
Solutions to Homework Set #4
Differential Entropy and Gaussian Channel

1. Differential entropy.
Evaluate the differential entropy h(X) = −

∫
f ln f for the following:

(a) Find the entropy of the exponential density λe−λx, x ≥ 0.

(b) The sum of X1 and X2, where X1 and X2 are independent normal random
variables with means µi and variances σ2

i , i = 1, 2.

Solution: Differential entropy.

(a)

h(f) = log
e

λ
bits. (1)

(b) Sum of two normal distributions.

The sum of two normal random variables is also normal, so applying the
result derived the class for the normal distribution, since X1 + X2 ∼
N (µ1 + µ2, σ

2
1 + σ2

2),

h(f) =
1

2
log 2πe(σ2

1 + σ2
2) bits. (2)

2. Mutual information for correlated normals. Find the mutual information
I(X;Y ), where (

X

Y

)
∼ N2

(
0,

[
σ2 ρσ2

ρσ2 σ2

])
.

Evaluate I(X;Y ) for ρ = 1, ρ = 0, and ρ = −1, and comment.

Mutual information for correlated normals.

[
X
Y

]
∼ N2

(
0,

[
σ2 ρσ2

ρσ2 σ2

])
(3)

Using the expression for the entropy of a multivariate normal derived in class

h(X, Y ) =
1

2
log(2πe)2|K| = 1

2
log(2πe)2σ4(1− ρ2). (4)
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Since X and Y are individually normal with variance σ2,

h(X) = h(Y ) =
1

2
log 2πeσ2. (5)

Hence

I(X;Y ) = h(X) + h(Y )− h(X, Y ) = −1

2
log(1− ρ2). (6)

(a) ρ = 1. In this case, X = Y , and knowing X implies perfect knowledge
about Y . Hence the mutual information is infinite, which agrees with the
formula.

(b) ρ = 0. In this case, X and Y are independent, and hence I(X;Y ) = 0,
which agrees with the formula.

(c) ρ = −1. In this case, X = −Y , and again the mutual information is
infinite as in the case when ρ = 1.

3. Markov Gaussian mutual information.
Suppose that (X, Y, Z) are jointly Gaussian and that X → Y → Z forms a
Markov chain. Let X and Y have correlation coefficient ρ1 and let Y and Z
have correlation coefficient ρ2. Find I(X;Z).

Solution: Markov Gaussian mutual information.
First note that we may without any loss of generality assume that the means
of X, Y and Z are zero. If in fact the means are not zero one can subtract the
vector of means without affecting the mutual information or the conditional
independence of X, Z given Y . Similary we can also assume the variances of
X, Y , and Z to be 1. (The scaling may change the differential entropy, but
not the mutual information.)

Let

Σ =

(
1 ρxz
ρxz 1

)
,

be the covariance matrix of X and Z. From Eqs. (9.93) and (9.94)

I(X;Z) = h(X) + h(Z)− h(X,Z)

=
1

2
log
(
2πe
)
+

1

2
log
(
2πe
)
− 1

2
log
(
2πe det(Σ)

)

= −1

2
log(1− ρ2xz)
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Now from the conditional independence of X and Z given Y , we have

ρxz = E[XZ]

= E [E[XZ|Y ]]

= E [E[X|Y ] · E[Z|Y ]]

= E[ρ1Y · ρ2Y ]

= ρ1ρ2.

We can thus conclude that

I(X;Z) = −1

2
log(1− ρ21ρ

2
2)

4. Output power constraint.
Consider an additive white Gaussian noise channel with an expected output
power constraint P . (We might want to protect the eardrums of the listener.)
Thus Y = X+Z, Z ∼ N(0, σ2), Z is independent of X, and EY 2 ≤ P . Assume
σ2 < P . Find the channel capacity.

Solution: Output power constraint.
The output power constraint EY 2 ≤ P is equivalent to the input power con-
straint

E(X + Z)2 = EX2 + EZ2 = EX2 + σ2 ≤ P,

that is, EX2 ≤ P − σ2. Thus, we reduce the problem to a previously known
one and get

C =
1

2
log

(
P

σ2

)
.

5. Multipath Gaussian channel.
Consider a Gaussian noise channel of power constraint P , where the signal
takes two different paths and the received noisy signals are added together at
the antenna.
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X Y

Y1

Y2

+

+

+

Z1

Z2

Let Y = Y1 + Y2 and EX2 ≤ P .

(a) Find the capacity of this channel if Z1 and Z2 are jointly normal with
covariance matrix

K =

[
N Nρ
Nρ N

]
.

(b) What is the capacity for ρ = 0,−1, and 1 ?

Solution: Multipath Gaussian channel.

