
Solutions to Homework Set #3

Channel and Source coding

1. Rates

(a) Channels coding Rate: Assuming you are sending 1024 differ-
ent messages using 20 usages of a channel. What is the rate (in
bits per channel use) that you send.

(b) Source coding Rate: Assuming you have a file with 106 Ascii
characters, where the alphabet of Ascii characters is 256. Assume
that each Ascii character is represented by bits (binary alphabet
before compression). After compressing it we get 4 ∗ 106 bits.
What is the compression rate?

Solution: Rates.

(a)

R =
1

20
log2 1024 =

1

2
.

(b)

R =
4 ∗ 106

106 ∗ log2(256)
=

1

2
.

2. Preprocessing the output.

One is given a communication channel with transition probabilities
p(y | x) and channel capacity C = maxp(x) I(X;Y ). A helpful statisti-

cian preprocesses the output by forming Ỹ = g(Y ), yielding a channel
p(ỹ|x). He claims that this will strictly improve the capacity.

(a) Show that he is wrong.

(b) Under what conditions does he not strictly decrease the capacity?

Solution: Preprocessing the output.
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(a) The statistician calculates Ỹ = g(Y ). Since X → Y → Ỹ forms a
Markov chain, we can apply the data processing inequality. Hence
for every distribution on x,

I(X;Y ) ≥ I(X; Ỹ ).

Let p̃(x) be the distribution on x that maximizes I(X; Ỹ ). Then

C = max
p(x)

I(X;Y ) ≥ I(X;Y )p(x)=p̃(x) ≥ I(X; Ỹ )p(x)=p̃(x) = max
p(x)

I(X; Ỹ ) = C̃.

Thus, the helpful suggestion is wrong and processing the output
does not increase capacity.

(b) We have equality (no decrease in capacity) in the above sequence
of inequalities only if we have equality in data processing inequal-
ity, i.e., for the distribution that maximizes I(X; Ỹ ), we have
X → Ỹ → Y forming a Markov chain. Thus, Ỹ should be a
sufficient statistic.

3. The Z channel.

The Z-channel has binary input and output alphabets and transition
probabilities p(y|x) given by the following matrix:

Q =

[

1 0
1/2 1/2

]

x, y ∈ {0, 1}

Find the capacity of the Z-channel and the maximizing input probabil-
ity distribution.

Solution: The Z channel.

First we express I(X;Y ), the mutual information between the input
and output of the Z-channel, as a function of α = Pr(X = 1):

H(Y |X) = Pr(X = 0) · 0 + Pr(X = 1) · 1 = α

H(Y ) = H(Pr(Y = 1)) = H(α/2)

I(X;Y ) = H(Y )−H(Y |X) = H(α/2)− α

Since I(X;Y ) is strictly concave on α (why?) and I(X;Y ) = 0 when
α = 0 and α = 1, the maximum mutual information is obtained for
some value of α such that 0 < α < 1.
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Using elementary calculus, we determine that

d

dα
I(X;Y ) =

1

2
log2

1− α/2

α/2
− 1 ,

which is equal to zero for α = 2/5. (It is reasonable that Pr(X = 1) <
1/2 since X = 1 is the noisy input to the channel.) So the capacity of
the Z-channel in bits is H(1/5)− 2/5 = 0.722− 0.4 = 0.322.

4. Using two channels at once.

Consider two discrete memoryless channels (X1, p(y1 | x1),Y1) and
(X2, p(y2 | x2),Y2) with capacities C1 and C2 respectively. A new
channel (X1 × X2, p(y1 | x1) × p(y2 | x2),Y1 × Y2) is formed in which
x1 ∈ X1 and x2 ∈ X2, are simultaneously sent, resulting in y1, y2. Find
the capacity of this channel.

Solution: Using two channels at once.

