we will get
that D(Punif||Q) > 0, which means that H(Punif, Q) > log |X | for
any Q ̸= Punif, contradicting the claim that H(P,Q) ≤ log |X | for
all P,Q.

(b) True.
This follows from the simple observation that D(P ||Q) ≥ 0 for all
(P,Q), and thus

H(P,Q) = D(P ||Q) +HP (X)

≥ HP (X), (31)

with equality if and only if Q = P .

(c) False.
If H(P,Q) is concave in the pair (P,Q) then it must be concave
in P and Q separately. However, it easy to see that H(P,Q) is
convex function in Q (for fixed P ) because − log(·) is convex.

(d) False.
If P = Q, then H(P,Q) = HP (X), which is a concave function of
P .
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23. Properties of mutual information: A joint distribution is given by
P (x, θ, y) = P (x)P (θ)P (y|x, θ). Answer the following three questions:

(a) True/False: Is it true that there is a Markov chain X − Y − θ?
Prove or provide a counter example.
Solution: False. Counterexample, let X and θ be two indepen-
dent random variables, each distributed according to Bernoulli(0.5).
Also, let Y = X ⊕ θ. One can check that H(X|Y ) ̸= H(X|Y, θ).

(b) Inequalities: Fill (and prove) one of the relations ≤,=,≥ be-
tween the following expressions :

I(X;Y ) ??? I(X;Y |θ).

Solution: Consider the following chain of inequalities:

I(X;Y ) = H(X)−H(X|Y )

(a)
= H(X|θ)−H(X|Y )

(b)

≤ H(X|θ)−H(X|Y, θ)
= I(X;Y |θ),

where (a) follows from the independence of X and θ, and (b)
follows from conditioning reduces entropy. Therefore, I(X;Y ) ≤
I(X;Y |θ).

(c) Convex/Concave: Determine whether the mutual information,
I(X1;X2) is convex OR concave function of P (x2|x1) for a fixed
P (x1). Hint: You can use your answers from the previous
questions. You can not use the results we showed in class!
Solution: We showed in class that mutual information is convex.
Define:

P (θ) ∼ Bern(λ)

PY |X,θ=0 = P 1
Y |X

PY |X,θ=1 = P 2
Y |X (32)

, where λ ∈ [0, 1], and P i
Y |X are two conditional distributions.

From the previous question, we have I(X;Y ) ≤ I(X;Y |θ) and
substituting (32) into this result shows the desired convexity.
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