(a) Since

Y = Y1 + Y2

= X + Z1 +X + Z2

= 2X + (Z1 + Z2),

and Z1 + Z2 is ∼ N(0, 2N(1 + ρ)), the capacity is given by

C =
1

2
log

(
1 +

4P

2N(1 + ρ)

)
=

1

2
log

(
1 +

2P

N(1 + ρ)

)
.

(b) When ρ = 0,

C =
1

2
log

(
1 +

2P

N

)
.

When ρ = 1,

C =
1

2
log

(
1 +

P

N

)
,
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which makes sense since Y1 = Y2 and Y = 2Y1. (Scaling the output does
not change the mutual information.)

When ρ = −1, we have C = ∞. Since Z1+Z2 = 0, the channel is given by
Y = 2X without any additive noise. Hence we can transmit unbounded
amount of information (any real number satisfying the power constraint)
over the channel without any error.

6. The two-look Gaussian channel.

✲ ✲X (Y1, Y2)

Consider the ordinary additive noise Gaussian channel with two correlated
looks at X, i.e., Y = (Y1, Y2), where

Y1 = X + Z1

Y2 = X + Z2

with a power constraint P on X, and (Z1, Z2) ∼ N2(0, K), where

K =

[
N Nρ
Nρ N

]
.

Find the capacity C for

(a) ρ = 1.

(b) ρ = 0.

(c) ρ = -1.

Solution: The two-look Gaussian channel

It is clear that the input distribution that maximizes the capacity is X ∼
N (0, P ). Evaluating the mutual information for this distribution,

C2 = max I(X;Y1, Y2)

= h(Y1, Y2)− h(Y1, Y2|X)

= h(Y1, Y2)− h(Z1, Z2|X)

= h(Y1, Y2)− h(Z1, Z2)
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Now since

(Z1, Z2) ∼ N
(
0,

[
N Nρ
Nρ N

])
,

we have

h(Z1, Z2) =
1

2
log(2πe)2|KZ | =

1

2
log(2πe)2N2(1− ρ2).

Since Y1 = X + Z1, and Y2 = X + Z2, we have

(Y1, Y2) ∼ N
(
0,

[
P +N P + ρN
P + ρN P +N

])
,

and

h(Y1, Y2) =
1

2
log(2πe)2|KY | =

1

2
log(2πe)2(N2(1− ρ2) + 2PN(1− ρ)).

Hence the capacity is

C2 = h(Y1, Y2)− h(Z1, Z2)

=
1

2
log

(
1 +

2P

N(1 + ρ)

)
.

(a) ρ = 1. In this case, C = 1
2
log(1 + P

N
), which is the capacity of a single

look channel. This is not surprising, since in this case Y1 = Y2.

(b) ρ = 0. In this case,

C =
1

2
log

(
1 +

2P

N

)
,

which corresponds to using twice the power in a single look. The capacity
is the same as the capacity of the channel X → (Y1 + Y2).

(c) ρ = −1. In this case, C = ∞, which is not surprising since if we add Y1

and Y2, we can recover X exactly.

Note that the capacity of the above channel in all cases is the same as the
capacity of the channel X → Y1 + Y2.

7. Diversity System

For the following system, a message W ∈ {1, 2, . . . , 2nR} is encoded into two
symbol blocks Xn

1 = (X1,1, X1,2, ..., X1,n) and Xn
2 = (X2,1, X2,2, ..., X2,n) that
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are being transmitted over a channel. The average power constrain on the
inputs are 1

n
E[
∑n

i=1 X
2
1,i] ≤ P1 and 1

n
E[
∑n

i=1 X
2
2,i] ≤ P2. The channel has a

multiplying effect on X1, X2 by factor h1, h2, respectively, i.e., Y = h1X1 +
h2X2 + Z, where Z is a white Gaussian noise Z ∼ N(0, σ2).

(a) Find the joint distribution ofX1 andX2 that bring the mutual information
I(Y ;X1, X2) to a maximum? (You need to find argmaxPX1,X2

I(X1, X2;Y ).)

X1

X2

Encoder Decoder

h1

h2

W

Z

Ŵ
Y

V1

V2

Figure 1: The communication model

(b) What is the capacity of the system ?

(c) Express the capacity for the following cases:

i. h1 = 1, h2 = 1?

ii. h1 = 1, h2 = 0?

iii. h1 = 0, h2 = 0?