To find the capacity of the product channel (X1×X2, p(y1, y2|x1, x2),Y1×
Y2), we have to find the distribution p(x1, x2) on the input alphabet
X1 × X2 that maximizes I(X1, X2;Y1, Y2). Since the transition proba-
bilities are given as p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2),

p(x1, x2, y1, y2) = p(x1, x2)p(y1, y2|x1, x2)

= p(x1, x2)p(y1|x1)p(y2|x2),

Therefore, Y1 → X1 → X2 → Y2 forms a Markov chain and

I(X1, X2;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X1, X2)

= H(Y1, Y2)−H(Y1|X1, X2)−H(Y2|X1, X2)(1)

= H(Y1, Y2)−H(Y1|X1)−H(Y2|X2) (2)

≤ H(Y1) +H(Y2)−H(Y1|X1)−H(Y2|X2) (3)

= I(X1;Y1) + I(X2;Y2),

where Eqs. (1) and (2) follow from Markovity, and Eq. (3) is met with
equality if X1 and X2 are independent and hence Y1 and Y2 are inde-
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pendent. Therefore

C = max
p(x1,x2)

I(X1, X2;Y1, Y2)

≤ max
p(x1,x2)

I(X1;Y1) + max
p(x1,x2)

I(X2;Y2)

= max
p(x1)

I(X1;Y1) + max
p(x2)

I(X2;Y2)

= C1 + C2.

with equality iff p(x1, x2) = p∗(x1)p
∗(x2) and p∗(x1) and p∗(x2) are the

distributions that maximize C1 and C2 respectively.

5. A channel with two independent looks at Y.

Let Y1 and Y2 be conditionally independent and conditionally identi-
cally distributed given X. Thus p(y1, y2|x) = p(y1|x)p(y2|x).

(a) Show I(X;Y1, Y2) = 2I(X;Y1)− I(Y1;Y2).

(b) Conclude that the capacity of the channel

✲ ✲X (Y1, Y2)

is less than twice the capacity of the channel

✲ ✲X Y1

Solution: A channel with two independent looks at Y.

(a)

I(X;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X) (4)

= H(Y1) +H(Y2)− I(Y1;Y2)−H(Y1|X)−H(Y2|X) (5)

(since Y1 and Y2 are conditionally independent given X)(6)

= I(X;Y1) + I(X;Y2)− I(Y1;Y2) (7)

= 2I(X;Y1)− I(Y1;Y2) (since Y1 and Y2 are conditionally
identically distributed)

.(8)
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(b) The capacity of the single look channel X → Y1 is

C1 = max
p(x)

I(X;Y1). (9)

The capacity of the channel X → (Y1, Y2) is

C2 = max
p(x)

I(X;Y1, Y2) (10)

= max
p(x)

2I(X;Y1)− I(Y1;Y2) (11)

≤ max
p(x)

2I(X;Y1) (12)

= 2C1. (13)

Hence, two independent looks cannot be more than twice as good
as one look.

6. Choice of channels.

Find the capacity C of the union of 2 channels (X1, p1(y1|x1),Y1) and
(X2, p2(y2|x2),Y2) where, at each time, one can send a symbol over
channel 1 or over channel 2 but not both. Assume the output alphabets
are distinct and do not intersect.

(a) Show 2C = 2C1 + 2C2 .

(b) What is the capacity of this Channel?

1

2

3

1

2

3

1−p

p

1−p

p

Solution: Choice of channels.

(a) Let

θ =

{

1, if the signal is sent over the channel 1
2, if the signal is sent over the channel 2

.
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Consider the following communication scheme: The sender chooses
between two channels according to Bern(α) coin flip. Then the
channel input is X = (θ,Xθ).

Since the output alphabets Y1 and Y2 are disjoint, θ is a function
of Y , i.e. X → Y → θ.

Therefore,

I(X;Y ) = I(X;Y, θ)

= I(Xθ, θ;Y, θ)

= I(θ;Y, θ) + I(Xθ;Y, θ|θ)

= I(θ;Y, θ) + I(Xθ;Y |θ)

= H(θ) + αI(Xθ;Y |θ = 1) + (1− α)I(Xθ;Y |θ = 2)

= H(α) + αI(X1;Y1) + (1− α)I(X2;Y2).

Thus, it follows that

C = sup
α

{H(α) + αC1 + (1− α)C2} ,

which is a strictly concave function on α. Hence, the maxi-
mum exists and by elementary calculus, one can easily show C =
log2(2

C1 + 2C2), which is attained with α = 2C1/(2C1 + 2C2).

