Homework Set #5 Polar codes

- 1. **Polarization and the idea of polar codes**: The question is about polarization effect in memoryless channels that can lead to simple coding schemes that achieve the capacity which are called polar codes.
 - (a) Consider the channel in Fig. 1 where two parallel binary erasure channels can be used at once (the input is $X = (X_1, X_2)$). The inputs alphabets are binary, so that Y_1 and

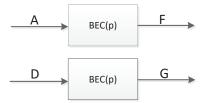


Figure 1: Two parallel binary erasure channels

 Y_2 are the outputs of a BEC(p) with inputs X_1 and X_2 , respectively. Compute the capacity of this channel, namely,

$$\max_{p(x_1, x_2)} I(X_1, X_2; Y_1, Y_2).$$
(1)

What is the input distribution $p(x_1, x_2)$ that achieves the capacity?

(b) Consider the system in Fig. 2, where addition is modulo 2:

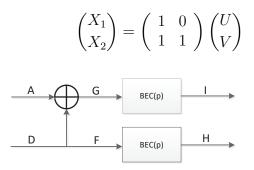


Figure 2: Two parallel binary erasure channels with modified inputs

Compute the capacity of the new channel, i.e. $\max_{p(u,v)} I(U, V; Y_1, Y_2)$.

What is the p(u, v) that achieves the capacity?

Next, the channel is decomposed into two parallel channels as appears in Fig. 3. The input of Channel 1 is U and its output is (Y_1, Y_2, V) . The input of Channel 2 is V and its output is (Y_1, Y_2) .

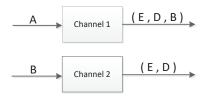


Figure 3: Two new channels

- (c) Compute the expressions $I(U; Y_1, Y_2, V)$ and $I(V; Y_1, Y_2)$ with respect to the p(u, v) that achieves the maximum in (b). What is the sum of the expressions you computed?
- (d) Compare the mutual information of Channels 1 and 2 with the capacity of a binary erasure channel (that is, write \langle , \rangle or = with simple proof).

*For large n, repeating this decomposition n times, ends up in nc clean channels and in n(1-c) totally noisy channels. This is the main idea of polar codes, which achieves capacity.

- 2. Polar codes Consider a binary erasure channel W with erasure probability p. One step of the polarization process creates a better channel W^+ and a worse channel W^- from two independent copies of W.
 - (a) The polar code creates 4 effective channels W^{++} , W^{+-} , W^{-+} , W^{--} . Write down the capacities of these 4 channels in terms of information-theoretic quantities.
 - (b) Compute explicitly the capacities of the 4 channels in terms of the parameter p.
 - (c) Suppose we would like to send at the rate 3/4 bits per channel use. Which of the U_i 's should be frozen, and which should be set as information bits?
 - (d) We repeat the polarization process n times to create 2^n different channels from 2^n complex of W. Let \overline{W} and \underline{W} be the best and worst channels among these 2^n channels. Compute explicitly the capacities of \overline{W} and \underline{W} in terms of the parameters p and n.
 - (e) What happens to the capacities of \overline{W} and \underline{W} as $n \to \infty$?

3. **Polar compressor** For a positive integer N, let $n = 2^N$ and consider the invertible matrix $P_n \in \mathbb{F}_2^{n \times n}$ defined by:

$$P_n = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{\otimes N}$$

Further, consider $Z^n = (Z_1, \ldots, Z_n) \sim \text{Bern}(p)^n$ where $p \in (0, 0.5)$, and let $W^n = Z^n \cdot P_n$.

- (a) For both channel coding and source coding, we do polarization. Explain briefly the difference in polarization between channel coding and source coding.
- (b) Define the rate for source coding and channel coding, and explain whether you want to maximize or minimize those rates.
- (c) Assume n = 4 and consider the entropy terms $H(W_i|W^{i-1})$ for $i \in \{1, \ldots, 4\}$. Determine and explain which one is the highest, and calculate this specific entropy term explicitly in terms of p.
- (d) Define the set S_{τ} as follows:

$$S_{\tau} = \{ i \in \{1, \dots, 4\} \mid H(W_i | W^{i-1}) \ge \tau \}.$$

For $\hat{\tau} = -\mathbb{E}[\log_2(P_{W_1})]$, write explicitly the set $S_{\hat{\tau}}$. Explain your result.

- (e) Consider $z^4 = [1, 0, 1, 1]$ and the set $S_{\hat{\tau}}$ that you found in the previous item. What is the output of the encoder?
- (f) This time let n = 2, and assume that $Z_1 \sim \text{Bern}(p_1)$ and $Z_2 \sim \text{Bern}(p_2)$ are sampled conditioned on $Z_1 + Z_2 = a$ (for $a \in \mathbb{F}_2$). Let $b(p_1, p_2, a)$ denote the probability of Z_2 being 1 conditioned on $Z_1 + Z_2 = a$. Find $b(p_1, p_2, a)$ for both a = 0 and a = 1.