Solution: Diversity System

(a)

Y = h1X1 + h2X2 + Z

The mutual information is:

I(X1, X2;Y ) = h(Y )− h(Y |X1, X2)

= h(Y )− h(Z)
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Since h(z) is constant, we need to find the maximum of h(Y ), the second
moment of Y is:

E[Y 2] = E[(h1X1 + h2X2 + Z)2]
(i)
= E[(h1X1 + h2X2)

2] + E[Z2]

= h2
1[X

2
1 ] + h2

2[X
2
2 ] + 2h1h2E[X1X2] + σ2

Z

≤ h2
1P1 + h2

2P2 + 2h1h2E[X1X2] + σ2
Z

(ii)

≤ h2
1P1 + h2

2P2 + 2h1h2

√
E[X2

1 ]E[X2
2 ] + σ2

Z

≤ h2
1P1 + h2

2P2 + 2h1h2

√
P1P2 + σ2

Z

= (h1

√
P1 + h2

√
P2)

2 + σ2
Z

(i) - Z is independent of X1, X2.

(ii) - Cauchy-Schwarz inequality. Where X1 = αX2,
(
X1

X2

)
∼ N (0, K)

and K =
(
P1

√
P1P2√

P1P2 P2

)
will result with equality and bring the mutual

information to a maximum.

Therefore, the mutual information is bounded by:

I(X1, X2;Y ) ≤ 1

2
log

(
1 +

(h1

√
P1 + h2

√
P2)

2

σ2
Z

)

(b) The capacity of the system is:

C = max
Px1,x2

I(X1, X2;Y ) =
1

2
log

(
1 +

(h1

√
P1 + h2

√
P2)

2

σ2
Z

)

(c) For h1 = 1 and h2 = 1 the capacity of the system would be:

C =
1

2
log

(
1 +

(
√
P1 +

√
P2)

2

σ2
Z

)

=
1

2
log

(
1 +

P1 + 2
√
P1P2 + P2

σ2
Z

)

For h1 = 1 and h2 = 0 the capacity of the system would be:

C =
1

2
log

(
1 +

P1

σ2
Z

)
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For h1 = 0 and h2 = 0 the capacity of the system would be:

C =
1

2
log (1) = 0

We can see that having 2 Gaussian channels with one message, it is the
best to transmit the signals coherently.
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8. AWGN with two noises

Figure 2 depicts a communication system with an AWGN (Additive white noise
Gaussian) channel whith two i.i.d. noises Z1 ∼ N(0, σ2

1), Z2 ∼ N(0, σ2
2) that are

independent of each other and are added to the signal X, i.e., Y = X+Z1+Z2.
The average power constrain on the input is P , i.e., 1

n
E[
∑n

i=1 X
2
i ] ≤ P . In the

sub-questions below we consider the cases where the noise Z2 may or may not
be known to the encoder and decoder.

X Y

Z1

Z2

Encoder DecoderW Ŵ

1 2

Figure 2: Two noise sources

(a) Find the channel capacity for the case in which the noise in not known
to either sides (lines 1 and 2 are disconnected from the encoder and the
decoder).

(b) Find the capacity for the case that the noise Z2 is known to the encoder
and decoder (lines 1 and 2 are connected to both the encoder and decoder).
This means that the codeword Xn may depend on the message W and
the noise Zn

2 and the decoder decision Ŵ may depend on the output Y n

and the noise Zn
2 . (Hint: Could the capacity be lager than 1

2
log(1+ P

σ2

1

)?)

(c) Find the capacity for the case that the noise Z2 is known only to the
decoder. (line 1 is disconnected from the encoder and line 2 is connected
to the decoder). This means that the codewords Xn may depend only on
the message W and the decoder decision Ŵ may depend on the output
Y n and the noise Zn

2 .

Solution: AWGN with two noises

(a) Since the noise is not know to both sides, the total noise is σ2
1 + σ2

2 and
the capacity is:

C =
1

2
log

(
1 +

P

σ2
1 + σ2

2

)
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(b) Once Z2 is known to the receiver, we can add a subtraction unit in the
decoder that subtract Z2 and therefore the noise is only Z1. And the
capacity is:

C =
1

2
log

(
1 +

P

σ2
1

)

(c) Same as in (b), the capacity is:

C =
1

2
log

(
1 +

P

σ2
1

)

9. Parallel channels and waterfilling
Consider a pair of parallel Gaussian channels, i.e.,

(
Y1

Y2

)
=

(
X1

X2

)
+

(
Z1

Z2

)
,

where (
Z1

Z2

)
∼ N

(
0,

[
σ2
1 0
0 σ2

2

])
,

and there is a power constraint E(X2
1 + X2

2 ) ≤ P . Assume that σ2
1 > σ2

2. At
what power does the channel stop behaving like a single channel with noise
variance σ2

2, and begin behaving like a pair of channels, ie., at what power does
the worst channel become useful?

Solution: Parallel channels and waterfilling
By the result of water filling taught in the class , it follows that we will put all
the signal power into the channel with less noise until the total power of noise
+ signal in that channel equals the noise power in the other channel. After
that, we will split any additional power evenly between the two channels.