If one interprets M = 2C as the effective number of noise free
symbols, then the above result follows in a rather intuitive manner:
we have M1 = 2C1 noise free symbols from channel 1, and M2 =
2C2 noise free symbols from channel 2. Since at each step we get
to choose which channel to use, we essentially have M1 + M2 =
2C1 + 2C2 noise free symbols for the new channel. Therefore, the
capacity of this channel is C = log2(2

C1 + 2C2).

This argument is very similiar to the effective alphabet argument
given in Problem 19, Chapter 2 of the text.

(b) From part (b) we get capacity is

log(21−H(p) + 20).

7. Cascaded BSCs.

Consider the two discrete memoryless channels (X , p1(y|x),Y) and (Y , p2(z|y),Z).

Let p1(y|x) and p2(z|y) be binary symmetric channels with crossover
probabilities λ1 and λ2 respectively.
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X

1

0

Z
1

0

Y

1− λ1

1− λ1

λ1

λ1

1− λ2

1− λ2

λ2

λ2

(a) What is the capacity C1 of p1(y|x)?

(b) What is the capacity C2 of p2(z|y)?

(c) We now cascade these channels. Thus p3(z|x) =
∑

y p1(y|x)p2(z|y).
What is the capacity C3 of p3(z|x)? Show C3 ≤ min{C1, C2}.

(d) Now let us actively intervene between channels 1 and 2, rather
than passively transmitting yn. What is the capacity of channel 1
followed by channel 2 if you are allowed to decode the output yn of
channel 1 and then reencode it as ỹn for transmission over channel
2? (Think W −→ xn(W ) −→ yn −→ ỹn(yn) −→ zn −→ Ŵ .)

(e) What is the capacity of the cascade in part c) if the receiver can
view both Y and Z?

Solution: Cascaded BSCs.

(a) This is a simple BSC with capacity C1 = 1−Hb(λ1).

(b) Similarly, C2 = 1−Hb(λ2).

(c) This is also a BSC channel with transition probability λ1 ∗ λ2 =
λ1(1− λ2) + (1− λ1)λ2 and thus C3 = 1−Hb(λ1 ∗ λ2). From the
markov chain X − Y − Z we can see that

C3 = I(X;Z) ≤ I(X;Y, Z) = I(X;Y ) = C1

and additionaly

C3 = I(X;Z) ≤ I(X, Y ;Z) = I(Y ;Z) = C2
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and thus
C3 ≤ min{C1, C2}

(d) If one can reencode Y then we obtain that

C3 = min{C1, C2}

since only one of the channels will be the bottleneck between X
and Z.

(e) From the Markov chain X − Y − Z we can see that

C ′
3 = I(X;Y, Z) = I(X;Y ) = C1

8. Channel capacity

(a) What is the capacity of the following channel

1

1

1
2

1
2

1
2

1
2

(Input) X Y (Output)

00

11

2

2 3

3 4

(b) Provide a simple scheme that can transmit at rate R = log2 3 bits
through this channel.

Solution for Channel capacity

(a) We can use the solution of previous home question:

C = log
(

2C1 + 2C2 + 2C3

)

Now we need to calculate the capacity of each channel:

C1 = max
p(x)

I(X;Y ) = H(Y )−H(Y |X) = 0− 0 = 0
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C2 = max
p(x)

I(X;Y ) = H(Y )−H(Y |X) = 1− 1 = 0

C3 = max
p(x)

I(X;Y ) = max
p(x)

{H(Y )−H(Y |X)}

= max
p(x)

[

−
1

2
p2 log

(

1

2
p2

)

−

(

1

2
p2 + p3

)

log

(

1

2
p2 + p3

)]

− p2

Assigning p3 = 1− p2 and derive against p2:

dI(X;Y )

dp2
= −

p2
2

·
1

2
·
1
p2
2

−
1

2
log

(p2
2

)

+
2− p2

2
·
1

2
·

1
2−p2
2

+
1

2
log

(

2− p2
2

)

− 1 = 0

And as result p2 =
2
5
:

C3 ≈ 0.322

And, finally:

C = log(20 + 20 + 20.322) ≈ 1.7

(b) Here is a simple code that achieves capacity.