Thus the combined channel begins to behave like a pair of parallel channels
when the signal power is equal to the difference of the two noise powers, i.e.,
when P = σ2

1 − σ2
2.

10. Blahut-Arimoto’s algorithm and KKT conditions Recall, that the ca-
pacity of a memoryless channel is given by

C = max
p(x)

I(X;Y ).

Solving this optimization problem is a difficult task for the general channel. In
this question we develop an iterative algorithm for finding the solution for a
fixed channel p(y|x).
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(a) Prove that the mutual information as a function of p(x) and p(x|y) may
be written as

I(X;Y ) =
∑

x,y

p(x)p(y|x) log p(x|y)
p(x)

.

(b) Show that I(X;Y ) as written above is concave in both p(x), p(x|y) (Hint.
You may use the log-sum-inequality).

(c) Find an expression for p(x) that maximizes I(X;Y ) when p(x|y) is fixed
(Hint. You may use the Lagrange multipliers method with the constraint∑

x p(x) = 1. No need to take into account that p(x) ≥ 0 since it will
obtained anyway.)

(d) Find an expression for p(x|y) that maximizes I(X;Y ) when p(x) is fixed
(Hint. You may use the Lagrange multipliers method with constraints∑

x p(x|y) = 1 for all y. No need to take into account that p(x|y) ≥ 0
since it will obtained anyway.).

(e) Using (d), conclude that C = maxp(x),p(x|y) I(X;Y ).

The Blahut-Arimoto’s algorithm is performed by maximizing in each iteration
over another variable; first over p(x) when p(x|y) is fixed, then over p(x|y)
when p(x) is fixed, and so on. This iterative algorithm converges, and hence
one can find the capacity of any DMC p(y|x) with reasonable alphabet size.

Solutions

(a) Since I(X;Y ) = H(X)−H(X|Y ), the answer is obvious.

(b) Recall, that the Log-Sum inequality is

n∑

i=1

ai log
ai
bi

≥
(

n∑

i=1

ai

)
log

∑n

i=1 ai∑n

i=1 bi
.

Hence

(λp1(x)+ (1− λ)p2(x)) log
λp1(x)+(1−λ)p2(x)

λp1(x|y)+(1−λ)p2(x|y)

≤ λp1(x) log
p1(x)
p1(x|y) + (1− λ)p2(x) log

p2(x)
p2(x|y) .

Taking the reciprocal of the logarithms yields

(λp1(x)+ (1− λ)p2(x)) log
λp1(x|y)+(1−λ)p2(x|y)
λp1(x)+(1−λ)p2(x)

≥ λp1(x) log
p1(x|y)
p1(x)

+ (1− λ)p2(x) log
p2(x|y)
p2(x)

.
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Multiplying by p(y|x) and summing over all x, y, and letting I(p(x), p(x|y))
be the mutual information as in (a), we obtain

I(λp1(x)+(1− λ)p2(x), λp1(x|y) + (1− λ)p2(x|y)
≥ λI(p1(x), p1(x|y)) + (1− λ)I(p2(x), p2(x|y)).

(c) Define the lagrangian

L =
∑

x,y

p(x)p(y|x) log p(x|y)
p(x)

+ µ(
∑

x

p(x)− 1),

and differentiate over p(x). Solving ∂L
∂p(x)

= 0 provides us with

p(x) =

∏
y p(x|y)p(y|x)∑

x

∏
y p(x|y)p(y|x)

.

(d) Define the lagrangian

J =
∑

x,y

p(x)p(y|x) log p(x|y)
p(x)

+ µ(y)(
∑

x

p(x|y)− 1),

and differentiate over p(x|y). Solving ∂J
∂p(x|y) = 0 provides us with

p(x|y) = p(x)p(y|x)∑
x p(x)p(y|x)

.

(e) The expression for p(x|y) is the one that corresponds to p(x), and hence
maximizing over p(x), p(x|y) is the same as over p(x) alone.

11. Fading channel.
Consider an additive noise fading channel

V Z

❄ ❄

X −→
⊙

−→✍✌
✎☞∑

−→ Y

Y = XV + Z,

where Z is additive noise, V is a random variable representing fading, and Z
and V are independent of each other and of X.
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(a) Argue that knowledge of the fading factor V improves capacity by showing

I(X;Y |V ) ≥ I(X;Y ).

(b) Incidentally, conditioning does not always increase mutual information.
Give an example of p(u, r, s) such that I(U ;R|S) < I(U ;R).

Solution: Fading channel

(a) We may show the inequality as follows:

I(X;Y |V ) = h(X|V )− h(X|Y, V )

= h(X)− h(X|Y, V ) (7)

≥ h(X)− h(X|Y ) (8)

= I(X;Y )

where (7) follows from the independence of X and V , and (8) is true
because conditioning reduces entropy.

(b) There are many examples for this case. For instance, if we consider two
cascaded BSCs where the input to the channel is U , the output of the first
channel is R and the output of the second channel is S, the Markov chain
U −R− S holds from the data processing inequality. Now we know that

I(U ;R)
(a)
= I(U ;R, S) (9)
(b)
= I(U ;S) + I(U ;R|S) (10)

≥ I(U ;R|S) (11)

where (a) follows from the Markov chain and (b) follows since mutual
information is always non-negative.

12. Additive Gaussian channel where the noise might be a relay

In this question we consider a channel with additive Gaussian noise as seen in
class.

Consider the channel presented in Fig. 3.
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X

Z N

Y

Figure 3: Additive Gaussian noise channel.

Y = X + Z +N,

where Z ∼ N (0, σ2
1) and N ∼ N (0, σ2

2) are additive noises and the input, X,
is with power constraint P . N,Z and X are independent.

(a) Calculate the capacity of the channel assuming that the noise is indepen-
dent of the message that the encoder uses for determining Xi.

(b) Now it is given that Zi is an output of a relay-encoder which has access
to the same message M that the channel encoder has. Hence X and Z
are no longer independent. It is also given that Z has a power constraint
P , namely 1

n

∑n

i=1 Zi ≤ P with high probability. Find the capacity of
the channel and the probability density function f(x, z) for which it is
achieved.

Solution: Additive Gaussian channel where the noise might be a
relay

See attached file.

13. True or False
Copy the following to your notebook and write true or false. Then, if it’s
true, prove it. Otherwise, if it’s false, give a counter example or prove that the
opposite is true.

• Let X be a continuous random variable. Then the following holds

I(X;X) = h(X).
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Solution This claim is false since the mutual information term represents
a Gaussian channel with no noise. For this channel the capacity is infinite.
Where the entropy of X is bounded by the the entropy of a gaussian RV which
is 1

2
log(2πe)σ2

x.

14. Two antennas with Gaussian noise
In this question we consider a point-to-point discrete memoryless channel (DMC)
in which the transmitter and the receiver both have two antennas, illustrated in
Fig. 4. This channel is defined by two input alphabets X1 and X2, two output
alphabets Y1 and Y2 and a channel transition matrix PY1Y2|X1X2

. A message M
is randomly and uniformly chosen from the message set M = {1, 2, . . . , 2nR}
and is to be transmitted from the encoder to the decoder in a lossless manner
(as defined in class).

M
Encoder

Xn
1

Xn
2

PY1Y2|X1X2

Y n
1

Y n
2

Decoder
M̂

Figure 4: Two antenna point-to-point DMC.

(a) What is the capacity of the channel?

Now, consider the following Gaussian two antenna point-to-point DMC illus-
trated in Fig. 5

The outputs of the channel for every time i ∈ {1, . . . , n} are give by,

Y1,i = X1,i + Z1, (12)

Y2,i = X1,i +X2,i + Z1 + Z2, (13)

where (Z1, Z2) are two independent (of each other and of everything else)
Gaussian random variable distributed according to Z1 ∼ N (0, N1) and Z1 ∼
N (0, N2). The input signals are bound to an average power constraints,

E

[
1

n

n∑

i=1

X2
1,i

]
≤ P1 ; E

[
1

n

n∑

i=1

X2
2,i

]
≤ P2. (14)

16



X1,i

X2,i

Z1

Z2

Y1,i

Y2,i

Figure 5: A Gaussian two antenna point-to-point DMC.

(b) Find the capacity of the Gaussian channel in terms of the provided pa-
rameters and state the joint distribution of (X1, X2) that achieves it.

Solution:

(a) Let us denote the input pair (Xn
1 , X

n
2 ) by X̃n and the output pair (Y n

1 , Y
n
2 )

by Ỹ n. An equivalent channel to the one considered in this question is
the point-to-point DMC for which (X̃n, Ỹ n) serve as the channel’s in-
put and output sequences, respectively, and the channel transition matrix
is PỸ |X̃ . Recalling that the point-to-point channel capacity is given by

maxP
X̃
I(X̃; Ỹ ), and substituting X̃n = (Xn

1 , X
n
2 ) and Ỹ n = (Y n

1 , Y
n
2 ) we

obtain:
C = max

PX1X2

I(X1, X2;Y1, Y2). (15)

(b) First now that Y2 can be rewritten as Y2 = Y1 +X2 +Z2. Now, we upper
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bound the capacity as:

I(X1, X2;Y1, Y2) = I(X1, X2;Y1) + I(X1, X2;Y2|Y1)