Encoding: You just use ternary representation of the message and
send using 0,1,2 but no 3 (or 0,1,3 but no 2) of the input channel.
Decoding: map the ternary output into the message.
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9. A channel with a switch. Consider the channel that is depicted in
Fig.1, there are two channels with the conditional probabilities p(y1|x)
and p(y2|x). These two channels have common input alphabet X and
two disjoint output alphabets Y1,Y2 (a symbol that appears in Y1

can’t appear in Y2). The position of the switch is determined by R.V
Z which is independent of X, where Pr(Z = 1) = λ.

X

p(y1|x)

p(y2|x)

Y1

Y2

Z = 1

Z = 2

Y

Figure 1: The channel.

(a) Show that
I(X;Y ) = λI(X;Y1) + λ̄I(X;Y2). (14)

(b) The capacity of this system is given by C = maxp(x) I(X;Y ).
Show that

C ≤ λC1 + λ̄C2, (15)

where Ci = maxp(x) I(X;Yi).
When is equality achieved?

(c) The sub-channels defined by p(y1|x) and p(y2|x) are now given in
the following figure, where p = 1

2
.

Find the input probability p(x) that maximizes I(X;Y ).
For this case, does the equality C = λC1 + λ̄C2 stand? explain!

Solution: Channel with state

(a) Since the alphabet Y1,Y2 are disjoint the markov chain X−Y −Z
holds. Additionally, X and Z are independent and thus we have
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00

11
1− p

1− p

p

p
X Y1

0

1

1− p

p
X Y2

2

3

Figure 2: (a) describes channel 1 - BSC with transition probability p. (b)
describes channel 2 - Z channel with transition probability p.

that

I(X;Y ) = I(X;Y |Z)

= Pr(z = 1)I(X;Y |z = 1) + Pr(z = 2)I(X;Y |z = 2)

= λI(X;Y |z = 1) + λ̄I(X;Y |z = 2)

= λI(X;Y1) + λ̄I(X;Y2)

(b) Consider the following:

C = max
p(x)

I(X;Y )

= max
p(x)

{λI(X;Y1) + λ̄I(X;Y2)}

≤ max
p(x)

{λI(X;Y1)}+max
p(x)

{λ̄I(X;Y2)}

= λC1 + λ̄C2

(c) Since p = 1
2
, the capacity of the first channel is 0 and thus we only

need to maximize over the second channel. Thus, we would like to
find p(x) such that λ̄I(X;Y2) = λ̄(Hb(

α
2
) − αHb(

1
2
) is maximized

where Pr(x = 0) = α ∈ [0, 1]. In this case the solution is α = 0.4.
We can see that the equality in holds.

10. Channel with state

A discrete memoryless (DM) state dependent channel with state space
S is defined by an input alphabet X , an output alphabet Y and a set
of channel transition matrices {p(y|x, s)}s∈S . Namely, for each s ∈ S
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the transmitter sees a different channel. The capacity of such a channel
where the state is know causally to both encoder and decoder is given
by:

C = max
p(x|s)

I(X;Y |S). (16)

Let |S| = 3 and the three different channels (one for each state s ∈ S)
are as illustrated in the following figure

1− ǫ

1− ǫ

ǫǫ

1

1 1− δ

1− δ

δ

δ

000000

111111

S = 1 S = 2 S = 3

Figure 3: The three state dependent channel.

The state process is i.i.d. according to the distribution p(s).

(a) Find an expression for the capacity of the S-channel (the channel
the transmitter sees given S = 1) as a function of ǫ.

(b) Find an expression for the capacity of the BSC (the channel the
transmitter sees given S = 2) as a function of δ.

(c) Find an expression for the capacity of the Z-channel (the channel
the transmitter sees given S = 3) as a function of ǫ.

(d) Find an expression for the capacity of the DM state dependent
channel (using formula (16)) for p(s) = [1

2
1
3

1
6
] as a function of

ǫ and δ.