= h(Y1)− h(Y1|X1, X2) + h(Y2|Y1)− h(Y2|X1, X2, Y1)

(a)
= h(Y1)− h(Z1) + h(Y1 +X2 + Z2|Y1)− h(Y1 +X2 + Z2|X1, X2, Y1)

(b)
= h(Y1)− h(Z1) + h(X2 + Z2|Y1)− h(Z2)

(c)

≤ h(Y1)− h(Z1) + h(X2 + Z2)− h(Z2)

= h(Y1)−
1

2
log(2πeN1) + h(Y2)−

1

2
log(2πeN2)

(d)

≤ 1

2
log
(
2πe(P1 +N1)

)
− 1

2
log(2πeN1) +

1

2
log
(
2πe(P2 +N2)

)
− 1

2
log(2π

=
1

2
log
( 2∏

i=1

(Pi +Ni)
)

where:
(a) follows from the definitions of Y1 and the fact that Z1 is independent
of X1;
(b) follows from the fact that Z2 is independent of (X1, X2, Z1) and there-
fore it is independent of (X1, X2, Y1);
(c) follows from the fact that conditioning reduces entropy;
(d) follows by the maximum of differential entropy property.

This upper bound is achieved by choosing (X1, X2) to be jointly Gaussian RVs
with the following distribution,

(
X1

X2

)
∼ N

((
0
0

)
,

(
P1 0
0 P2

))
(16)

This distribution achieves (c) with an equality since by this choice we get that
Y1 = X1+Z1 and X2+Z2 are independent. Whereas (d) is achieved with equal-
ity since by this choice Y1 and Y2 are Gaussian RVs with variances P1+N1 and
P2 +N2, respectively (which achieves the maximum of entropy)

15. Complex Gaussian Channel. The following question focuses on the complex
Gaussian point-to-point communication channel.
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Let Z = U + iV be a complex Gaussian RV in the sense that U and V are
independent and identically distributed real Gaussian RVs. In the following
sections Z ∼ CN (0, γ), where,

0 = E[Z] ; γ = E[|Z|2], (17)

and γ is a given positive parameter.

(a) Find the distribution of the random vector (ℜ{Z},ℑ{Z})T = (U, V )T .

(b) Is it true that h(Z) = h(U, V )? Justify your answer.

(c) Calculate h(Z).

(d) What is the maximum of the differential entropy over all centered complex
RVs Z = U+iV with E[U2]+E[V 2] ≤ γ? Which distribution of Z achieves
this maximum?

Finally, consider the complex Gaussian channel illustrated in Fig. 6.

Xi

Zi ∼ CN (0, N)

Yi

Figure 6: A complex Gaussian point-to-point channel.

The output of the channel for every time i ∈ {1, . . . , n} is give by,

Yi = Xi + Zi, (18)

where Xi, for i ∈ {1, . . . , n}, is a complex channel input and Zi is distributed
i.i.d according to Zi ∼ CN (0, N). The input signal is bound to an average
power constraint,

E

[
1

n

n∑

i=1

|Xi|2
]
≤ P. (19)
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The capacity of the complex Gaussian channel is given by,

C = max
fX : E[|X|2]≤P

I(X;Y ). (20)

(e) Express the capacity in (20) in terms of the parameters of the problem
(i.e., as a function of P and N) and state the distribution of the complex
input RV X that achieves the maximum.

(f) Compare the result to the capacity of the real point-to-point channel.
Explain the difference.

Solution: Complex Gaussian Channel.

See attached file.

16. True or False

Copy each relation to your notebook and write true or false. Then, if it’s
true, prove it. If it is false give a counterexample or prove that the opposite is
true.

(a) Let X, Y be a pair of random variables jointly distributed according to
PX,Y . For every y ∈ Y we have

H(X|Y = y) ≤ H(X).

(b) Consider the channel in Fig. 7 where Z is a Gaussian noise with power
N and a is a deterministic constant. There is a power constraint on X
such that E[X2] ≤ P . The capacity between X and Y is denoted by C.
Is C = 1

2
log(1 + P

N
)?

X Ỹ Y

Z a

Figure 7: Cascaded AWGN channel.

Solutions
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a) False. For example:
Y \X 0 1
0 0.25 0.25
1 0.5 0

For this distribution we can calculate Hb(0.25) = H(X) < H(X|Y =
0) = 1.

b) True. For the converse, if multiplying by a would increase the capacity
then we would use it in the point to point channel. To achieve, we divide
by a and apply the decoding procedure as in the point to point channel.

c) True. This can be done as in the previous question. Another approach
is by noting that the function (·)3 is a bijective function and therefore by
having Y we indeed can recover Ỹ and:

I(X; Ỹ ) = H(Ỹ )−H(Ỹ |X)

= H(Ỹ , Y )−H(Y, Ỹ |X)

= H(Y )−H(Y |X)

= I(X;Y )

and thus maxp(x) I(X;Y ) = maxp(x) I(X; Ỹ ) = 1
2
log(1 + SNR).

17. Parallel Gaussian channels Consider a channel consisting of 2 parallel Gaus-
sian channels, with inputs X1 and X2 and outputs given by

Y1 = X1 + Z1,

Y2 = X2 + Z2.

X1

Z1

Y1

X2

Z2

Y2

Figure 8: Parallel Gaussian channels.

The random variables Z1 and Z2 are independent of each other and of the
inputs, and have the variances σ2

1 and σ2
2 respectively, with σ2

1 < σ2
2.
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(a) Suppose X1 = X2 = X and we have the power constraint E[X2] ≤ P . At
the receiver, an output Y = Y1 + Y2 is generated. What is the capacity
Ca of the resulting channel with X as the input and Y as the output?

(b) Suppose that we still have to transmit the same signal on both channels,
but we can now choose how to distribute the power between the channels,
i.e. X1 = aX and X2 = bX. The new constraint is E[X2

1 ] +E[X2
2 ] ≤ 2P .

What is the capacity, Cb, of this channel with X as the input and (Y1, Y2)
as the output? Which a and b achieve that capacity?

(c) We now assume that Z1 and Z2 are dependent, specifically, Z2 = 2Z1.
As in subsection b, we can choose how to distribute the power between
the channels, i.e. X1 = aX and X2 = bX under the power constraint
E[X2

1 ] + E[X2
2 ] ≤ 2P . The outputs of the channels are given by

Y1 = aX + Z1,

Y2 = bX + 2Z1.

What is the capacity, Cc, of this channel with X as the input and (Y1, Y2)
as the output? Which a and b achieve that capacity?

Solution: Parallel Gaussian channels.

(a) This channel has an input X and output Y and as we learned in class,
the capacity of the Gaussian channel is given by

C =
1

2
log(1 + SNR). (21)

In our case,

SNR =
E[(X1 +X2)

2]

E[(Z2 + Z2)2]

≤ 4P

σ2
1 + σ2

2

. (22)

So, the capacity of this channel is given by

C =
1

2
log

(
1 +

4P

σ2
1 + σ2

2

)
. (23)
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(b) Let

Y1 = aX + Z1

Y2 = bX + Z2, (24)

where Z1 and Z2 are independent of each other and have the variances
σ2
1 and σ2

2 respectively, with σ2
1 < σ2

2. We seek the values of a, b that
maximize

I(X;Y1, Y2) = h(Y1, Y2)− h(Y1, Y2|X)

= h(Y1, Y2)− h(Z1, Z2)

= h(Y1, Y2)−
1

2
log 2πeσ2

1σ
2
2, (25)

under the constraint a2 + b2 ≤ 2. In order to find h(Y1, Y2) we need to
find the covariance matrix of Y1, Y2, which is given by

ΣY1,Y2
=

(
a2P + σ2

1 abP
abP b2P + σ2

2

)
. (26)

Then,

|ΣY1,Y2
| = (a2P + σ2

1)(b
2P + σ2

2)− a2b2P 2

= P (a2σ2
2 + b2σ2

1) + σ2
1σ

2
2

≤ P (a2σ2
2 + (2− a2)σ2

1) + σ2
1σ

2
2

= a2P (σ2
2 − σ2

1) + (2P + σ2
2)σ

2
1, (27)

and

h(Y1, Y2) ≤ log 2πe+
1

2
log[a2P (σ2

2 − σ2
1) + (2P + σ2

2)σ
2
1]. (28)

We can now see that, since σ2
1 < σ2

2, the expression in (28) achieves its
maximum value when a achieves its maximal value, namely, for a =

√
2.

We conclude that the optimal strategy in this case is to use only X1 to
transmit the data, and the capacity is thus

Cb =
1

2
log

(
1 +

2P

σ2
1

)
(29)
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(c) In this case, we can set X1 = 0, X2 = X and Y = Y2 − 2Y1. Substituting
the equations for Y1, Y2 and Z2 we see that

Y = X. (30)

Thus, the capacity is infinite.

18. Fast fading Gaussian channel:

Consider a Gaussian channel given by Yi = GiXi + Zi, where Zi
i.i.d∼ N (0, N)

M XiEnc

Gi Zi

Dec
Yi M̂

Figure 9: Fast fading Gaussian channel

and Gi
i.i.d∼ PG(g).