(e) Let us define a conditional probability matrix PX|S for two random
variables X and S with |X | = {0, 1} and |S| = {1, 2, 3}, by:

[

PX|S

]3,2

i=1,j=1
= p(x = j − 1|s = i). (17)

What is the input conditional probability matrix PX|S that achieves
the capacity you have found in (d)?
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Solution: Channel with state

(a) Denote the capacity of the S-Channel by

CS = max
p(x|s=1)

I(X;Y |S = 1)

= max
p(x|s=1)

[H(Y |S = 1)−H(Y |X,S = 1)]

Assume that the inputX is distributed according toX ∼ Bernoulli(α)
for s = 1, and let us calculate the entropy terms:

H(Y |X,S = 1) =
∑

x∈X

H(Y |X = x, S = 1)

=αH(Y |X = 0, S = 1) + (1− α)H(Y |X = 1, S = 1)

=αHb(ǫ) + (1− α) · 0 = αHb(ǫ)

Consider

p(y = 0|s = 1) =p(y = 0, x = 0|s = 1) + p(y = 0, x = 1|s = 1)

=α(1− ǫ)

Then

H(Y |X,S = 1) =Hb(α(1− ǫ)).

We want to maximize

I(X;Y |S = 1) = Hb(α(1− ǫ))− αHb(ǫ).

Taking derivative with respect to α and find the roots of the
derivation gives the capacity.

(b) For the binary symmetric channel (BSC) the capacity is given by
CBSC = 1−Hb(δ).

(c) The capacity of the Z-channel and S-channel are equal because
the channels are equivalent up to switching 0 with 1 and vice versa.

(d) The capacity of the state dependent channel is

C =max
p(x|s)

I(X;Y |S)

=max
p(x|s)

[

p(S = 1)I(X;Y |S = 1) + p(S = 2)I(X;Y |S = 2)

+ p(S = 3)I(X;Y |S = 3)
]

=
1

2
CS +

1

3
CBSC +

1

6
CZ
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(e) The rows of the matrix PX|S are the conditional probability func-
tion which achieve capacity for each of the sub channel.

PX|S =





p(x = 0|s = 1) p(x = 1|s = 1)
p(x = 0|s = 1) p(x = 1|s = 2)
p(x = 0|s = 1) p(x = 1|s = 3)





11. Modulo channel

(a) Consider the DMC defined as follows: Output Y = X⊕2Z where
X, taking values in {0, 1}, is the channel input, ⊕2 is the modulo-
2 summation operation, and Z is binary channel noise uniform
over {0, 1} and independent of X. What is the capacity of this
channel?

(b) Consider the channel of the previous part, but suppose that in-
stead of modulo-2 addition Y = X ⊕2 Z, we perform modulo-3
addition Y = X ⊕3 Z. Now what is the capacity?

Solution: Modulo channel

(a) This is a simple case of a BSC with transition probability of p =
1/2 and thus the capacity in this case is CBSC = 0.

(b) In this case we can model the channel as a BEC as studied in
class. The input is of binary alphabet and the output is of a
trenary alphabet. The probability of error is Pr(z = 1) = p = 1

2

and thus the capacity for this channel is CBEC = 1− p = 1
2
.

12. Cascaded BSCs: Given is a cascade of k identical and independent
binary symmetric channels, each with crossover probability α.

(a) In the case where no encoding or decoding is allowed at the inter-
mediate terminals, what is the capacity of this cascaded channel
as a function of k, α.

(b) Now, assume that encoding and decoding is allowed at the inter-
mediate points, what is the capacity as a function of k, α.

(c) What is the capacity of each of the above settings in the case
where the number of cascaded channels, k, goes to infinity?
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Solution: Cascaded BSCs.

(a) Cascaded BSCs result a new BSC with a new parameter, β. There-
fore, the capacity is Ca = 1−H2(β) and the parameter β can be
found as follows:

β =
∑

{i≤k:i is odd}

(

k

i

)

αi(1− α)k−i

=
k

∑

i=1

(

k

i

)

1− (−1)i

2
αi(1− α)k−i

=
1

2
−

1

2

k
∑

i=1

(

k

i

)

(−α)i(1− α)k−i

=
1

2
(1− (1− 2α)k).

Answers of β as the initial sum over odd indices or the binary
convolutional of k identical parameters α have been accepted as
well.

(b) We have seen in HW that in the case of encoding and decoding
the capacity of the cascaded channel equals Cb = min{Ci}. Since
all channels are identical with capacity 1 − H2(α), we have that
Cb = 1−H2(α).

(c) In (a), β → 0.5 as k → ∞ so Ca → 0.

For (b), the number of cascaded channels does not change the
capacity which remains Cb = 1−H2(α).
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