The gains and noise are independent, i.e., {Zi} ⊥⊥ {Gi}, and

PG(g) =

{
0.5 if g = 1

0.5 if g = 2

(a) Assume that the states are known at the decoder only, and there is an
input constraint P .

i. What is the capacity formula?

ii. Find the optimal inputs distribution in the formula you gave.

iii. Compute the capacity as a function of N and P .

(b) Now the states are known both to the encoder and decoder, and the input
constraint is P .

i. What is the capacity formula?

ii. Compute the capacity as a function of N and P .
You can write your answer as an optimization problem.

(c) Assume

PG(g) =

{
0.5 if g = 0

0.5 if g = 1
.

Repeat 18b.
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Solution: Fast fading Gaussian channel

(a) i. As we saw in the lectures, the capacity is given by

C1 = sup
PX

I(X;Y |G) (31)

where the maximum is taken over allX-distributions such that E(X2) ≤
P .

ii. We show in the next item that the optimal input is X ∼ N (0, P ).

iii. The states are known only to the decoder, and thus we may assume
that X ⊥⊥ G. We have

I(X;Y |G) = h(Y |G)− h(Y |X,G)

= h(Y |G)− h(Y −GX|X,G)

= h(Y |G)− h(Z|X,G)

(a)
= h(Y |G)− h(Z)

= P (G = 1) · h(Y |G = 1) + P (G = 2) · h(Y |G = 2)− h(Z)

=
1

2
· h(X + Z|G = 1) +

1

2
· h(2X + Z|G = 2)− h(Z)

(a)
=

1

2
· h(X + Z) +

1

2
· h(2X + Z)− 1

2
log(2πeN) (32)

where (a) follows from the fact that Z ⊥⊥ (X,G). Now, the maximal
entropy lemma implies

h(X + Z) ≤ 1

2
log(2πe(P +N)), (33)

h(2X + Z) ≤ 1

2
log(2πe(4P +N)), (34)

with equality if and only if X ∼ N (0, P ). Thus,

I(X;Y |G) ≤ 1

2
log

(√
(P +N)(4P +N)

N

)
, (35)

again, with equality if and only if X ∼ N (0, P ). Therefore

C1 = max
PX

I(X;Y |G)

=
1

4
log

(
1 +

P

N

)
+

1

4
log

(
1 +

4P

N

)
. (36)
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(b) i. Again, as we saw in the lectures, the capacity in this case is given by

C2 = sup
PX|G

I(X;Y |G) (37)

where the maximum is over all distributions PX|G which satisfy the
power constraint.

ii. As before, we get:

I(X;Y |G) =
1

2
· h(X + Z|G = 1) +

1

2
· h(2X + Z|G = 2)− 1

2
log(2πeN).

(38)

Define the functional:

var(X|W = w)
△
= E(X2|W = w). (39)

Then, let var(X|G = i)
△
= Pi for i = 1, 2. By the power constraint,

we have that P1+P2 ≤ 2P . Accordingly, due to the maximal entropy
lemma, we get

h(X + Z|G = 1) ≤ 1

2
log(2πe(P1 +N)) (40)

h(2X + Z|G = 2) ≤ 1

2
log(2πe(4P2 +N)), (41)

were both inequalities are achieved if X|G = i is Gaussian with vari-
ance Pi. Hence,

I(X;Y |G) ≤ 1

2
log

(√
(P1 +N)(P2 +N)

N

)
. (42)

Therefore, the capacity is given by

C2 = sup
(P1,P2):P1+P2≤2P

1

2
log

(√
(P1 +N)(4P2 +N)

N

)
(43)

= sup
(P1,P2):P1+P2≤2P

{
1

4
log

(
1 +

P1

N

)
+

1

4
log

(
1 +

4P2

N

)}
. (44)

Remark : This optimization problem can be solved by Water-filling.
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(c) As before we will get

I(X;Y |G) =
1

2
· h(Z|G = 0) +

1

2
· h(X + Z|G = 1)− 1

2
log(2πeN)

=
1

2
· h(X + Z|G = 1)− 1

4
log(2πeN). (45)

Also,

h(X + Z|G = 1) ≤ 1

2
log(2πe(P1 +N)). (46)

Thus,

C3 = sup
(P1):P1≤2P

1

4
log

(
P1 +N

N

)

=
1

4
log

(
1 +

2P

N

)
. (47)

Intuition: To achieve (47) the transmitter will not send any data when
G = 0 (because in this case our information will be lost), but rather all
the data will be transmitted when G = 1 (and with power 2P to satisfy
the power constraint). Now, when G = 1, the channel reduces to a simple
Gaussian channel, Y = X+Z, with signal to noise ratio of 2P/N , namely,
we can achieve a rate of

1

2
log

(
1 +

2P

N

)
.

However, since with high probability, G = 1 half of the time, we need to
multiply the last result by half, and we get the quarter factor in (47).
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